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Universal Gaussian basis set for accurate ab initio relativistic Dirac-Fock calculations

G. L. Malli and A. B. F. Da Silva*
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V54 156

Yasuyuki Ishikawa
Department of Chemistry and The Chemical Physics Program, University of Puerto Rico, P.O. Box 23346 UPR Station,
San Juan, Puerto Rico 00931-3346
(Received 28 August 1992)

A universal Gaussian basis set is developed for accurate ab initio relativistic Dirac-Fock calculations
on atoms and molecules. The Dirac-Fock energies computed by using this single set of the universal
Gaussian basis for the atoms, He (Z =2) through No (Z =102), are in excellent agreement with the cor-
responding numerical finite-difference Dirac-Fock method. The total Dirac-Fock energies for lighter
atoms agree with the corresponding numerical limit to a part in 10° and for heavier systems to a part in
10%. The total energy for the heaviest system, No (Z =102), calculated with our universal Gaussian
basis set differs from the corresponding numerical limit by only 4 mhartrees.

PACS number(s): 31.10.+2, 31.15.+q, 31.20.Di, 31.30.Jv

I. INTRODUCTION

Ab initio relativistic calculations for atoms and mole-
cules are carried out mostly within the finite-basis-set-
expansion method. The choice of the appropriate set of
basis functions is crucial because it ultimately determines
the accuracy as well as the cost of the calculation.
Among the types of functions employed in basis-set-
expansion ab initio Dirac-Fock (DF) calculations are
Slater-type functions (STF’s) [1-5], orthogonal Laguerre
functions [6-8], piecewise polynomials [9], and
Gaussian-type functions (GTF’s) [10-14]. Basis sets of
STF’s have been widely used for nonrelativistic calcula-
tions on both atoms and diatomic molecules because, in
the point-nucleus approximation, they correctly represent
the singularity at the point nucleus. Although the STF’s
with noninteger power of r have been used successfully in
relativistic (point-nucleus) atomic calculations as they can
reproduce the more severe relativistic cusp conditions at
the point nucleus [3,4], they are not suitable for molecu-
lar DF calculations because of the difficulty of calculating
the two-electron multicenter integrals. Therefore the use
of GTF’s in relativistic Dirac-Fock calculations has been
investigated by a number of groups [10-17] because all
the multicenter integrals over GTF can be evaluated ex-
actly by closed formulas. A main disadvantage of GTF’s
relative to the STF’s of noninteger power of r is that they
provide a poor representation of the relativistic infinite
cusp at the point nucleus. However, when the nucleus is
represented more realistically by a finite body of uniform
proton-charge distribution, it turns out that the solutions
of the Dirac equation near the origin can be represented
precisely by GTF’s [18,19].

Since the computational cost of a finite basis set in
atomic and molecular calculations increase as ~N*
(where N is the number of basis functions used), various
attempts have been made to economize the cost as much
as possible by adopting various strategies. One such ap-
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proach was the introduction of a universal basis set [20]
following the earlier work on the even-tempered STF and
GTF basis sets [21]. It was observed that the optimum
exponents of the rigorously optimized GTF’s in Hartree-
Fock atomic calculations could be related by a Gaussian
rule [22]. The existence of such a rule suggested a high
degree of universality in the optimized GTF representa-
tion for different atoms.

A universal basis set is a single, sufficiently flexible
basis set which can be used for any atomic or molecular
environment without much loss of accuracy. A major ad-
vantage of the use of universal GTF’s over other varieties
of GTF basis is that the transferability of all the one- and
two-electron integrals over the universal GTF from sys-
tem to system (with trivial multiplicative scale factors
due to change in nuclear charges) leads to remarkable
computational savings for nonrelativistic and relativistic
calculations on atoms and molecules. Therefore there
has been a considerable effort in designing the so-called
universal Gaussian basis set [23-25]. In the present
study, we have developed a single universal basis set of
GTF’s for accurate ab initio DF calculations for all the
atoms, He (Z =2) through No (Z =102).

II. GENERATION OF UNIVERSAL GAUSSIAN
BASIS SET FOR MATRIX DIRAC-FOCK
CALCULATIONS

There is a great variety of GTF’s one can use in atomic
and molecular calculations. If the basis set of GTF’s is
sufficiently large and flexible, the particular choice of the
GTF basis is not expected to be reflected in the calculated
properties. One is forced, however, to use a moderately
large basis set since its flexibility in general increases as it
is extended. It is also well established that it is generally
more profitable to increase the basis set size rather than
optimize the individual basis function exponent, since the
exponent optimization is computationally very costly.
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The basis-set-exponent nonoptimization has been so far
almost always the rule in relativistic quantum chemistry.
The concept of a universal basis set arose from these con-
siderations.

In the present study, we adopt this philosophy and
construct a single, sufficiently flexible universal basis set
of GTF for accurate relativistic DF calculations on the
atoms, He (Z =2) through No (Z=102). In order to
generate our universal basis set of GTF, the generator
coordinate version of the Hartree-Fock method (GCHF)
[23,24] is employed. This novel procedure was first ap-
plied to develop a universal GTF for nonrelativistic
Hartree-Fock calculations on the He up to Xe atoms
with reasonable success [24,25].

The GCHF method is characterized by the representa-
tion of the one-electron functions W¥; as an integral trans-
form [23,24], viz.,

v, ()= [¢(La)f(a)da, i=1,2,...,n, (1)

where the ¢; are the generator functions. The f; and «a
are the weight functions and the generator coordinate, re-
spectively. The variations of the energy expectation
value produce the  Griffin-Wheeler-Hartree-Fock
(GWHF) equations,

[ [F(a,B)—¢€;S(a,B)1f(BYB=0, i=1,2,...,n. ()

The GWHF equations are integrated numerically
through a discretization technique that preserves the in-
tegral character of the GCHF method, viz., the integral
discretization (ID) technique [23]. The ID technique is
implemented with a relabeling of the generator coordi-
nate space through
Ina

Q 1
An equally spaced N-point mesh {Q;]} is selected so that
one can obtain an adequate numerical integration range
for the s, p, d, and f symmetries for several atoms. The
integration range is then characterized by a starting point
Qin» an increment AQ, and N (number of mesh points).
The scaling parameter A is chosen to be 6.0 as in a previ-
ous study [24]. The exponents of our universal basis of
GTF’s are generated by the following discretization pa-
rameters:

A>1. (3)

Symmetry Q
s, p, d, and f

min AQ N
—0.64 0.12 32

These 32 exponents generated with the discretization pa-
rameters represent a single set of GTF exponents that can
be applied for the DF calculations on the atoms, He
(Z=2) up to No (Z=102). With this single set of
universal Gaussian basis, the two-electron integrals need
to be computed only once for use in all the DF calcula-
tions on the atoms, He (Z =2) up to No (Z =102).

Our matrix Dirac-Fock-Coulomb (DFC) and Dirac-
Fock-Breit (DFB) self-consistent-field (SCF) calculations
employ the finite-nucleus model of uniform proton-
charge distribution discussed in Ref. [18]. The universal

GTF’s are chosen to satisfy the relativistic boundary con-
ditions associated with the finite-nucleus model [18]. The
GTF’s that satisfy the boundary conditions associated
with the finite nucleus automatically satisfy the condition
of the so-called “kinetic balance” at the nonrelativistic
limit [12].

III. RESULTS AND DISCUSSION

The DFC and DFB SCF calculations are performed on
a number of closed-shell ground-state atoms, He (Z =2)
through No (Z =102), using a universal Gaussian basis
set. The finite-nuclear model of uniform proton-charge
distribution and the kinetic balance condition are em-
ployed in all the calculations. The speed of light used in
our DFC and DFB SCEF calculations is 137.0370 a.u.

Table I displays the 32 exponents of the universal
Gaussian basis generated in the manner described in the
preceding section. The results of the matrix DFC and
DFB SCF calculations are given in Table II. In this
Table, Epgc, Eppg and Ey denote the DFC, DFB, and
the variational Briet interaction energies, respectively.
The variational Breit interaction energy Eg is computed
as the difference between the Eppg and Eppc.

The results displayed in Table II show that the total
DFC energies computed with our universal Gaussian

TABLE I. Basis-set exponents of the universal GTF.

0.021 494

0.044 157
0.090718

0.186 374

0.382 893

0.786 628

1.616 074
3.320117
6.820958

14.013 204

28.789 191
59.145470
121.510418
249.635037
512.858511
1053.633 557
2164.619772
4447.066 748
9136.201 616
18769.716 020
38561.127 946
79221.261 891
162754.791419
334 368.848 683
686938.467 338
1411 269.200 969
2899 358.315 629
5956538.013 185
12237 309.514 749
25140735.076 029
51649961.080 194
106 111395.371 615
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TABLE II. Total Dirac-Fock-Coulomb (Epgc), Dirac-Fock-Breit (Epgg) and variational Breit interaction (Eg) energies (in har-
trees).

Finite
Atomic Basis-set difference
Atom mass size Epgec? Epgs® Eg* (Epge)®
He 4.0026 22s —2.861813335 —2.861749572 0.000063 763 —2.86181335
Be 9.0122 25s —14.575 892 68 —14.57518947 0.000703 21 —14.5758919
Ne 20.18 32529 —128.6919359 —128.6752951 0.0166408 —128.691938
Mg 24.312 32529p —199.935077 3 —199.032 502 0.0318271 —199.935083
Ar 39.948 32529 —528.683 8154 —528.5514924 0.1323230 —528.683 840
Ca 40.08 32529 —679.7102462 —679.5192518 0.190994 4 —679.710276
Kr 83.80 32529p20d —2788.861607 —2787.435714 1.425893 —2788.861 68
Sr 87.62 32529p20d —3178.081228 —3176.362 668 1.718 560 —3178.08133
Xe 131.30 32529p20d —7446.899 674 —7441.129 882 5.769 792 —7446.900 18
Ba 137.34 32529p20d —8135.649 484 —8129.104 066 6.545418 —8135.65006
Hg 200.59 32529p20d 15f —19648.867 31 —19626.234 65 22.632 66 —19648.8692
Rn 222.00 32529p20d 15f —23601.97225 —23572.62063 29.35162 —23601.9742
No 259.00 32529p20d 17f —36740.281 62 —36685.13648 55.145 14 —36740.2857
#This work (using the universal Gaussian basis set).
*Eprc computed by using the Oxford numerical-finite-difference Dirac-Fock program [26].
basis set are in excellent agreement as compared to the TABLE III. Dirac-Fock-Coulomb (Epgc) and Dirac-Fock-
corresponding numerical-finite-difference results. Our Breit (Epgg) orbital energies of No (in hartrees).
universal Gaussian basis set yields total DFC energies to
within a few millihartrees (heavier atoms) or less (lighter Orbital Eoa Eo b Eo s
atoms) of the corresponding numerical-finite-difference i i DFB
values.

The size of the universal Gaussian basis set in Table II s,  —5526516 —5526.510 —5500.676
indicates the number of exponents, for each s, p, d, and f 2512 —1082.793 —1082.790 —1079.535
symmetry, taken from the 32 universal GTF exponents 2pi,  —1047.358 —1047.355 —1041.880
shown in Table I. For each atom studied, we increased 2psp 8087883 —808.7879 —805.7818

K 3512 —285.3979 —285.3967 —284.7204

the number of exponents in each s, p, d, and f symmetry
until obtaining a DFC energy value between the accuracy ;p 1 269.1026 —269.1013 —267.9745

. ' o py,,  —212.1875 —212.1871 —211.5872
of microhartrees (for the lighter atoms) and millihartrees 3d —187.1346 —187.1341 —186.647 1

. . 32 . . .

(fo‘r thc? heavier atoms) as comparefi to the numerical- 3d, —176.444 9 —176.444 5 —176.1149
finite-difference results (last column in Table II). There- 4s, —78.618 72 —78.618 09 —78.45109
fo.re, as one can see from Tal?le II, for He we have Obg ap, —70.97105 —70.97035 —70.689 78
tained a DFC energy value within the accuracy of 10~ 4ps, —5521109 —5521111 —55.07775
hartrees, and for the case of Be our DFC energy value is 4d,, —43.23728 —43.23699 —43.146 94
slightly lower than the corresponding numerical-finite- 4ds,, —40.45725 —40.45733 —40.406 53
difference value. For the heaviest atom studied, nobelium Afs, —24.688 70 —24.688 30 —24.67797
(No), we obtained a DFC energy value that differs from 4f . —23.91528 —23.91498 —23.92330
the corresponding finite-difference result by only 4 mil- 581, —18.80505 —18.80506 —18.763 18
lihartrees. The DFC energy values computed by using 5p1, —15.542 11 —15.54224 —15.47406
our universal basis set of GTF’s are consistently more ac- 5p3, —11.43674 —11.43731 —11.408 68
curate than the corresponding values computed by using 5ds,, —6.610019 —6.610473 —6.596 152
the large geometrical Gaussian basis set [14], although 5ds,, —5.985525 —5.986 144 —5.980 649
the former is smaller in size than the latter. 5fsn —0.5665147 —0.5669459 —0.569767 1

Table III displays the DFC and DFB orbital energies 5f1n —0.469033 1 —0.469 4412 —0.4747903
of No (Z=102) obtained with our universal Gaussian 6512 —2.794 859 —2.795121 —2.787064
basis set. The 1s,,, orbital energy of No obtained by the 6p1,2 —1.727253 —1.727 562 —1.716418
DFB SCF is higher by 25.8 hartrees than that computed 6p3/2 —1.049092 — 1045447 —1.046053
by the DFC SCF. For the 2s, ,, orbital the difference be- Ts112 —0.2092202 —0.2093179 —0.2089819

tween the computed DFB and DFC orbital energies is
about 3.3 hartrees. For 2p,,, and 2p;,, the DFB and 2This work (using the universal Gaussian basis set).

DFC orbital-energy differences are 5.5 and 3.0 hartrees, ®Numerical DFC orbital energies computed by using the Oxford
respectively. As Mann and Johnson pointed out [27], the numerical-finite-difference Dirac-Fock program [26].
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major effects of the inclusion of the Breit interaction term
in the SCF process, for higher-Z systems, are the reor-
ganization of the orbitals and a large shift in the inner-
shell orbital energies. The DFB and DFC orbital-energy
difference for the outer-shell orbitals of No presents a lev-
el shift much smaller in magnitude than for the inner-
shell orbitals.

The orbital energies computed by the DFC SCF are, in
general, lower than those computed by the DFB SCF;
however, the orbital energies obtained by the DFB SCF
calculation for the orbitals 4/ ,,, 5f5,,, and 5f;,, of No
are slightly lower than those obtained by the DFC SCF.
This same behavior was observed for some outer-shell or-
bitals of Rn in a previous paper [15]. The results in Table
I1I show that the inclusion of the Breit interaction in the
SCF process is essential for accurate calculations of the
binding energies of the inner-shell electrons in systems
with high Z.

The third column in Table III shows the numerical
DFC orbital energies obtained by using the Oxford
numerical-finite-difference Dirac-Fock program [26]. As
one can see, the DFC orbital energies of the No atom ob-
tained with the universal Gaussian basis set are in very
good agreement with the corresponding numerical-finite-
difference Dirac-Fock orbital energies [26].

IV. CONCLUSION

A major advantage of the GTF over the STF is that a
large basis set of GTF’s may by employed to achieve high
accuracy without encountering the near-linear dependen-
cy problem reported with the STF basis sets [3,4]. The
results clearly show that the variational determination of
DF energies with the universal basis of GTF’s is competi-
tive in accuracy with the numerical-finite-difference DF
approach. The present study demonstrates that it is
indeed possible to obtain highly accurate ab initio DF en-
ergies for the atoms He (Z =2) through No (Z =102) by
using a single set of universal Gaussian basis.
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