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Role of pumping statistics and dynamics of atomic polarization
in quantum fluctuations of laser sources
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We solve the problem of a laser with variable pumping statistics for any relative magnitude of the
atomic- and cavity-decay constants, and obtain a different regime of sub-Poissonian light generation.
We show that, even for Poissonian pumping, the noise in the amplitude quadrature outside the cavity
can be reduced up to 50% below the shot-noise level when the polarization but not the populations
can be adiabatically eliminated. Maximum noise reduction in this case is obtained when the lower
level decays much faster than the upper one and occurs at a frequency given by the geometrical mean
of the decay rates of the field and the lower-level population. Furthermore, the full consideration
of atomic memory effects leads to a generalization of previous results on regularly pumped lasers.
We find that, for regular pumping, maximum amplitude-noise reduction (up to complete quieting)
still occurs at zero frequency in all cases. However, a long-living polarization leads to an increase
in amplitude noise and may even eliminate the dip at zero &equency, at the same time leading to a
significant quenching of the laser linewidth in the bad-cavity limit.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.55.Rz

I. INTRODUCTION

Quenching of quantum noise in lasers has been an ac-
tive field of theoretical and experimental research [1—6],
motivated by the intrinsic interest of these devices, from
the point of view of fundamental physics, and also by
multiple possible applications. As compared to noise
quenching in passive devices [7—ll], it has the potential
advantage of leading to intense sources of squeezed light.

Both squeezing of photon number [1—3] and phase
fluctuations [4—6] have been considered in the litera-
ture, leading to sub-Poissonian and subnatural linewidth
lasers, respectively.

Most of the theoretical studies of the nonlinear dy-
namic behavior of single-mode homogeneously broadened
lasers deal with simplified models which are character-
ized by three dynamic variables, namely, field amplitude,
atomic polarization, and population inversion [12—14].
The dynamic evolution of such models is governed by
three relaxation rates: p~~

for the population inversion,
p~ for the polarization, and ~ for the Geld intensity in
the cavity (frequently one has two different population
decay rates, for the upper and the lower lasing levels).
Corresponding to the different possible relations between
these parameters, single-mode lasers are grouped into
four main classes with distinguishable dynamic charac-
teristics [12]:

(1) pz, p~~ )) r. dye lase—rs, for example.
(2) p~ )) K p~~

—helium-neon (0.6 and 1.15 pm),
argon-ion.

(3) pz )) K )) p~~
—ruby, Nd: YAG (yttrium aluminum

garnet), carbon dioxide, and semiconductor.
(4) r )) p~, p~~

—near-infrared noble-gss lasers and
many far-infrared gas lasers.

Of course, it would be highly desirable to have a theory
of the quantum Huctuations of the radiation field which
would accommodate these four classes of lasers. However,
in spite of the fact that earlier work on laser theory has
fully taken into account the role of polarization dynamics
[17, 18], most of the recent work on noise quenching as-
sumes that the transverse decay time is by far the largest
one, so that the polarization just follows the other dy-
namic variables adiabatically. One knows, on the other
hand, that in some systems a careful consideration of
the polarization dynamics is essential when considering
the fluctuation spectrum of the produced light. Thus, in
multiwave mixing in two-level atoms, the Stark splitting
of the atom enhances the nonlinear coupling between the
fields at the Rabi frequencies [8]. In absorptive optical
bistability, it was shown by Carmichael [9], in a treatment
which does not eliminate adiabatically the polarization,
that a low-Q cavity may produce better squeezing than
the high-Q cavity. The general case, also without adia-
batic elimination of the polarization, was studied by sev-
eral authors [10]. They showed that the high-Q cavity
was less favorable for inducing squeezing. The impor-
tance of taking into account the polarization dynamics
[ll] is also stressed by the experimental demonstration
of squeezing enhancement in the regime of vacuum-field
Rabi splitting in dispersive optical bistability. This effect
occurs at low intensities and for comparable atomic- and
cavity-decay rates [9].

In view of these remarks, we consider, in the follow-
ing, a quite general approach, which fully includes the
effects of polarization and population dynamics in the
theory of laser Quctuations. It differs from earlier work
on laser theory [17, 18] in that we allow for the possi-
bility of variable pumping statistics [1, 2], and make a
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detailed investigation of the spectrum of the field outside
the cavity. The method of solution is also quite different,
allowing us to get to the final results without any ap-
proximation, in a completely analytical way, thus mak-
ing possible an easy physical interpretation of the results.
We resort to numerical methods only at the very end, in
order to get the curves describing the spectrum of Huc-
tuations of the outgoing laser Field. Although limited in
this paper to the on-resonance homogeneously broadened
case, our method can be easily generalized to include dis-
persive effects and inhomogeneous broadening, as it will
be shown elsewhere.

The rn. ain results with respect to previous treatments
are (i) a reduction of nois" up to 5070—in the spec-
trurn of amplitude Huctuations for the field outside the
cavity, for Poissonian pumping, and lasers of the third
class, around a frequency given by the geometrical mean
of the decay rates of the field and the lower-level popu-
lation, when the decay of this population is much faster
than that of the upper level; (ii) a generalization, with
the inclusion of population and polarization dynamics, of
previous work on regularly pumped lasers [I, 2]: we find
that in all cases maximum amplitude noise reduction (up
to complete quieting) still occurs at zero frequency, but
a long-lived polarization may result in a pronounced in-
crease of amplitude noise for the outgoing field, for lasers
of the fourth class (bad-cavity lasers), around the fre-
quency of relaxation oscillations of the active atoms in
the cavity —this noise increase may even eliminate the
zero-frequency dip resulting from the regularization of
the pumping. We show that, in the same regime in which
this increase in amplitude noise takes place, phase diffu-
sion gets slowed down, due to atomic memory effects,
resulting in a significant reduction of the laser linewidth.
The eomplementarity between phase and amplitude noise
quenching becomes thus quite apparent.

We start our investigation by writing down, in the fol-
lowing section, the Langevin equations of motion for the
laser, taking into account the pumping statistics. Then,
in Sec. III, we derive the corresponding classical equa-
tions of motion, using a normal-ordering representation
for field and atomic operators. These classical equations
will allow us to obtain the steady-state solutions, as well
as the spectra of the field-quadrature Huctuations. In
Sec. IV, we discuss the non-Markovian behavior of the
phase, generalizing the results obtained in Refs. [5, 6]
(which applied only to the good-cavity case), and cal-
culate the laser line shape, which suffers an important
narrowing in the bad cavity limit. In Sec. V, we cal-
culate the spectrum of fluctuations of the field outside
the cavity, and analyze the effects of population and po-
larization dynamics. In particular, we show that even a
Poissonian-pumped laser can emit sub-Poissonian light.
In Sec. VI, we summarize our conclusions.

fill a resonant ring cavity of length L and volume V with
intensity transmission coefBeient of the coupling mirror
T. We assume the finesse of the cavity to be sufBciently
high so as to justify a mean field approximation (spatial
variations neglected). The atoms interact with the radi-
ation field of a single excited mode of the cavity, which
we consider approximately as a plane traveling wave with
frequency u, .

To describe the influence of the pumping statistics of
the active atoms on the quantum fluctuations of the laser
radiation field, we follow the model described in Ref. [2],
in which the random excitation of the atoms in the laser
cavity is mimicked by a random injection of excited atoms
in the same cavity. We restrict ourselves here to a time-
independent probability distribution of the injection (or
excitation) times, corresponding to a time-independent
average pumping rate. As shown in [2], in this case the
influence of the pumping statistics can be characterized
by a single statistical parameter p & 1. The two extreme
cases of Poissonian and regular statistics correspond re-
spectively to p = 0 and p = l.

We assume that the jth atom gets excited from some
lower nonresonant states at the instant t~, and starts then
to interact with the one-mode radiation field in the cavity.
This interaction is described by the following Langevin
equations:

(2 I)

(2.2)

where a~(t) =
(~ a)(a ~)~ and crb(t) =

(~ b)(b ~)~ are the
projection operators for the upper and lower states of the
jth atom, cr~(t) =

(~ b) (a ~)~ is the spin-Hip operator, rep-
resenting the complex polarization of the jth atom, 8(t)
is the step function, K is the cavity damping constant,
given by (in the limit of negligible internal losses)

(2.5)

II. QUANTUM LANGEV'IN EQUATIGNS

We consider a system of homogeneously broadened
two-level atoms with transition frequency ~ b, assuming
that the lower level is not the ground state. The atoms

and pp are the decay rates of the populations of the
upper and lower levels to the other atomic levels; p' is the
spontaneous decay rate between the lasing levels, and p~b
is the decay rate of the atomic polarization, which obeys
the inequality 2p p & p +p' +pp. The coupling constant
g is given by
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MCpld V
(dg, bp) (2.6)

where p, is the magnitude of the atomic dipole moment.
The photon annihilation operator a(t) of the laser field is
normalized so that the mean value (ai (t)a(t)) gives the
mean photon number inside the laser cavity.

The I angevin noise operators are fully defined by
their first- and second-order moments. The calculation
of these moments has been done by many authors [18,
16]. The normally ordered correlation functions of the
field Langevin forces F~(t) stemming from the interac-
tion with a heat bath read as

the cavity mode frequency and the atomic transition fre-
quency, i.e., u~g = u, . In this case the Langevin equa-
tions for the slowly varying operators a(t) and 8~(t) are
the same as those for a(t) and 0~ (t) with the only differ-
ence that the terms proportional to w, and cu~b disappear.
In the following we drop the tilde on the operators, keep-
ing in mind that now all the operators are defined in the
rotating frame.

Now, following [2], we define macroscopic atomic oper-
ators, by adding up the individual atomic operators, tak-
ing into account the corresponding injection times into
the cavity. We have, then,

(F,(t)) =0,

(Fi(t)F (t')) = K nz6(t —t'),

(F (t)F (t')) = 0,

(2.7)

(2.8)

(2 9)

M(t) = —i ) e(t —t, )0.~(t),

~.(t) =) e(t —t, )~~(t),

(2.19)

(2.20)

(f.'(t)f.'(t')) = (~. + ~.')(~'.(t))~(t —t') (2.10)

(f,'(t)f,'(t')) = [»(~~&(t)) + ~.'(~'. (t))]~(t —t ) (2»)

(f.'(t) fl (t')) = —~.'(&-'(t)) ~« —'» (2.12)

where nz is the average number of thermal photons in the
laser cavity. In this paper we assume for simplicity that
the heat reservoir is at zero temperature, T = 0, and the
average number of thermal photons in the cavity is zero.
The generalization of our results to nonzero temperatures
is straightforward.

The correlation functions of the atomic noise operators
in (2.2)—(2.4) can be found, for instance, in [15,16]. In
case of radiative decay from atomic levels

~
a) and

~
b)

to some ground state, the nonvanishing correlation func-
tions of the atomic Langevin noise operators are given
by

~b(t) = ).e(t —t )~l(t) (2.21)

The additional factor (—i) in (2.19) is introduced for
mathematical convenience. The operator M(t) repre-
sents the macroscopic atomic polarization. The opera-
tors N~(t) and Nb(t) represent the macroscopic popu-
lation of the upper and lower levels, respectively. It is
worth noting that when calculating any average values
or correlation functions with the macroscopic operators
(2.19)—(2.21), one has to perform not only the quantum
mechanical average but also the classical average over the
pumping statistics, i.e., over the statistics of the arrival
times tz of the atoms into the cavity.

With the defirutions (2.19)—(2.21) of the atomic macro-
scopic operators Eq. (2.1) for the electromagnetic field
simplifies to

a(t) = r/2 a(t) + g —M(t) + F~(t). (2.22)

(fi'(t)f'(t')) = (2v b
—~ —~.')(~.'(t))~(t —t')

(f."(t)f,'(t')) = »(~"(t))&(t —t')

(f.'(t)f.'(t')) = (v + .)( '(t))~(t —t )

(f.'(t)f'(t')) = —7.'( '(t))~(t —t')

(2.14)

(2.15)

(2.16)

The Langevin equations for the macroscopic atomic op-
erators can be found by difFerentiating Eqs. (2.19)—
(2.21) and substituting Eqs. (2.2)—(2.4) for the individual
atomic operators, respectively. For example, for the oper-
ator N (t) corresponding to the macroscopic population
of the upper level we obtain

a(t) = e' 'a(t), o'(t) = e' 'o-'(t). (2.18)

For simplicity we consider an exact resonance between

(f.' (t)f."(t')) = [(».~ —»)(~'(t)) + ~.' (~.'(t))]&(t —t')

(2.17)

All the other correlation functions of atomic Langevin
noise operators are zero.

It is convenient to de6ne the slowly varying field and
spin-Hip operators in the frame rotating at frequency ~,:

—g a'(t) M(t) + Mi (t)a(t)

+ ) e(t —t, )f~(t). (2.23)

The first term on the right-hand side of Eq. (2.23) corre-
sponds to the pumping of the atoms into the upper lasing
level. Indeed the expectation value of this term is given
by
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) «(« —«, )-:(«,)) = () .«(« —«, )(-'.(«, )))
3 3 8

=()-«(«-«, )) . (2.24)

As was mentioned above, we have to perform a double
average. When doing it, we use the fact that the atoms
are initially prepared in the upper state so that (cr~ (t~) ) =
1. But we still have to perform the classical average over
the injection times, i.e. , over the pump statistics, which
is indicated by the index S on the angle brackets in Eq.
(2.24). The sum in Eq. (2.24) yields then the mean
pumping rate of the upper lasing level:

() «(« —«, )) =««
2

dt~b(t —t~) = B. (2.25)

Note that Eq. (2.25) can be regarded as the definition of
the mean pumping rate R.

In order to separate the drift terms from the noise
terms in Eq. (2.23) we add and subtract the expectation
value of the first term and obtain

(2.27)

W

N. (t) = R —(p. + p.')N. (t) —g at(t)M(t) + Mt(t)a(t)

(2.26)

with

F.(t) =) 8(t —t, )f.'(t)+) b(t —t, )a'. (t, ) —R.

(2.3].), due to the assumption that the atoms are pre-
pared initially at the upper level.

The evaluation of the correlation functions of the
macroscopic Langevin forces defined by Eqs. (2.27),
(2.30), and (2.31) can be done in the same fashion as
in [2]. As shown in that reference,

) b(t —t, )b(t' —tb) —R = R(1 —p)b'(t —t'),
j,k S

(2.32)

where p is a parameter which characterizes the pumping
statistics: a Poissonian excitation statistics corresponds
to p = 0, and for a regular statistics we have p = 1.
The intermediate cases between these two extremes are
described by values of p between one and zero.

Using Eq. (2.32), we find for the correlation functions
of the macroscopic forces the following results:

(F.(t)F (t )) = (7. +'Y.)(N. (t))+&(1— ) b(t —t )

(2.33)

(FM(t)FM(t')) = (»-b- ~- —~.')(N-(t))+»(t - t'),

(2.34)

(F (t)F (t)) = (N (t))+ .(N. (t)) b(t —t)

The new Langevin operator F (t) is the total noise op-
erator for the macroscopic atomic population N~(t). It
incorporates the fluctuations of the population of the up-
per level due to the radiative decay and also due to the
pump fluctuations.

In a similar way we can derive the equations for the
macroscopic population of the lower level and for the
macroscopic atomic polarization

(Fb(t)FM (t')) = »(M(t))b(t —t'),

(F-(t)Fb(t')) = -V.'(N. (t))b(t —t'),

(2.35)

(2.36)

(2.37)

(FM(t)F (t')) = (P +P')(M(t))b(t —t'),

+Fb(t),

Nb(t) = »Nb(t) +—p' N~(t) + g at (t)M(t) + Mt (t)a(t)

(2 28) (FM(t)Fb(t')) = —7.'(M(t))b(t —t'),

(2.38)

(2.39)

M(t) = q.bM(t) + g —N. (t) —Nb(t) a(t) + FM (t),

(2.29)

with

Fb(t) = ) e(t —tz)fb'(t) + ) b'(t —tz)cr~&(t~), (2.30)

FM(t) = i ) 8(t —t, )f'(t) + )—b(t —t, )o'(t, ) .
2 3

(2.31)

Note that there are no pumping terms in Eqs. (2.30) and

( &.b —») (Nb(t) ) + Wa (N~ (t))

xb(t —t'). (2.40)

It is worth noting that there is always a noise contribu-
tion from the pumping process in the normally ordered
correlation function of the macroscopic atomic polariza-
tion, Eq. (2.34), which does not depend on the pump-
ing statistics, being present even for regular pumping
(p =1).

Equations (2.22), (2.26), (2.28), and (2.29) with the
correlation functions (2.7)—(2.9) and (2.33)—(2.40) de-
scribe completely the laser dynamics as well as the dy-
namics of the quantum fluctuations for arbitrary pump-
ing statistics.
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III. SPECTRA OF THE FLUCTUATIONS
OF THE FIELD QUADRATURE COMPONENTS

A. Equivalent c-number stochastic
Langevin equations for a normally ordered product

of operators

Ab(t) = Z—Wb(t)+V. & (t)+g A (t)~(t)

+~ (t)A(t)

+»(t). (3.4)

A(t) = —K/2 A(t)+gM(t)+a, (t), (3.1)

M(t) = PbM(t) +g—JV (t) —JVg(t) A(t) +P~(t),

(3.2)

Now we derive the stochastic c-number Langevin equa-
tions which are equivalent to the operator Langevin equa-
tions (2.22), (2.26), (2.28), and (2.29). For this we have
to choose some particular ordering for products of atomic
and field operators. This is necessary because the c-
number variables commute with each other while the op-
erators do not. Therefore, we obtain a unique relation-
ship between operator and c-number equations only if we
define the correspondence between a product of operators
and a product of corresponding c-number variables. We
choose here, as in [2], the normal ordering of atomic and
field operators, i.e., af (t), Mf (t), N (t), Nb(t), M(t), a(t).
The stochastic c-number variables corresponding to the
operators a(t), M(t), N (t), and Nb(t) are denoted by
A(t), M(t), hf~(t), and Ab(t), respectively. We will de-
rive the equations for these stochastic variables from the
requirement that the equations for the first- and second-
order moments of operators and c-number variables are
identical. Equations (2.22), (2.26), (2.28), and (2.29) are
already written in normal order, so that it is easy to
obtain the equation for the corresponding c-number vari-
ables

Here the functions PI, (t) with k = p, M, a, or b, are the
stochastic c-number Langevin forces with the properties

(a (t)) =0,

Pb(t)&i(t')) = »~i~(t —t')

(3.5)

(3.6)

—gN (t) af(t)M(t)+Mf(t)a(t)

—g Mf(t)a(t)+af(t)M(t) N, (t)

The diffusion coefficients 17b~ for the c-number Langevin
forces are different, in general, from the corresponding
diffusion coefficients DI, ~ for the operator Langevin forces,
defined by (2.7)—(2.9) and (2.33)—(2.40). The difFusion
coefficients 17&& are determined from the requirement that
the c-number equations for the second moments should
be identical to the corresponding normally ordered oper-
ator equations. It is easy to see that the diffusion co-
efficients for the c-number Langevin force in the field
equation X~(t) are the same as for the Langevin noise
operators F~(t), so that

(3.7)

However, some of the atomic diffusion coefficients 'VA, ~

for the c-number Langevin forces are different from the
corresponding diffusion coefBcients Dk~. As an example,
let us calculate the diffusion coefficient 'V . Prom the
operator equation (2.26), we have

d—N (t)N, (t) = 2RN, (t) —2(p + p,')N (t)N, (t)

A'. (t) = R —(q. + q.')A'. (t) —g A'(t) M(t)

+P.(t), (3.3)

+N. (t)F.(t) + F.(t)N. (t). (3.8)
We note here that the third term on the right-hand
side of the equation is not in the chosen order, because
the operator N (t) is to the left of Mf(t). To bring it
into the chosen order we have to use the commutator
[N (t), M(t)] = —M(t), so that we get

dt
—(N~(t)N~(t)) = 2R(N~(t)) —2(p~+ p')(N~(t)N~(t)) —2g (af(t)N~(t)M(t) + Mf(t)N~(t)a(t))

—g (Mf (t)a(t) + af (t)M(t)) +2D (3.9)

where we have made use of the fact that (N (t)F (t)) =
(F (t)N (t)) = D (see, for instance, [16]). Ontheother
hand, using the corresponding c-number equation (3.3),
we get (3.10)

d
d

(lV (t)JV, (t)) = 2B(JV (t)) —2(P +P')(~ (t)~ (t))
—2g(A'(t)JV (t)M(t)
+M'(t)JV (t)A(t)) + 2V..
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If we require the left-hand sides of Eqs. (3.9) and (3.10)
to be equal we can see that the difFusion coefFicient D«
is connected with the diffusion coefficient D as

oscillation is» ) p~. The steady-state populations of
the upper and lower levels are given by

O'D = 2D —g (M*(t)A(t) + A*(t)M(t)) (3.11) v +v.' ' '
v~(&. +~.') (3.21)

In the same fashion we can get the relationship be-
tween all the other atomic diffusion coefficients for c-
number Langevin forces and operator Langevin forces.
All the nonvanishing diffusion coefflcients for the c-
number Langevin forces read as

A, = Ip+ I ~~,» —w.
' v +w.' ') ' (3.22)

Using Eq. (3.18), we can express these steady-state pop-
ulations in terms of the mean intensity Io and the satu-
ration intensity I,:

» = (& + &.')(~.(t)) + &(1 —&)

—g (M"(t)A(t) + A'(t) W(t)), (3.12)
JVb, = ~. ~~+~ I

~

'Yb '4 k» 'Ya+'Ya ) (3.23)

2Dbb = »(~b(t)) + Y (~ (t))

—g (M'(t)A(t) + A'(t)M(t)), (3.13)

From Eqs. (3.22) and (3.23) we can see that far above
threshold, i.e. , when R )) +h and Ip )) I„ the popula-
tions of the upper and lower lasing level approach each
other and the inversion goes to zero, corresponding to
saturation as expected.

The steady-state value of the atomic polarization can
be expressed in terms of the mean value of the Beld as

2D b = —P,'(JV (t))+g (M'(t)A(t)+A'(t)M(t))

(3.14)

K
Wp ———Ap.

2g
(3.24)

2D~~ = 2g (M(t) A(t) ),

»~ ~ = (2~ b
—~. —&')(~ (t)) +»

»b~ = »(~(t))

(3.15)

(3.16)

(3.17)

We are now in a position to solve the c-number Langevin
equations and to calculate the spectra of the fluctuations
of the field quadrature components. We start by calcu-
lating the steady-state solutions for the field and atomic
variables.

B. Steady-state solution for above-threshold
operation

The steady-state solutions for the mean values of
the field and atomic variables for laser operation above
threshold are obtained by dropping the noise terms in
Eqs. (3.1)—(3.4) and setting the time derivatives equal to
zero. These solutions are denoted by the subscript zero.
For the mean intensity of the laser field above threshold,
Ip = Ap, we get the well-known expression

The mean optical phase of the laser Beld does not appear
in the steady-state equations. This is related to the fact
that in the steady state the optical phase is randomly
distributed between 0 and 27r. We can, therefore, choose
the arbitrary mean value of the phase to be equal to zero,
which is quite convenient since then both the field Ap and
the polarization Mp become real.

The evolution of the quantum fluctuations are now ob-
tained by linearizing Eqs. (3.1)—(3.4) around the steady-
state solution. We assume that the working point around
which the fluctuations are calculated is in the stable re-
gion, as analyzed in Ref. [12].

C. Quantum fluctuations of the laser field
around steady state

To investigate the small fluctuations of the field and
atomic variables around steady state we consider all these
variables, as usual, as the sum of the steady-state solution
and a small fluctuating term. For example, for JV (t) we
set lV~(t) = lV«+ Mf~(t) and in the same way for the
other variables. Thus, we get the following equations for
the fluctuations

Ip = I.(&l&ih —1)

where I, is the saturation intensity,

"fabPb Pa +
2g2 ry + rgb

and Bqh it the threshold pumping rate,

&PabPb Pa + P~
th

2 2 (

(3.18)

(3.19)

(3.20)

6'iV. (t) = —(p. + q.')6A'. (t) —gAp 6M(t) + bM'(t)

(3.25)

ei;(t) = qbuf&(t) + q.'aA;-(t)

+gAp &H(t)+6M (t)

From (3.20) we note that the necessary condition for laser
+gMp b'A(t) + bA'(t) +yb(t), (3.26)
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—inbl(/b(n) = —PbSVb(n) + P' bA (n)

+gAp bled (t) —SVb(t) +X~(t), (3.27) +gAp bM(n) + b'~'( —n)

bA(t) = —~/2 bA(t) + gbM(t) + X,(t), (3.28) +gwp bA(n) + bA" (—n) +~b(n),
where we have made use of the fact that Ap and Mp are
real.

At this stage, the adiabatic elimination of atomic vari-
ables is frequently used, under the assumption that the
polarization decay rate p~b and the population decay
rates p (+p~) and pb are much larger than the cavity
decay rate x. Here we do not want to restrict our-
selves to some particular class of lasers and, therefore,
we do not adiabatically eliminate any of the variables
in Eqs. (3.25)—(3.28). Instead, we take the Fourier trans-
form of all the variables and convert the differential equa-
tions into algebraic equations.

Therefore, we take the Fourier transform of bled~(t)

—inbM(n) = —P bb~(n) + g(A', —Ab, )bA(n)

+gAp SV, (n) —SVb(n) +E~(n),

(3.31)

(3.32)

ur. (n) = (2~)-'~' dt e' 'SV (t) (3 29)
—inbA(n) = r/2 bA(—n) + g6'M(n), (3.33)

as well as of all the other variables. In order not to over-
charge the notation, we adopt the same symbol for both
members of a Fourier-transform pair, which will there-
fore get distinguished through the time or frequency ar-
gument.

In the above equations, we may set P~(t) = 0 in Eq.
(3.28), since the mean value and the correlation functions
of this force with all the other variables, as well as the
autocorrelation function, are zero (this is a consequence
of the normal ordering of the operators). In this way we
get the following equations for the Fourier amplitudes:

—inbA' (n) = —(p. + p') bA' (n)

—gAp bM(n) + bM'( —n)

—gMp bA(n)+bA'( —n) +x.(n),

(3.30)

where the Fourier-transformed fluctuation. forces satisfy
now the equations [which follow immediately from the
definition (3.29) and from (3.6)]:

(Pg(n)E)(n')) = 217bib(n + n') . (3.34)

Note that, since P~. (t) = P~(t), it follows that
P~. (n) = X~(—n). Also, since X (t) and Xb(t) are
real, we must have P, (n) = X;(—n), i = a, b

The solution of the above linear system is straightfor-
ward. Because finally we are interested in the spectra
of fluctuations of the field quadrature components, we
express the Fourier amplitudes of the field fluctuations
bA(n) and bA*(—n) in terms of the Fourier amplitudes
of the Langevin forces. The final expression for bA(n)
reads as

b'A(n) =
n(r/2 + P b

—in) (Pb —in) [C(n) + 2Ap2]
f s

x CA + p pg —iA&~0 +gCA p, . ~A —gCB pTbA+ p' —iO

—Ao(pg —iA)X~( —A) j, (3.35)

with the following shorthand

c(n) = -in(~/2+ &.b —in)(~b —in)(~. + ~.' —in)
g~(P + Pb —2in)(K —in)

(3.36)

The expression for bA" (—n) is obtained by performing a
complex conjugation and substitution of —0 instead of
n in Eq. (3.35).

We define now the amplitude and phase quadrature
components of the field fluctuations inside the cavity as
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bx(n) = —&A(n) + &A'( —n),1

2

by(n) = —.bA(n) —bA'( —n) .
1
2i

(3.37)

(3.38)

These deBnitions correspond to our choice of phase
for the steady-state solution (real field). Note that
b'X'(n) = bX(—n), bY'(n) = b' Y(—n), so that bX(t)
and 6Y(t) are real, as expected.

Using Eq. (3.35) for 6'A(n) and the corresponding ex-
pression for 6A'( —n) we get the following expressions for
these quadrature components:

bx(n) = + p' —iA

g(p, + pb —2in) (K —in) [c(n) + 2A2()]

« —gm(o) +xi(—«o) (py —io) + gAo ', . g (o) —gAogj (o)),
1 pb —p' —iA

2 + p' —iA
(3.39)

bY(n) = &~(n) —&~(—n) .
2A K 2-t P,b

—in (3.40)

(6X(n)bX(n')) = (6X )rib(n+ n'), (3.41)

At this point two remarks should be made. First, from
(3.39) and (3.40) one can see that the phase quadrature
component 6Y(n) diverges when n ~ 0, while the ampli-
tude quadrature component bX(n) remains finite. The
divergence of bY(n) is related to the phase difFusion pro-
cess which leads to the infinite growth of phase fluctua-
tions when t —+ oo, that is (6(i2 (t)) i —+ oo. Second, as
seen from (3.40), the phase quadrature component of the
field fluctuations depends only on the phase quadrature
component of the Langevin force X~(t), which is asso-
ciated with fluctuations of the atomic polarization. This
is again a consequence of choosing the normal ordering
of operators. For other orderings (for instance, the sym-
metrical ordering could have been used), we could get a
contribution from the Langevin force j~(t), associated
with the vacuum fluctuations.

We note also that, in view of (3.34), the auto- and
cross-correlation functions of the amplitude and phase
quadratures are 6-function correlated, that is

(bY(n)6Y(n')) = (6Y )rib(n t n'),

(bX(n)b'Y(n')) = (6X6'Y)rib(n + n').

(3.42)

(3.43)

Now we evaluate the spectra of the amplitude and
phase quadrature components of the Beld fluctuations,
defined as the following Fourier transforms:

Wx(n) = (2&)-'Y' dte'"'(6X(0)6X().)), (3.44)

with the analogous definition for Wy(n). For a cal-
culation of these spectra we use the Wiener-Khinchine
theorem [18, 19], which states that for a real stationary
random process X(t), the spectrum Wx(n) is equal to
(6X2)ri, defined by (3.41) as the coefficient of the b' func-
tion in the correlation function (6X(n)bX(n')).

Using also Eq. (3.34), we get the following expressions
for the spectra of quadrature components of the Beld fluc-
tuations inside the cavity:

bX (q. + q.')'+ n'
g ((P +Pb) +4A2)(K +n ) ~

c(n)+2A0 ~2

I 2 +A2
«(h'b +o ) ('il —7 i)ig +& +g—&"o, 2 2 2(g +p,')Jg„—gR +gg Aop,'Al'„

++i 2+A2

2A2 ( Ya + Ya)( Yb Ya) +
) ~ 2 g~ A2 2

+ ~g)2+ A2 kY bo Ya ao 0 Yb (3.45)

2
bY

A2[(~/2+ P b)2+ A2]
'

We turn now, in the next section, to a physical discussion of these results.
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IV. PHASE DIFFUSION COEFFICIENT
AND LINE&'IDTH

Let us consider first the phase quadrature, Eq. (3.46),
which yields the phase-difFusion coefficient and the laser
line shape. Even though the influence of polarization
dynamics on the diffusion coefficient has been considered
before [17,18], we include this discussion here in order to
stress the complementarity between phase and amplitude
fiuctuations (to be discussed in Sec. V), and also in order
to show how the line shape can be calculated within the
present formalism.

For a small fluctuation of the phase the spectrum of the
phase fluctuations is simply related to the spectrum of
the phase quadrature component of the field fluctuations,
namely,

(bv ')~ = —(b&')~
I0

(4.1)

g'A„
ST =

~0+ah

We can see from Eq. (4.2) that our spectrum of the phase
fluctuations is different from the usual result given by
(bp )ri = Ds~/0 (see, for example, [20]), since there
are two additional factors in Eq. (4.2).

The first factor (frequency dependent) plays an im-
portant role in the high-frequency range, A )) v/2+ p b.

Since the linewidth of the laser radiation can be esti-
mated as K/2IO, this factor is of no importance for the
spectral width and modifies the line shape only in the line
wings. Nevertheless, as shown in Refs. [5, 6], this factor

From Eq. (3.46) as well as Eqs. (3.18) and (3.21) for
the steady-state Beld intensity and the population of the
upper level, it then follows that

Dsv (K/2+ p.b)'
A' (~/2+p g)'+A' (~/2+p g) '

(4.2)

where DsT is the Schawlow-Townes diffusion coefficient
[16]

can improve the sensitivity of the short-time measure-
ments of the phase if the duration of such measurement
t~ is much shorter than (r/2+ p~b)

This factor has its origin in the atomic memory effect
associated with the transient behavior of the polarization
[5, 6]. For short observation (or measurement) times one
cannot consider the spontaneous-emission events as b-
function-like uncorrelated impulses (a model which leads
to the Schawlow-Townes formula). There is a certain
characteristic time w ~ (r/2+ p~b) which can be con-
sidered as a "memory time" or a time during which a
spontaneous-emission event takes place. As it was shown
in [5, 6], on a time scale much shorter than this character-
istic time ~, the spontaneous-emission events are corre-
lated, and this leads to the reduction of the phase noise.

The second factor in (4.2) is the ratio p b/(r/2+ p~b)
which modifies the phase diffusion coefficient from the
Schawlow-Townes value Dsr to

2
b

Pc/2 + 7ab P
(4.4)

This expression coincides with the one given in Refs.
[17, 18]. If the atomic polarization decay rate is much
faster than the cavity decay rate, i.e. , p~b )) K/2, this
additional factor is close to unity and we get the usual
Schawlow-Townes diffusion coefficient. But in the oppo-
site case, p~b && r/2 whi—ch corresponds to the fourth
class of lasers described in the Introduction —this factor
can be very small and we have D &( DsT.

Thus, when the lifetime of the atomic polarization is
much larger than the lifetime of a photon in the cavity
(bad-cavity case), which is just the opposite hmit with
respect to the one considered in Refs. [5, 6], we may
obtain a significant slowing down of the phase diffusion
process. As will be shown next, this may imply a large
quenching of the spectral width of the laser radiation.

Using the phase fiuctuation spectrum (4.2) we can
evaluate the time correlation function of the phase fluc-
tuations and the time-dependent behavior of the phase
mean-square uncertainty, which can then be used for cal-
culating the field spectrum. We consider first the corre-
lation function of the time derivative of the phase fluctu-
ation, namely

(bP(t)bP(t )) =
2

dAe ' ~' 'lA (by )

d„,—,n(i i ) (~/2+ ~.b)'
2vr (K/2 + P,b)2 + A2

= (D/2) (+/2+ 7~b) exp( (K/2+ "f~b) I
t —t' I) (4.5)

Let us compare this result with the usual expression for
this correlation function

(bj (t)b(p(t')) = Ds~b(t —t'), (4.6)

which is valid when the time behavior of the phase is
described by a Markovian difFusion process, p(t) = F(t),

with a b-function-correlated random force E(t). It is seen
from Eq. (4.5), that due to the finite relaxation time of
the atomic polarization we do not have a Markovian be-
havior of the phase: the random force F(t) has a mem-
ory, with a characteristic time w = (r/2+ p~b) . If the
atomic polarization relaxes very fast, the memory time
goes to zero and we get the correlation function (4.6).
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V(8, 0) = e'" (Xs(t+ r), Xs(t)) dr, (5.2)

where (X, Y) = (XY') —(X)(Y). For a stationary field,
this quantity is independent of time.

The spectrum defined in this way actually corresponds
to the normalized photocurrent obtained in a homodyne
measurement of the field quadrature component, defined
by the angle 8, transmitted by the cavity port. One
can express this spectrum in terms of the amplitude and
phase quadrature of the field inside the cavity. For 8 = 0,
we get the spectrum of the amplitude fluctuations, while
for 8 = vr/2, Eq. (5.2) gets reduced to the spectrum of
phase fluctuations. For each frequency 0, the minimum
noise is obtained by minimizing V(8, 0) with respect to
8.

Here we examine the spectrum of amplitude Buctu-
ations. It is worth noting that for an exact resonance
between the atoms and the laser field, amplitude and
phase fluctuations are decoupled. Moreover, due to the

[10,21, 22], in terms of correlation functions of the Huc-
tuations obtained from the linearized semiclassical equa-
tions. The normalized spectrum of fluctuations corre-
sponding to a quadrature

Xs = a,„g(t)e ' +a~„,(t)e's

is defined as

phase diffusion process there is an excess noise in the
phase quadrature (inside the spectral bandwidth, corre-
sponding to the linewidth of the laser), so that adding
the phase quadrature to the amplitude quadrature will
only increase the resultant noise power spectrum.

The spectrum in (5.2) can be related to the c-number
averages of the field fluctuations defined in the normally
ordered representation [10, 21, 22], so that the spectrum
of amplitude fluctuations (8 = 0) can be rewritten as

VA(A) = V(0, 0) = 1+4r(bX )ri, (5 3)

where (bX2)ri is given by Eq. (3.45). The first term
on the right-hand side of this equation comes from the
commutator of the outgoing boson operators, and corre-
sponds to the shot-noise contribution.

We turn now to a detailed analysis of this spectrum, ex-
pressing it in a dimensionless form convenient for graph-
ical representation. We introduce the dimensionless pa-
rameters

0=0/~, a—= p, /r, b=pg/~,
(5.4)

c = p g/K, and a'—:p'/r.

In terms of these spectral parameters and also the statis-
tical parameter p and the dimensionless pump parameterr—:R/Rqh the spectrum of the amplitude fluctuations
reads as

V~ (0)

2bc(a + a')
b —a'

1 ( 2 -z , 2 -z r' c

D(A) ( (a+ a'I
(b'+~') (a+a')'+n' r+~l

M

+2io2 (b —a')z + Az n —'pr — (b —-a')(a+ a') + 0 ~' r—G+ 2G
na+ a'

a' b b —a'l
+ (a+a')'+0' ~,n ——

(a+a' c a+a') )
The following shorthands have been introduced:

D(A) =~ —iA( z + c —iA) (b —iA)(a + a' —iA) + 2io (a + b —2iA) (1 —iA) ~,

(5 5)

(5 6)

ra + b + a'(r —1) 2 (a + a') bc
) QJ r —1a+ b
' 2(a+ b)

(5 7)

with m being the dimensionless Rabi frequency for the
laser medium inside the cavity.

We investigate now the behavior of the spectrum given
by Eq. (5.5) for the four different classes of lasers de-
scribed in the Introduction. We start with the simplest
case (1) when all the atomic relaxation rates are much

faster than the field relaxation rate. This is the situa-
tion for which the atomic variables can be adiabatically
eliminated.

(i) First class of lasers (a, b, c, a' )& 1). In this case,
for dimensionless frequencies of order of unity, 0 1, we
can simplify the general result (5.5) for the spectrum to

r b —a' a+ a' a' 6
V~(A) = 1— p(r —1) —2, (r —1) —2

(r —1)2+ rzQ2 b+ a 6+a 6 —a' 6 —a'q
(5.8)
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One can see from (5.8) that the parameter c does not
appear in the fluctuation spectrum of photocurrent even
when being close to the laser threshold. Far above thresh-
old, r )) 1, this result looks even more simple

1 b —a' a+ a' c'
A 1+f12 b+a b+a b —a'p —2

(5.9)

For regular pumping, p = 1, and in the absence of sponta-
neous emission in the laser transition, a' = 0, this formula
coincides with the results of previous work [1] and shows
the possibility of perfect noise reduction in the region of
low frequencies. The necessary condition for this is a low
relaxation rate of the upper lasing level in comparison
with the relaxation rate of the lower level, a (& b. For-
mula (5.9) shows also the influence on the photon statis-
tics of the spontaneous emission between the lasing lev-
els. One can see that spontaneous emission destroys the
squeezing at low frequencies. This is in agreement with
the conclusion obtained by Kennedy and Walls in [1] for
the particular case a = 0; our formula (5.9) coincides in
this case with the corresponding result in their paper.
Figure 2 displays the spectrum of the amplitude fluctua-
tions for several pump parameters r. Noise reduction at
low frequencies increases with the pumping rate, largest
values being obtained when the laser operates far above
threshold.

VA(Q)

0

FIG. 2. Normalized spectrum of amplitude Huctuations
for a laser of the first class for several pump parameters r.
(a) r = 1.1, (b) r = 2, (c) r = 3, (d) r = 5, and (e) r = 10.
For all curves a' = a = 0, p = 1.

(ii) Second class (c )) 1 a, b, a') and third class
(c )) 1 )) a, b, a') of lasers. We consider now the second
and third classes of lasers, as defined in the Introduction.
We set c —+ oo in the general expression (5.5) but keep
the parameters a and 6 arbitrary. For simplicity we set
a' = 0. After some algebra we get for the spectrum of
amplitude fluctuations

VA(A) = 1+ (b + 0 )(a +A )n/a+e (b +0 )(n —2pr) —(ab+ A )(r —n)
Q2(Q2 Q2)2 + Q2(Q2 Q2)2

(5.10)

with

ab
(r —1), Q = a+b+2e,a+b

(5.11)

Aq =
2 2, and Az = (r —1)+abr.ab(a + b) (r —1) 2 2ab

a2+b2+2abr ' a+&

From (5.10) one can see that, because r n= (r —1)b/—(a+
b), the last term on the right-hand side is always nega-
tive. Note also that this term does not depend on the
statistical parameter p and is present even for Poissonian
pumping. Thus, the question arises as to whether this
could result in shot noise reduction for some region of
the parameters a, b, and r. From (5.10) one can also see
that the erst term in square brackets is proportional to
r, while the second term (negative contribution included)
is proportional to r2. This suggests that one should con-
sider the situation r )) 1, corresponding to the laser oper-
ating far above threshold. We also set now p = 0 to keep
only the negative contribution in question, thus isolating
it from the effects associated with the regularization of
the pumping process. We arrive to

2(a —b) A2

4b(A2 —02)2 + b(2 + a+ b)202
(5.12)

with 02& —(a+ b)/2. From (5.12) we can see that maxi-
mum shot noise reduction is obtained for a (& b. In this
case the spectrum (5.12) becomes

1 02
VA(Q) = 1 ——

2 (b/2 —0 ) +0 (1+b/2)

which exhibits a minimum noise level equal to

1 1
2 (1+b/2)2

(5.13)

(5.14)

(5.15)

at the frequency Ao = (b/2)~/2. For b/2 (( 1, which is
typical of the third class of lasers mentioned in the In-
troduction, this dip is 50% below the shot-noise level.
Going back to the original frequencies and decay con-
stants [cf. Eq. (5.4)], we see that the frequency at which
the minimum noise occurs is given by
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that is, just the geometrical mean between the decay con-
stant of the lower level pb and the field decay constant
K 2.

Thherefore, we can summarize the present analysis in
the following way: when a, b « 1 « c (third class of
lasers), amplitude noise can be reduced to a level up to
50Fo below shot noise, at the frequency given b (5.15)
even for Poissonian pumping statistics.

This result should be contrasted with the dynamic
pump-noise suppression effect recently discussed by
Ritsch et at. , Hart and Kennedy, and Ralph and Sav-
age [1, 3]. In these papers, a closed system of atomic
levels is considered, and the reduction of quantum noise
below the shot level is due to regularization of the pump-
ing statistics by the internal dynamics of the syst
N

'
e sys em,

ouse quenching is obtained in the good-cavity limit: the
spectrum of amplitude fluctuations has the shape of a
Lorentzian function with a dip below the shot-noise level
around zero frequency.

On the other hand, our model involves an open system

d
of states, which decay to other levels. Therefo there ore, e

epletion of the ground state does not play a role, and
the origin of the subshot noise behavior is quite different.
We note in particular that the minimum noise level in
our case is not at zero frequency, and the shape of the
amplitude fluctuation spectrum is not Lorentzian.

Figure 3 shows the dependence of the spectrum (5.10)
on the statistical parameter p, for operation far above
threshold. One can see that in addition to the dip at
nonzero frequency which shows up when the pumping is
Poissonian, there is a narrow dip (with a width given by
the atomic decay rate) around zero frequency, due to the
regularization of the pumping. For regular pumping, p =
1, one can get complete noise quieting at zero frequency,
as in the case of lasers of the first class.

In Fig. 4 the spectrum of amplitude Buctuations is
displayed for different pump parameters r, when the
pumping is Poissonian. The noise reduction at nonzero
frequencies takes place only when operation is very far

VA(Q)

0

FIG. ~G. 4. Normalized spectrum of amplitude fluctuations
for a laser of the third class for Poissonian pun pumping, p =
0, and difFerent pump parameters r. (a) r = 3 x 10, (b)
r = 5 x 10, (c) r = 10, and (d) r = 10 For all curves
a' = 0, a = 0.001, b = 0.1.

above threshold. As the parameter r decreases, we get
excess noise for a wide range of frequencies, and the dip
below the shot-noise level disappears.

A discussion related to ours, and applicable also to
lasers of the second and third classes, has been presented
in Ref. [23], in which the authors have used a simple clas-
sical approach with rate equations for the populations of
the lasing levels and for the photon number inside the
cavity for calculation of the photocurrent spectrum of
the laser radiation. They have considered two particular
cases a = b an~and a = O, b ~ oo. Our general formula
(5.10) reproduces their results in these two cases. This
can be considered as a justification of the intuitive model
used in Ref. [23]. One should remark, however, that our
new result on the 50% noise reduction in the Poissonian
pumping ease cannot be obtained in those two limits.
Even though b))a in our case, we must still keep b fi-

VA(Q)

VA(Q

FIG. 3. Normalized spectrum of amplitude Quctuations
for a laser of the third class for difFerent statistical parameters
p. (a) p = 0 (Poissonian pumping), (b) p = 0.5 (intermediate
case), (c) p = 1 (regular pumping). High-above-threshold
operation, r = 10 . For all curves a' = 0, a = 0.001, b = 0.1.

FIG. 5. Normalized spectrum of amplitude fluctuations
for a laser of the fourth class for Poissonian pumping, p = 0,
and different pump parameters r. (a) r = 10, (b) r = 10 .
For both curves a' = 0, a = 0.001, b = 0.1, c = 0.5.
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nite, so that the minimum of the spectrum, given by Eq.
(5.15), is not displaced to infinity.

(iii) Fourth class of lasers (a, b, c & 1). Now we an-
alyze the last family of lasers, for which a, b, c ( 1 (we
consider again the case when a' = 0). It is interesting
to compare this class with the second and third classes

(for which c —+ oo) and to understand the inhuence of
the atomic polarization dynamics on the noise spectrum
of the laser radiation.

We consider the laser operation very far above thresh-
old, r )) 1. Then, we can simplify the general result
(5.6), which becomes

2

D(B) = ( 2w~(a+6 —2n ) —0 ab —0 + (i +c)(a+ 5)

+A~ ( zi + c)(ab —0 ) + 2u) (2 + a + b) —(& + b)~

—(2u)2)z (a+ b —M ) + A {2+n+ b) {5.16)

in the range of frequencies 0 1. For the spectrum of
amplitude fluctuations we get an expression which coin-
cides precisely with (5.12) (for p = 0). Thus, when very
far above threshold, the dynamics of the atomic polariza-
tion plays no role in the determination of the spectrum
of the quantum fluctuations of the laser radiation.

On the other hand, as seen from Fig. 4, when the pump
parameter r decreases, the noise grows and the dynamics
of the polarization starts affecting the results. A long-
lived polarization contributes, however, to increasing of
the noise of the amplitude quadrature. This is illustrated
in Fig. 5. The new feature, associated with the transient
of the atomic polarization, is the sharp resonance peak
around the frequency of the relaxation oscillations [24).
The frequency of the relaxation oscillations decreases as r
decreases. Because of this large excess noise which shifts
towards lower frequency values as r decreases, the dip
below the shot-noise level disappears for laser operation
close to threshold. This behavior of the amplitude noise

FIG. 6. Normalized spectrum of amplitude fluctuations
for a laser of the fourth class for Poissonian pumping, p = 0
[curve (a)] and regular pumping, p = 1 [curve (b)]. For both
curves a' = 0, a = 0.001, 6 = 0.1,c = 0.5; r = 10 .

spectrum should be contrasted with the narrowing of the
line shape discussed in Sec. IV, which occurred for the
same region of parameters: a long-living polarization in
a laser is thus seen to decrease the phase noise and cor-
respondingly increase the amplitude noise.

Figure 6 represents amplitude noise spectra for the
fourth class of lasers, operating far above threshold, for
two diferent pumping statistics: Poissonian (a), and reg-
ular (b). One can see that also in this case there is a 100%
dip below the shot-noise level around zero frequency, due
to the regularization of the pumping. The width of this
dip is of the order of the atomic relaxation rates, i.e. ,
much less than unity for this class of lasers.

VI. CONCLUSION

Although of great theoretical and practical interest,
the problem of quantum noise quenching in lasers has
been treated, up to novr, only in some special limiting
cases, due to the inherent complexity of the system. Pro-
posals for noise quenching stemming from these treat-
ments have included the regularization of the pumping
[1, 2], correlated-emission schemes [5], the reduction of
spontaneous-emission noise for short measurement times
due to atomic memory efFects [6), or dynamical pump-
noise suppression, through the recycling of the active
laser electron from the lower to the upper laser level via
a multistep process, in a closed system of states [3].

We have developed in this paper a quite general ana-
lytical approach to this problem, which does not rely on
the adiabatic elimination of the atomic variables, and at
the same time takes into account the possibility of non-
Poissonian pumping statistics. Our theory can therefore
be applied to a variety of laser systems, covering a wide
spectrum of relations between atomic and field decay con-
stants. As simplifying assumptions, we have considered
the active medium to be homogeneously broadened, and
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have only dealt with a zero-temperature bath. Of course,
inhomogeneous broadening and temperature effects will
tend to increase noise, and should be considered in a
more complete treatment. We have decided, however,
to avoid these extra complexities in this first approach,
postponing the consideration of these efFects to a later
publication.

Our theory generalizes previous treatments of regularly
pumped lasers, allowing a detailed investigation of the in-
fluence of polarization and population dynamics on noise
quenching. We have shown that a long-lived polarization
increases the noise in the amplitude quadrature, at the
same time that it quenches the phase fiuctuations. Fur-
thermore, we have shown that careful consideration of
atomic memory effects leads to a new possibility for gen-
erating sub-Poissonian light, even for Poissonian pump
ing and for an open tujo Level s-ystem: for fast polariza-
tion damping but slow population decay, as compared to
the field decay rate, we obtain up to 50'Fo noise quenching
below the shot-noise level, at a frequency given by the ge-
ometrical mean of the cavity and lower-level decay rates.

The width of the noise-reduced region increases with the
pumping rate. This result stands out particularly if we
consider the difhculties associated with the production
of a regularized pumping, and the realization of a closed
system of states.
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