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Phase-matching efFects in strong-field harmonic generation
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We present experimental results of harmonic generation at 1064 nm using a 36-ps neodymium-
doped yttrium aluminum garnet laser tightly focused in a gas jet of xenon. The harmonic yields
are studied as a function of the position of the focus in the jet at several laser intensities and as
a function of intensity at several focus positions. These results bring information about how the
high harmonics are phase matched in the medium and also about the single-atom dynamics of the
process. The harmonic yields as a function of the position of the focus in the jet exhibit regular
oscillations that are due to the interference efI'ects inherent to the generation of harmonics in the
nonlinear medium. The intensity dependences present structures that we attribute to single-atom
resonance effects.
PACS number(s): 42.65 Ky, 32.80 Rm

I. INTRODUCTION

High-order harmonic generation by atoms in intense
laser fields has recently drawn considerable attention.
Experiments [1—6] have demonstrated the possibility to
reach wavelengths shorter than 20 nm with reasonable
conversion efBciencies, thus opening the way to the de-
velopment of high brightness coherent sources in the vac-
uum ultraviolet (VUV) and soft x-ray ranges. These
conversion processes depend on the interplay between
the single-atom response to the external laser field and
macroscopic phase-matching effects. It is essential to un-
derstand both aspects in order to optimize the number
of photons that can be produced.

Phase-matching effects have been extensively studied
in the case of low-order processes in cells [7]. There are
essentially two reasons fo'r phases not to be matched:
the dispersion in the nonlinear medium which induces
a phase difference between the polarization and the gen-
erated field and the focusing of the laser beam which also
leads to an effective phase mismatch [8]. The effect of
dispersion increases with the atomic density and is very
sensitive to the presence of resonances. In contrast, the
effect due to focusing is purely geometrical. Thus, a well-
known result is that no harmonics can be created when a
laser is focused in a positively dispersive infinite medium.
The situation becomes more complicated when harmon-
ics are generated in thin gas jets [9, 10]. This introduces
another length, the medium length, which can be compa-
rable to the laser confocal parameter. Moreover, one has
to take into account a nonuniform atomic density and in
particular edge effects. Harmonic generation in a jet has
been carefully studied by Lago et at. [11, 12], who have
investigated in particular the influence of the position of
the beam focus in the gas jet on third harmonic gen-
eration, considering several analytical distributions for
describing the atomic density. The cancellation of the
harmonic fields in a positively dispersive finite medium

is not perfect. It depends on the ratio between the length
of the jet (L) and the laser confocal parameter (b) and
increases dramatically with the process order [13].

Most of the above studies (and in particular those per-
formed with a gas jet) need relatively weak laser in-
tensities (below 10 W/cm ), so that the atomic re-
sponse can be treated within lowest-order perturbation
theory. In this weak-field limit, the polarization of the
medium induced by the laser Geld at the qth harmonic
frequency qa is simply expressed as y~~&E~, the prod-
uct of a nonlinear susceptibility by the qth power of
the field strength. As the laser intensity reaches values
of the order of 10is W/cm or more, which are neces-
sary to generate the high-order harmonics, the atomic
response departs largely from that predicted by lowest-
order perturbation theory. The atom becomes strongly
perturbed by the radiation field. Single-atom studies of
harmonic intensity dependences [14] show that the dy-
namics of these processes look indeed very complicated,
with many structures and resonances (the ionization rate
being in contrast much smoother). However, the har-
monic intensity distribution at a given laser intensity
is quite simple and exhibits a characteristic universal
shape. It decreases for the first orders, then is almost
constant over a wide range of photon energies, and fi-

nally decreases rapidly. This behavior has been repro-
duced in most single-atom calculations [15—18] and also
in more complete studies including propagation of the
harmonic fields in the nonlinear medium (phase match-
ing) [19,20). In contrast to the perturbative result men-
tioned above, phase matching turns out to remain almost
constant for the harmonics in the plateau region. This
comes from the fact that in this strong-Geld regime, all of
the plateau harmonics vary similarly with the laser inten-
sity and much more slowly than in the weak-field limit.
Moreover, the propagation was found to be mostly gov-
erned by an effective phase mismatch, due to the beam
focusing. When the atomic dipole moment at the har-
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monic frequency qu is assumed to vary as the pth power
of the laser field, p being an efFective order of nonlinearity
smaller than q, the harmonic B.eld displays interference
fringes within the medium, separated by twice a coher-
ence length L«g = btan[~/(q —1)]/2 [20, 21]. These
fringes are similar to those displayed by a harmonic field
generated in nonlinear dispersive media, which can be
probed for instance by rotating a crystal plate (Maker
fringes [22]), or by varying the atomic density in the case
of a gas target [23]. However, their origin is geometri-
cal: they can be probed by varying the interaction ge-
ometry, or the focusing conditions. Moreover, their ob-
servation requires that the polarization induced by the
fundamental field varies slowly in the nonlinear medium,
and henceforth departs from the perturbative limit.

In this work, we present experimental studies of these
phase-matching effects induced by focusing, which are
the signature of the nonperturbative response of atoms to
strong fields. We have concentrated our eEort on xenon,
using a 1064-nm, 36-ps, 10-Hz Nd-YAG laser (YAG de-
notes yttrium aluminum garnet). We get evidence of the
fringes by studying the harmonic yields from q = 3 to 15
at a given intensity, as a function of the position of the
laser focus in the atomic beam. These results, combined
with harmonic intensity dependences, also give some in-
sight on the single-atom aspect of the problem. The har-
monics in general do not have a smooth dependence with
intensity and exhibit structures which we attribute to the
inHuence of resonances [21, 24], most of the single-atom
rapidly varying features being, however, averaged out by
propagation. Some of our results have been presented
recently in a Letter [21]. We give here a full account, of
these experiments, together with a detailed interpreta-
tion.

This article is organized as follows. In Sec. II we sum-
rnarize the theoretical background needed for discussing
the experimental results. In particular, we make the
connection between the variations of the harmonic yield
when displacing the focus, and the interference fringes
within the medium at a given focus position. We present
in Sec. III systematic studies of harmonic yields in xenon
at 1064 nm, as a function of the laser intensity and of the
focus position. The resuits are discussed in Sec. IV.

II. PHASE MATCHING IN A GAS JET

A. Definition of the coherence length

Consider an incident laser field, with a Gaussian enve-
lope expressed as kir-

Ei(r, z} = . expb+2i z b+2izp '

w here Fo is the peak Beld amplitude and ki is the wave
vector. The envelope of the nonlinear polarization in-
duced by the laser at frequency q~ (u being the laser
frequency) can be written as

P, (r, z) = 2+.p(r, z)d, (~, z)
( 2kyr z

x exp iq
~

tan (—2z/b) —,(2)6'+ 4z2

where JVp and p(z) are the peak density and density pro-
Ble of the jet, and d~ is the complex dipole moment, such

that d~e'~~~~+&~ is the component oscillating at qu of the
atomic response to the electric field ~Ei]e'& +&&. The
space-dependent phase P induced by the laser beam fo-

cusing leads to the phase factor in Eq. (2). For a dis-
persionless medium (such that the phase mismatch Ak
is zero), the phase lag between P~(z) and a freely propa-
gating Gaussian beam at q~ is

Aq')(z) = (1 —q) tan '(2z/b). (3)

This phase lag can be interpreted as the absolute phase of
a Gaussian beam at qu generated by a slab of polarization
between z and z + bz:

exp[iEP(z)] ( kyar'z —l6E' + r, z'- exp1+2iz'/b (b+2iz'p '

(4)

whose phase reduces to that of P~ for z' = z. The har-
monic B.elds generated by two slabs separated by one co-
herence length, defined to be L, i, = (b/2) tan[sr/(q —1)]
close to the focus, are dephased by ~ and hence interferer

mostly destructively. This leads to interference fringes in
the medium, separated by 2L, i, [21]. Because of the arc-
tangent function, the distance between two zeros modulo
a of AP(z) increases away from the focus. To second
order in z/b, we have

vrb 4z2&
L, i (z}= 1+

2 q —1

For a medium. with dispersion, the phase lag between the
polarization and the free Gaussian beam propagating in
the medium is

AP(z) = (1 —q) tan '(2z/b) + Akz, (6)
where Ak is the phase mismatch k~ —qki.

As discussed in previous work [19, 20], phase match-
ing of focused beams depends not only on the eKec-
tive phase mismatch (or coherence length) but also on
how the amplitude of the polarization varies through-
out the medium. If the length over which the polariza-
tion is concentrated (denoted L~~~) is comparable to or
smaller than L, the number of interference fringes that
can develop in the nonlinear medium will be given by
L~~~/2L«i, rather than L/2L«i, This explain. s the dif-
ference between phase matching in a weak- or strong-field
regime for the laser-atom interaction. In a weak-field
regime, the nonlinear polarization for a high harmonic is
quite concentrated in the medium, L@ p 2L Qb (( L
and only one fringe appears. The B.eld grows, reaches
a maximum close to the focus, and then decreases. The
Beld created over the first half of the medium is cancelled
out by that created in the second half. In contrast, in
a strong-Beld regime, L p is much larger and several
fringes appear. The cancellation does not occur. As a
result, phase matching of the high harmonics is consid-
erably enhanced in a strong-Beld regime as compared to
the perturbative limit.

So far, we have considered harmonic generation when
the laser is focused at the center of the atomic beam. It
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is important to understand the effect of the displacement
of the focus relative to the center of the medium on phase
matching both in strong- or weak-field limit situations.
Indeed, by studying phase matching as a function of the
position of the focus in the jet, we probe not only the
interference effects mentioned above but also the density
distribution in the beam (and its edges). We first con-
sider the weak-field limit, for which analytical expressions
can be given [ll]. In the following, we neglect dispersion,
whose eEect remains small compared to that of focusing
in our experimental conditions.

B. Calculations within lowest-order perturbation
theory

O
O
D

(b)

Let Z denote the position of the focus and Z = 0
the position of the center of the atomic jet. The in-
cident beam focused at Z is Ei,z(r, z) = EpGt, z(r, z),
where G& z is the translated Gaussian envelope function
obtained from Eq. (1) by replacing z by z —Z. The
harmonic field generated in the medium is given by

Eq, z(r, z) = inkqbhf(—)2 ~y~q)Ep Gt,"z(r, z)Fq(Z),

(c)

---X 105

where F~(Z) is the dimensionless phase-matching factor
defined by

Fq(Z) = [1 + 2i(z —Z)/b] qp(z) 2 dz/b. (8)

Fq(Z) can be determined analytically for a Lorentzian
density distribution, p(z) = 1/(1+ 4z2/I2),

gg —2""(')=
(b+ i+ 2,Z).— (9)

and for a square distribution: p(z) = 1 if ~Z~ ( I/2,

F'q Z
2 —q [b+ 2i(—Z+ L/2)]~-2

1

f6+2~( —Z —I/S)]~ —' )'
Figure 1 shows ~F~(Z)[, q = 3, 7, 21 for a Lorentzian
(dashed line) and square (solid line) jet density. We use
the experimental parameters both for the laser confocal
parameter, b = 1.5 mm, and for the width of the gas jet, I
= 1 mm. In the Lorentzian case, all of the curves present
a single maximum at Z = 0. In contrast, the curves ob-
tained by assuming a square jet exhibit a double-peak
structure from the seventh harmonic, the maxima being
centered on the medium's edges. The width of the peaks,
related to the length I ~, decreases when the harmonic
order q increases. Phase matching is considerably en-
hanced when the laser is focused on one of the edges
[see in particular Fig. 1(c)]. Indeed, in the perturbative
regime, and for a high-order harmonic, the polarization is
mostly concentrated in a region much smaller than that
defined by the gas jet. If the atomic density is smooth,
the harmonic field will be very similar to the one that
would be generated in a large uniform medium [7], i.e. ,

I I

—
1 0 1

Focus position (mm)

FIG. 1. Phase-matching function F~(Z) for the 3rd (a),
7th (b), and 21st (c) harmonics in lowest-order perturbation
theory, for a 1-mm-wide square (solid line), and Lorentzian
(dashed line) jet profile. The confocal parameter is equal to
1.5 mm. The result obtained for the 21st harmonic with the
Lorentzian jet has been multiplied by a factor of 10 .

almost equal to zero. The harmonic field generated on
one side of the focus interferes destructively with that
generated on the other side. In the case of a square jet,
this cancellation does not take place when the focus is
located on one of the edges of the medium.

We have performed calculations using more complex
density distributions, for which no analytical expression
for Fq(Z) can be given. Our conclusion is that for the
high harmonics in a perturbative regime, phase match-
ing is very sensitive to any change of slope of the density
proFile. This is because the perturbative phase-matching
factor for the high harmonics is extremely small, and can
be improved easily by any irregularity in the shape of
the jet, This sensitivity is bound to be much reduced
for more realistic harmonics whose phase matching is en-
hanced by nonperturbative effects [19].

C. Study of a model polarization law

We now investigate how the phase-matching depen-
dence with Z (Fig. 1) is modified when the polarization
Beld does not vary as the qth power of the incident field.
Here, for illustration purposes, we use model polariza-
tion fields, varying as the pth power of the field, with
p = 4 (( q. We show in Fig. 2 Fq(Z) for the 7th, 9th,
and 13th harmonics. The solid line and dashed line cor-
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respond to results obtained by neglecting dispersion for
1-mm-width square and Lorentzian profiles, respectively.
The result shown as a dot-dashed line has been obtained
also for a square profile, but with introduction of a phase
mismatch due to dispersion, and for the case of the 13th
harmonic an absorption factor (we use realistic values,
from Ref. [13]). Note that, in all these examples, we
cannot find analytical expressions for the phase-matching
factor Fz(Z) Th. is factor is determined by solving nu-
merically the propagation equation for the harmonic field
in the medium, in the paraxial and slowly varying enve-
lope approximations [20]. The results are quite difFerent
from those in Fig. l. Oscillations appear that cannot be
attributed to any density variation (edges), but rather to
the interference effects inentioned above. Note that these
oscillations strongly depend on the type of density profile
used. We now consider in more details the relationship
between these oscillations and the coherence length of
harmonic generation.

Consider first a semi-infinite medium (from —oo to
L/2). Moving the focus Z in this medium is equivalent
to varying the position of its right edge (at L/2). The os-
cillations observed in the harmonic yield as a function of
the focus are directly related to the interference fringes
which appear in the building up of the harmonic field
in the medium and the distance between two maxima is

0
O
CJ

O
E

I

D

0

0 1

Focus position (mm)

FIG. 2. Phase-matching function F~(Z) for the 7th (a),
9th (b), and 13th (c) harmonics, for a model ~E~ polarization
field and a 1-mm square (solid line) or Lorentzian (dashed
line) density profile. The dot-dashed curve corresponds to
the square profile case, in which we also consider an atomic
phase mismatch, whose real part is positive. The Lorentzian
curve in (c) has been multiplied by 5.

twice the coherence length L„h(Z) [see Eq. (5)].
When 2Lc~h & L@~p & L a condition which depends

on the variation with intensity of the polarization and on
the focusing geometry, the whole interference figure is es-
sentially the same as for a semi-infinite medium. Conse-
quently, moving the focus position is equivalent to span-
ning the interference fringes directly within the medium.
In a tight focusing geometry, we therefore expect the os-
cillations to follow the coherence length.

Let us now consider a weaker focusing geometry (or a
slower variation of the polarization with intensity) such
that 2L, h & L & L ~. The semi-infinite medium ap-
proximation is no longer valid and the number of oscilla-
tions in the curves obtained by moving the focus in the
jet does not correspond to the number of interferences
expected in the medium when the focus is at Z = 0. The
number of fringes n(Z) that may develop in the medium
when the focus is at position Z is equal, for a square
density, to

n(Z) = (tan ](2Z+I )/5] —tan ](2Z —I)/5]).Q
—1

2'

As Z describes the arctangent curve, n(Z) increases
from zero to a maximum integer value (for Z = 0) and
then decreases again to zero. The harmonic conversion is
maximum when n(Z) takes an integer value and min-
imum when n(Z) is half-integer. Therefore, the har-
monic conversion as a function of the position of the
focus in the jet exhibits oscillations, with a period ap-
proximately equal to 2bL, h/L. The transition between
the two regimes happens when L@~p L.

Finally, if L ( 2L, h, almost perfect phase matching is
achieved, and no oscillation is observed. This situation
corresponds to a very loose focusing geometry, charac-
terized by a linear increase of the observed number of
photons with the confocal parameter b, as shown in [4].

Let us now comment in more detail on the results
shown in Fig. 2. The periods of the curves corresponding
to the square profile (solid line) are close to, or slightly
larger than, twice the corresponding coherence lengths.
We are in the conditions of validity of the semi-infinite
medium approximation discussed above. On the other
hand, for the Lorentzian profile, the number of photons
always presents only two maxima which correspond to
a compromise between the improvement of phase match-
ing, due to the increase of the coherence length away from
the focus, and the (slow) decrease of the polarization am-
plitude. All other oscillations are totally blurred, because
of the lack of a well-defined exit edge in the medium, on
which interference eKects existing in the medium can be
probed. Edges, even though they do not lead to a dra-
matic improvement of phase matching as in the pertur-
bative case, are therefore essential to observe the phase-
matching fringes.

In the square jet case, the introduction of a positive
phase mismatch, as expected, leads to narrower oscilla-
tions, and to a slightly smaller phase-matching factor, as
shown by the dot-dashed line in Fig. 2. When the phase
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FIG. 3. Number of photons at the 5th harmonic (a), 7th harmonic (b), 9th harmonic (c), 11th harmonic (d), and 13th
harmonic below (e) and above (f) the saturation intensity, as a function of the position of the focus in the jet.
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mismatch becomes comple~, i.e. , when there is some ab-
sorption, the curve becomes asymmetric [see Fig. 2(c)].

III. EXPERIMENTAL RESULTS

A. Experimental arrangement

The experimental arrangement has been described
elsewhere [2, 3]. We use a mode-locked Nd-YAG laser,
delivering 36-ps bandwidth limited pulses, up to 20 mJ
in energy. The beam is focused by either a 200-mm or
a 300-mm lens in a gas jet of Xe or Ar. We operate
the gas jet with a backing pressure of 150 Torr, which
yields a 15-Torr peak pressure 0.5 mm below the nozzle.
The VUV light is analyzed in the forward direction by a
monochromator, consisting of a grazing-incidence gold-
coated toroidal grating which refocuses the harmonic
light on a 100-p,m output slit.

To characterize the focusing geometry, we take succes-
sive beam sections in the vicinity of the focus along the
propagation axis using a microscope objective (with a
magnification of 40) and a charged coupled device cam-
era. The confocal parameter of the beam is given by
6 = 4S/A, where S is the smallest section, or alterna-
tively by measuring the distance between the two sec-
tions whose value is 2S. For the f=200-mm lens, we get
S=360 pm2 and b=1.5 mm; for the f=300-mm lens, S=
750 pm2, 6=3 mm. The intensity range is then 10 to
10 4 W/cm2.

The main difhculty in these experiments was first to
characterize as well as possible the density profile and
second to find the position of the focusing lens for which

the focal point was centered in the gas jet. Our method is
analogous to that described in [12]. We measure the third
harmonic conversion as a function of the jet position rel-
ative to the laser focus both perpendicular to and along
the propagation axis. Then, we compare the data to the-
oretical results for the conversion efficiency obtained by
assuming various density profiles. The density distribu-
tion in the jet looks like a Lorentzian profile with a Hat

top, with a 1-mm full width at half maximum. The ex-
trema of this top can be considered as "edges, " though
they are not as clearly defined as for a square profile. This
particular shape is due to the short distance between the
6-mm-long nozzle and the laser axis (0.5 mm).

The experiments consist in measuring the harmonic
yield as a function of the position of the focus in the jet at
various intensities and as a function of intensity at various
focus positions. For the Grst type of measurements, we
simply move the focusing lens by steps of 100 pm. We use
a large statistic, i.e., 100 laser shots per data point, and
we enforce a strict energy selection, with a dispersion of
only 5'. For the second type of experiments, we vary the
laser energy by rotating a halE-wave plate placed before
a polarizer (after the last amplifier) and we average the
signal over about 30 laser shots. We now discuss the
results of these experiments successively.

B. Harmonic generation as a function of the focus
position in the jet

We show in Fig. 3 the numbers of photons for the 5th,
7th, 9th, 11th, and 13th harmonies as a function of the
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position of the focus in the jet at several laser intensities.
The laser propagates from the left to the right. The
solid curves are spline interpolations of the data. We
use a linear scale in order to emphasize the oscillations.
The tick marks on the ordinate scale indicate the zero
for each curve. The intensity is printed above the tick
marks in units of 10 s W/cm2. The saturation intensity
is estimated to be 3 x 10 s W/cm . The two or three
highest curves in Figs. 3(a), 3(b), and 3(d) and, for the
13th harmonic, all of the curves in Fig. 3(f) have been
obtained in the saturation region. We first comment on
the results below 3 x 10is W/cmz.

The 5th harmonic is the only curve together with the
3rd harmonic [21] which exhibits a single maximum when
the best focus is at the center of the jet (Z = 0). The 7th
harmonic shows two peaks at approximately the same po-
sitions (Z = —0.1 and Z = 0.7) for all of the results below
saturation, the 9th harmonic three peaks at Z = —0.25,
0.25, and 0.8, and the 13th harmonic about 4 or 5 os-
cillations separated by about 0.2 mm. The 11th and all
of the harmonics higher than the 13th (the highest being
the 21st) present a single peak, sometimes with shoul-
ders as shown in Fig. 3(d), always much broader than
what is expected from lowest-order perturbation theory.
The periods of the oscillations are measured to be 0.8,
0.5, and 0.25 mm for the 7th, 9th, and 13th harmon-
ics, respectively, to be compared to 0.8, 0.6, and 0.4 mm
for twice the corresponding coherence lengths due to fo-
cusing. They are approximately independent of intensity
and they increase slightly away from the center. We inter-
pret these oscillations as the signature of phase-matching
effects. The fact that the period is consistent with 2L«h
implies that we are close to the semi-infinite medium ap-
proximation described in the preceding section: the ge-
ometry is tight enough for I~ & to be smaller than L.

All of the harmonics apart from the 3rd and 5th display
a strong asymmetry. In the Appendix, we consider the
symmetry properties of these curves as a function of Z
and we investigate the different causes for an asymmetry:
absorption in the nonlinear medium, nonperturbative re-
sponse leading to a complex dipole moment, or asymmet-
ric density distributions. Ionization being an ll-photon
process (in a weak-field picture), there is absorption in
the nonlinear medium for the harmonics of order higher
or equal to 11, which leads to asymmetric curves as a
function of Z. For the 7th and 9th harmonics, the exper-
imental asymmetry might be due either to a slight defect
of our gas jet or to the intrinsic phase of the atomic dipole
moment at qw, arising from a nonperturbative response
(see the Appendix), or to an intensity-dependent absorp-
tion coeKcient.

In contrast to the period of the oscillations, practically
independent of intensity, the relative amplitudes of the
peaks exhibit dramatic changes with the laser intensity
over a small range. For instance, for the 9th harmonic, a
central peak, hardly distinguishable at 1.5 x 10is W/cm2,
appears at 1.6 x 10is W/cm and becomes dominant
around 1.8 x 10is W/cm . Similar behaviors can be ob-
served on the 7th and 13th harmonics in Figs. 3(b) and
3(e); In the latter case, there is even an additional struc-
ture appearing between 2.5 and 2.7 x10is W/cm2. These

rapid variations in intensity cannot be accounted for by
any effective power-law type of polarization fields. They
are probably due to resonances, or more generally rapidly
varying features, of the single-atom response. Studies of
harmonic generation as of function of intensity (see the
next section) will bring more information on these fea-
tures.

The results obtained in the saturation region, above
3 x 10is W/cmz, are quite different. Consider, for ex-
ample, Fig. 3(f). Between 3 and 3.8 xl0is W/cm2, the
width and shape of the curves do not change much but
the fine structure disappears. This is because the phase
mismatch gets an additional contribution from the free
electrons. It increases with the electron density, and con-
sequently with the laser intensity, thus mixing up the in-
terference pattern due to focusing. Moreover, from about
5 x 10is W/cms, for all of the harmonics, a second and
then a third structure, respectively on the right and on
the left of the figures, grows and becomes dominant. The
number of photons at Z = 0 does not decrease in abso-
lute value: it saturates, because the neutral medium gets
depleted. However, the intensity is now high enough for
harmonics to be generated far from the best focus site.
For these large Z values, the coherence length I.„h(Z)
is much larger than at Z = 0 which leads to a more im-

portant harmonic production, up to a factor of 50 more

[4]. As the intensity increases, the region where the har-
monic signal is maximum moves farther away, as shown
in Fig. 3(f) for the highest intensity results. Note that the
curves exhibit a strong asymmetry, even in the satura-
tion region. It might be due to absorption in the medium,
because the structure on the left, which corresponds to
the laser being focused at the entrance of the medium, is
reduced relative to the one on the right. However, this
asymmetry happens to be reversed for the 17th harmony. ic
(and also higher-order ones, as observed recently with a
shorter pulse laser [25, 26]) which seems to contradict this
interpretation.

We now study the intensity dependences of the har-
monic yields, for different Z positions.

C. Laser intensity dependence of harmonic
conversion

Figure 4 presents on a double logarithmic plot the
number of photons as a function of laser intensity for
three different focus positions, for the 7th and 13th har-
monics. Solid lines are high-order B-spline fits of the
experimental points which help in following the curves.
We present mostly results obtained when the laser is fo-
cused near the exit of the medium, because these are the
most interesting, with the richest structure. The behav-
ior of the intensity dependences of each harmonic changes
sometimes dramatically when moving from one focus po-
sition to another. The result obtained at the seventh
harmonic is rather smooth at Z = 0 but shows one and
two pronounced structures at Z = 0.4 and Z = 0.6 mm,
respectively. This is completely in contradiction with
the predictions of perturbation theory, which leads to Iq

power laws, independently of the focus position. There
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are two intensity regions where abrupt changes of slope
are observed for the 7th and 13th harmonics (and this
also applies for the 9th and 11th harmonics, not shown
here): around 1.5 x 10 s and around 2.5 x 10is W/cm .
Note that the 13th harmonic even displays a decrease
in harmonic conversion at 1.9 x 10 s W/cm2 and Z=0.5

10

10

O
O

CL

E 106

mm. Ionization effects become dominant above 3 x 10
W/cm2.

These structures are probably due to the influence of
resonant excited states of the atom, as will be discussed
in the next section. Note the strong dependence of the
curves on the geometry of the interaction (and in partic-
ular on the position of focus). Propagation can average
out a structure as is the case when the laser is focused at
the entrance of the medium (for which the propagation
length is maximum). In contrast, it emphasizes them
for positive Z positions (the laser being focused at the
exit of the medium). Decreases in harmonic intensity de-
pendences cannot be observed in multiphoton ionization
processes because the volume in which resonant processes
take place always increases with intensity. Structures in
the ion or electron yields as a function of intensity are
seldom observed. This does not apply to these nonlinear
optical processes, though of course it is much harder to
extract the single-atom dynamics because of propagation.

In the last three sections, we present additional exper-
imental results obtained in other conditions. We have
varied the focusing geometry, the atomic density in the
jet, and the atomic system, in order to test the robust-
ness of the spatial oscillations as a function of Z (an efFect
due to phase matching) and also of the structures in the
intensity dependences (an efFect due to the single-atom
response).

10 D. Influence of the focusing conditions

O
O

10 /

10

2 5

Laser intensity (10 W cm )
13 —2

We have performed experiments with a f = 300-mm
focusing lens, thus doubling the confocal parameter from
6 = 1.5 mm to 5 = 3 mm. Figure 5 shows the results
obtained for the 13th harmonic as a function of the po-
sition Z of the focus at several intensities. We also ob-
serve regular oscillations, with a spatial period equal to
1.1 mm, slightly larger but consistent with the 0.8-mm
value for the geometrical coherence length. This confirms
that phase matching of the high harmonics in the experi-
mental conditions is limited by focusing and not by other
dispersion type of effects.

In Fig. 6, we compare 7th harmonic intensity depen-
dences obtained with the two focusing lenses. The loose
focusing configuration enhances the harmonic conver-
sion by about one order of magnitude, owing to the 6
power law (see [4]). However, the two curves exhibit sud-
den slope changes at approximately the same intensities.
This confirms that these discontinuities are closely linked
to microscopic effects occurring at definite intensities.

105 E. Influence of the atomic density

2 5

Laser Intensity (10 W cm )
13 —2

FIG. 4. Number of photons at the 7th (a) and 13th (b)
harmonics as a function of the laser intensity.

We compare in Fig. 7 results obtained for the 7th and
13th harmonics as a function of the position of the focus
in the jet when the laser is focused at 0.5 mm below
the nozzle of the jet, as before, and at 1.5 mm below it.
The pressure is estimated to be a factor of 5 lower at
1.5 mm than at 0.5 mm (3 Torr instead of 15 Torr) and
the atomic density distribution was checked not to change
significantly. The 15-Torr data are shown as solid circles,
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FIG. 7. Number of photons at the 7th and 13th harmonics
as a function of Z at 0.5 mm (solid circles) and at 1.5 mm
(open circles) from the nozzle of the jet.

10

7th harmonic

O

107

FIG. 5. Number of photons at the 13th harmonic as a
function of the position of the focus in the jet. This result is
obtained with the f=300-mm lens.

while those at 3 Torr arbitrarily placed above the others
are indicated by the open circles. This comparison shows
that the period of the oscillations along the propagation
axis does not depend on pressure. The observed period
is therefore mainly due to the focusing geometry,

In Fig. 8, we compare intensity dependences for the
13th harmonic (at Z = 0) at difFerent backing pressures:
150, 250, and 350 Torr. The pressure in the jet is ex-
pected to follow approximately linearly the backing pres-
sure [27] with here a factor of ten diiFerence. The two
structures appear exactly at the same intensities, which
again shows that their origin is microscopic. It shows
that the structures are pressure independent and can be
associated to the single-atom response. However, the
behavior in the saturation region does depend on the
pressure. Indeed, the free electrons have a deleterious
effect on phase matching which increases with the pres-
sure. The results of Fig. 8 show that the saturation of
the curves is due to both the depletion of the neutral
atoms population and to the effect of the free electrons
on phase matching.

F. lnfiuence of the atomic medium

10
5

2

Laser Intensity (10 W cm )
13 —2

FIG. 6. Number of photons at the 7th harmonic as a func-
tion of the laser intensity, with the f = 200- and f=300-mm
focal lenses.

Finally, we have investigated whether these efFects were
particular to the xenon atom or whether they were also
present for other atomic systems. We present in Fig. 9
the variation with intensity of the 9th, 15th, and 17th
harmonics generated in argon. We use a 200-mm focal
length as before and a slightly higher pressure, 30 Torr.
Similar steplike structures as for xenon appear at higher
intensities and higher harmonic orders.

Note that we observed generation of the 13th harmonic
in argon, in contrast to our earlier measurements [2]. The
improved signal-to-noise ratio, due to the slightly higher



1456 PH. BALCOU AND ANNE L'HUILLIER 47

10?

O
O

610
O

13th harmonic

pressure, was sufhcient for enabling us to observe barely
the 13th harmonic, which lies about one order of magni-
tude below the others (and below the average level of the
plateau). We tested the robustness of the 13th harmonic
with the interaction geometry and atomic density and
we concluded that the lower yield for the 13th harmonic
was not due to absorption or phase-matching eKects, but
rather to the single-atom response. Miyazaki and Sakai
[6] also observed minima in the harmonic intensity distri-
butions for the harmonics close to the ionization thresh-
old.

IV. DISCUSSION

105

2 5

Laser Intensity (10 W cm )
13 —2

FIG. 8. Number of photons at the 13th harmonic at Z =
0 at three di8'erent backing pressures: 150, 250, and 350 Torr.

106

c 5o10
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Laser Intensity (10 W cm )
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FIG. 9. Number of photons at the 9th, 15th, and 17th
harmonics in argon as a function of intensity.

In this section, we comment on the resonantlike
structures observed in the harmonic generation rates.
Field-induced resonances have been observed in above-
threshold-ionization (ATI) experiments with short pulses
(see, e.g. , [28—30]) at higher laser frequencies (around
600 nm or 300 nm) than that used in the present ex-
periments. It is now well established that atomic levels
of atoms irradiated by a strong laser field undergo im-
portant ac-Stark shifts, thus coming into resonance with
the dressed ground state. This shift is in general equal
to the ponderomotive energy, in particular for the high-
lying excited states.

Unfortunately, as far as we know, there has been no
short-pulse ATI experiments at 1064 nm yet. At this
frequency and at the required intensities, the ac-Stark
can be as large as 3 times the photon energy in xenon and
5 times the photon energy in argon. This multiplies the
number of possible pathways, making any identification
of specific resonances hazardous. The ion yields recorded
in these conditions (1064 nm, 40 ps) [31] and with shorter
pulses (1053 nm, 1 ps) [32, 33] look smooth and can be
interpreted using simple tunneling formulas [34].

Results of numerical calculations performed in hydro-
gen and xenon at 1064 nm [14,20], and obtained by in-
tegrating the time-dependent Schrodinger equation (see,
for example, Fig. 8 in [20]) and recent Floquet calcula-
tions in hydrogen [35], show that the dynamics of har-
monic generation processes looks very complicated, with
many structures and resonances. These processes probe
the part of the wave function that goes back to the ground
state and seem to be much more sensitive to the intimate
dynamics of the strong-field excitation of an atom than
ionization. The latter probes the part of the wave func-
tion escaping from the atom, leading to much smoother
rates as a function of intensity. At visible and ultravi-
olet frequencies, the dynamics is somewhat simpler, the
atomic levels do not shift as much and resonances in gen-
eral can be more clearly identified [36, 37]. Here, at 1064
nm, it is much harder to identify a given level shifting in
the laser field, because too many pathways interfere.

In addition, phase matching is expected to modify
considerably the single-atom picture, and in a nontriv-
ial fashion, in contrast to electron or ion yields mea-
surements. In order to investigate more precisely how
phase matching modifies a resonant structure, we have
performed model calculations. We have considered sev-
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eral resonant profiles as a function of intensity, with vari-
ous widths and strengths relative to the background, and
solved the propagation equation with this profile as a
source. The idea is to determine approximately what
kind of structures in the single-atom response can sur-
vive propagation without being totally washed out and
can give steplike broad features similar to those observed
in the experiments. More systematic investigations, in-
cluding calculations using realistic polarization fields ob-
tained by solving the time-dependent Schrodinger equa-
tion will be presented in a second article. Our prelim-
inary conclusion is that phase matching does a signifi-
cant averaging of any variation in the single-atom har-
monic generation yield. Any structure must be one or
two orders of magnitude high in order to be clearly vis-
ible in the propagated results. An example is shown in
Fig. 10. In order to model a resonance in, for instance,
the 7th harmonic emission rate, we superposed a broad
resonance peak, including a vr phase slip across the res-
onance, on a nonresonant background. We use the jet
profile determined experimentally. No ionization is con-
sidered in this simple model. The propagation equation
is then solved numerically, which allows us to take into
account the effect of focusing, of atomic dispersion, etc.
[20]. The solid line shows the model intensity dependence
of the dipole moment ~d7 ~; the other curves represent
the harmonic yields obtained for difFerent focus positions
in the jet. The pronounced structure in the single-atom
data does indeed lead to steplike features whose impor-

tance depends on the geometry. Note that, for some fo-
cus positions, the effect of the resonance is almost totally
smoothed out. This is completely consistent with the ex-
perimental data. Moreover, the change of slopes does not
always occur at the peak position but a higher intensity
(a delayed efFect). This result, combined to the extreme
complexity of single-atom responses computed numeri-
cally, leads us to believe that any assignment of resonant
features to definite levels would be quite speculative.

The inBuence of resonances in the harmonic generation
process also allows us to understand why the variation of
the number of photons with the focus position depends
so strongly on the laser intensity. A resonance in the
atomic rate occurs at a given intensity IR. Atoms located
so that the local maximum intensity IM, obtained at the
peak of the pulse, is equal to IR will have a dominant
contribution to the resonant emission. Atoms located
closer to the focus, for which IM ) IR, emit resonantly
in the leading and falling edges of the pulse, during a
much shorter period. Their contribution is expected to be
much less important, as well as distributed over a wider
spectrum. This results in a complex spatial structure for
resonant harmonic generation, comparable to that ob-
served in multiphoton ionization [38] but not identical.
In contrast to ionization processes, harmonic generation
involves the addition of the amplitudes of the dipoles
emitted at various places in the interaction region, with
a space-dependent phase relationship. Consider for ex-
ample what happens on the propagation axis. Resonant
emission occurs in two positions symmetric relative to the
focus. The effect of the resonance on the total harmonic
yield will be enhanced or reduced, depending on whether
the wavelets emitted at these two positions add construc-
tively or destructively. This interference depends on the
distance between the two positions, relative to the coher-
ence length, and consequently on the laser peak intensity.

10

10 4

2 5

Laser intensity (arb. units)

FIG. 10. Intensity dependence of a model 7th harmonic
exhibiting a 6eld-induced resonance for difFerent focus posi-
tions. The single atom curve is shown as a solid line.

V. CONCLUSION

In this work, we have performed systematic studies of
harmonic generation processes in xenon using a 1064-nm
Nd-YAG laser in the 10is to 5 xl0is W/cmz intensity
range. The variation of the harmonic generation yields
as a function of the position of the focus in the nonlinear
medium has helped in understanding how phase match-
ing of the high harmonics can be accomplished. In a
strong-field regime, the fields are constructed through a
series of interferences, which can be probed in a tight fo-

cusing geometry, by varying the focus position in the jet,
provided the latter presents edges. Although the period
of the fringes thus obtained is essentially independent of
the laser intensity at which the curve is recorded, the
overall pattern was found to be strongly intensity depen-
dent. Moreover, the variations of the harmonic gener-
ation yields as a function of intensity show structures,
which can be either distinct or blurred depending on the
beam focus position in the jet. These results, combined
with studies of the eKect of propagation of model res-
onances, are interpreted as the signatures of quite ac-
cidented single-atom harmonic generation rates. This
is consistent with the behaviors of the single-atom har-
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monic emission rates [14, 35]. These structures are more
or less apparent in the macroscopic yield depending on
the phase-matching conditions, i.e., on the exact geome-
try of the interaction.

APPENDIX A: RECIPROCITY RELATIONS
OF HARMONIC GENERATION

The expressions obtained in perturbation theory, as
well as some of the numerical results presented in the case
of I~ power laws, are symmetric with respect to the center
of the jet, whereas the experimental results are clearly

I

asymmetric. It is therefore of interest to investigate what
might cause this asymmetry.

The outgoing harmonic field may be written as [19)

~ikq
)r' —r/

'Pq(r) dsr

Let us compare the harmonic 6elds created far from the
medium in two geometries, such that the focus is located
at the symmetric positions +Z and —Z; the correspond-
ing physical quantities will be denoted by a superscript
+Z (—Z). We start from Eq. (Al), written in the parax-
ial approximation in the form

E+ (r', z') = (q~/c) d r
+ p+z(r, z) (dz, exp] i

z —z

V +'(r, .)—
+ ', '

exp~i
Z + Z

) ( 2(z' —z)

(ik [(z' —2:) + (y' —y)2] )
2(z'+ z)

We assume the following conditions:

V+ (z) =~ (—z) (A3)

Re(Ak+z)(+z) = Re(Ak~ )(—z),

Im(Dk+ )(z) = 0 (no absorption),

(A4)

(A5)

The phase of the polarization then follows that of the
laser Geld, so that

P+z(r, z) = 'P, *(r, —z), (A7)

where the asterisk denotes the complex conjugate. One
may easily check that, under the assumptions (A3)—(A6),

8+ (r', z') = e '""8 *(r', z')+ O(L/z'). (A8)

The intensity of the harmonic field, obtained by integrat-
ing ]E~]2, and therefore independent of z' for z' )) L, is
identical in both geometries. This might be considered
as an example of generalization of the Lorentz reciprocity
theorem [39].

Im(dq) = 0 (the dipole moment has no intrinsic phase).

(A6)

Let us analyze these four conditions (A3)—(A6).
Condition (A3) requires the jet profiles p+z and p

to be symmetric with respect to one another. This is
valid, even with ionization, if the initial jet profile itself
is symmetric.

Condition (A4) will be fulfilled, even in the case of an
intensity-dependent phase mismatch, if condition (A3)
already is and if the fundamental field amplitude remains
symmetric with respect to the focus. This approximation
breaks down if the laser gets significantly defocused ow-
ing to a large amount of ionization [20, 40], which is not
the case in the intensity and pressure ranges considered
here. Wave-coupling effects, expected to be weak in the
present experiments, would be another cause for asym-
metry, as the other harmonic fields do not present the
required symmetries.

Condition (A5) amounts to neglecting reabsorption of
the harmonic photons. This is certainly not valid for
harmonics with photon energies larger than the atomic
ionization energy, but should hold for lower harmonics,
at least in a perturbative picture.

Finally, condition (A6) is expected to be true only in a
perturbative regime and for the harmonics of the discrete
spectrum. Nonperturbative calculations [35, 41] predict
that high-order harmonics are no longer in phase with the
laser. This effect could be the main cause of asymmetry
of the harmonic yields as a function of the position of
focus in the medium.
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