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"Scarring" and suppression of ionization in very intense radiation fields
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The interaction of a model atom with very intense radiation fields is well approximated by a map
that describes a free particle being kicked periodically by a double-well potential. Both the classical
and quantum versions of the map are studied and are shown to provide a compact description
of high-field stabilization in this strongly perturbed quantum system. In particular, we find that
the "stabilized" wave function results from the excitation of a superposition of eigenstates of the
periodic, time-evolution operator that are localized near classically unstable and weakly stable orbits.
These "scarred" wave functions correspond to localized wave packets that oscillate back and forth
in the strong external field while in the neighborhood of the attractive Coulomb field. The periodic
bremsstrahlung, emitted as this wave packet passes the nucleus, provides a distinct experimental
signature of the stabilized state.
PACS number(s): 32.80.Rm, 05.45.+b, 42.50.Hz

I. INTRODUCTION

Atomic physics is currently experiencing a renaissance
in the use of classical mechanics in the description of
strongly perturbed and strongly coupled quantum sys-
tems [1, 2] where the traditional perturbative treatment
of the Schrodinger equation breaks down. In particu-
lar, recent advances in classical nonlinear dynamics and
chaos have had important applications in the description
of the photoabsorption spectrum of Rydberg atoms in
strong magnetic fields [3], the microwave ionization of
highly excited hydrogen atoms [4], and the excitation of
doubly excited states of helium atoms [5]. The purpose of
this paper is to expand on the results of our earlier Com-
ment [6] that showed how these new methods of classical
nonlinear dynamics and "quantum chaos" can be suc-
cessfully used to describe the remarkable phenomenon
of "stabilization" of ground-state atoms in super-intense
laser fields.

The development of very intense laser fields with in-
tensities larger than 10 W/cm provides an opportu-
nity to explore the properties of matter in strong electro-
magnetic fields that greatly exceed the Coulomb binding
fields in an atom. Since the photoionization rates cal-
culated using perturbation theory increase rapidly with
increasing laser intensity, one might expect that atoms
exposed to these fields would be rapidly ionized. How-
ever, in a preliminary numerical study of the quantum
dynamics of a one-dimensional (1D) model atom in a very
intense laser field, Su, Eberly, and Javanainen (SEJ) [7]
found that the ionization probability actually decreases
when the oscillating field strength becomes much greater
than the Coulomb binding field.

In these numerical studies, SEJ [7] considered a 1D

Hamiltonian of the form (in a.u. )

H(x, p, t) = p /2 —1/Ql + x2 + 2:Fcos((ut i P), (1)

where F, io, and P are the field strength, frequency, and
phase of the oscillating electric field. (This 1D model po-
tential asymptotes to the Coulombic potential for large x,
but eliminates the singular behavior at the origin. ) The
corresponding time-dependent Schrodinger equation was
solved on a space-time grid and the ionization probabil-
ity computed by projecting out the continuum compo-
nent of the time-dependent solution. As the perturbing
field was increased from F = 1.0 to 5.0 a.u. the ioniza-
tion probability for interaction times of approximately
30 field cycles decreased dramatically. In addition, their
graphs of the electron probability as a function of position
x indicated that this high-field stabilization of the atom
was due to the localization of the electron probability
to a double-peak structure which they associated with
the "dichotomous" wave function in the time-averaged
atomic potential studied by Pont et aL [8]. However, the
peaks of the dichotomous wave functions were predicted
[8] to be separated by a distance 2F/ioz while SEJ's peaks
were only F/io2 apart.

In our earlier Comment [6) we briefiy indicated how
many features of these 1D simulations could be cor
rectly accounted for using a synthesis of ideas and tech-
niques for the classical, semiclassical, and quantum de-
scription of this strongly perturbed system. By ap-
proximating the classical equations of motion in the
oscillating Kramers-Henneberger (KH) frame [9] by a
nonlinear, area-preserving map, we showed that the
classical electron dynamics undergoes a transition from
chaotic, unstable, rapidly ionizing behavior for perturb-
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ing fields comparable to the atomic binding Gelds, to sta-
ble, bounded motion as the fields are increased. More-
over, by diagonalizing the quantum-mechanical time-
evolution operator corresponding to this classical map,
we found that some of the quasienergy (QE) states, that
describe the quantum dynamics of this periodically per-
turbed system, remain highly localized to the vicinity of
classical periodic orbits even when the classical dynam-
ics is fully chaotic and these periodic orbits are unstable.
In particular, for the parameters of SEJ's simulations we
suggested that if a 8uperpoaition of these "scarred" [6]
QE states are diabatically excited by the rapid turn-on of
the applied Geld, then the resulting electron probability
distribution could remain localized to the vicinity of the
nucleus with peaks spaced F/w2 apart.

In this paper we develop further the classical, semi-
classical and quantum analyses of the electron dynamics
of 1D models of atoms in very strong fields, and we elabo-
rate on our earlier results. We begin in Secs. II and III by
providing a detailed discussion of our earlier demonstra-
tion [6] that the classical dynamics is well approximated
by an impulsive map which describes the position and
momentum of the classical particle once every external
period.

This map facilitates the evaluation of the stability of
the classical dynamics and the computation of the invari-
ant structures [10] (fixed points, periodic orbits, KAM
tori, stable and unstable manifolds, etc.) that partition
the classical phase space. These structures, in turn, pro-
vide the "support" for quantum states and determine
both the extent of stabilization as well as the structure of
the residual wave function. The analysis of the structure
and stability of the classical phase space for our nonlinear
map is presented in Sec. IV. We find that the stability of
the classical dynamics is determined by two key parame-
ters. The first is the maximum excursion of the electron
in the oscillating electric field,

sion of the classical map, in turn, gives us an approx-
imation to this propagator which is easily diagonalized
within a plane-wave basis. The resulting eigenvectors or
QE states are closely linked to the structure of classi-
cal phase space. We show in Sec. V that the multiply
peaked residual wave functions in the numerical simu-
lations result from the diabatic excitation of eigenvec-
tors that are highly localized in the vicinity of unstable
and weakly stable periodic orbits embedded in the classi-
cally chaotic phase space. These highly structured wave
functions associated with periodic orbits in a classically
chaotic system are called "scars" [16]. The superposition
of eigenvectors that result in the stabilized wave func-
tions correspond to localized wave packets that oscillate
back and forth in the strong external field but remain
localized in the neighborhood of the attractive Coulomb
field.

In Sec. VI we examine the possible experimen-
tal implications with particular emphasis on the odd
and even harmonic generation arising from periodic
bremsstrahlung as the wave packet passes the nucleus.
This experimental signature of the stabilized state has
also been observed in the three-dimensional (3D) numer-
ical simulations of Kulander, Schafer, and Krause [15].
Jn the course of this discussion, we contrast both the
power in the higher harmonics and their intensity de-
pendence with the low-Geld harmonic generation profiles
which were studied earlier [17]. Details of the classical
derivations and a summary of the methodology used for
the quantum dynamics are included in Appendixes A and
B.

However, before beginning this detailed program, we
find it necessary to dispell some points of confusion in the
literature: (1) over various models of "stabilization", (2)
on the applicability of classical mechanics to this quan-
turn problem, and (3) on the role of the KH transforma-
tion.

which must be large for the map approximation to the
continuous classical dynamics to be valid. The second
parameter is the "stochasticity parameter, "

(3)

which determines the stability of the classical dynarn-
ics. When S is large the classical electron motion in the
vicinity of the nucleus is chaotic and rapidly leads to ion-
ization.

Although the importance of o. has been recognized by
many others [7, 8, ll —15] the stochasticity parameter 9,
which decreases both with increasing Geld and frequency,
is new. The combination of these requirements leads to
an explicit condition for the onset of classical stabiliza-
tion in this 1D model. In particular, the classical theory
for this 1D model predicts that stabilization is not simply
a high-frequency phenomenon but can occur even at low
frequencies (w (( 1) as long as F ) 1/cuz.

In periodically driven systems, the eigenstates of the
single-cycle evolution operator provide a compact de-
scription of the quantum dynamics. The quantized ver-

A. De6nition of "stabilization"

Although a variety of difFerent theories and physical
mechanisms have been proposed for the stabilization of
atoms in intense, high-frequency fields [6—8, 12—15, 18],
these can be roughly divided into two categories. The
first class relies on the excitation of a quantum wave
packet that maintains a small overlap with the nucleus.
Since the absorption of energy in high-frequency fields
can occur only near the nucleus, the ionization of these
special wave packets can be greatly suppressed. Ex-
treme fields and frequencies are not necessarily required
to achieve this stabilization of weakly interacting wave
packets, only some theoretical [12, 13, 18] or (very re-
cently) experimental ingenuity [19]. Moreover, in many
of these models "stabilization" refers to a saturation of
the ionization rate with increasing Gelds rather than to
a decrease in the ionization probability.

A second, more dramatic mechanism for atomic stabi-
lization in intense, high-frequency fields is illustrated in
the numerical simulations by SEJ for 1D model atoms
and by Kulander, Schafer, and Krause [15] for m = 0
states of 3D hydrogen atoms. In these calculations the
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ionization probability fiist increases with increasing field
as expected by perturbation theory and then exhibits a
sharp decrease when the perturbing field strengths ex-
ceed the magnitude of the typical atomic binding fields.
In contrast with the Brst weakly interacting mechanism
for the suppression of ionization, this stabilization mech-
anism depends on the strong interaction with the atomic
nucleus since the electron wave packet in the oscillating
field alone would rapidly spread apart. As the Kramers-
Henneberger transformation is important for the predic-
tion and description of this effect, we will refer to this
strongly interacting stabilization mechanism as KH sta-
bilization.

B. Applicability of classical mechanics

The principal aim of this paper is to thoroughly explore
the classical and semiclassical description of KH stabiliza-
tion in the one-dimensional model system introduced by
SEJ. One justification for the application of classical me-
chanics to this quantum problein is the observation that
in strong Belds, when o, )& 1, the perturbed electron dy-
namics may extend over many atomic units of distance,
coupling many zero-field atomic states. In this case the
high density of coupled states greatly complicates the
quantum theory, but this is precisely the situation where
a classical theory may be most efFective (at least for the
short times of the radiation pulse). Although the utility
of the classical description of the strongly perturbed elec-
tron dynamics has also been recognized by several other
groups [20—22], this approach has also been subject to
some criticism. However, the failures of other classical
analyses of this problem can be largely attributed to in-
correct or incomplete treatments of the classical mechan-
ics and of the classical-quantum correspondence for these
strongly perturbed systems.

For example, based on a limited sample of 1D and
3D classical simulations of the atomic electron dynam-
ics in strong oscillating fields, Grochmalicki, Lewenstein,
and Rzazewski [21] conclude that the classical dynamics
exhibits stabilization in the 1D but not the 3D mod-
els and that, consequently, the stabilization observed
in SEJ's quantum 1D simulations would not survive
in a more realistic 3D quantum calculation. However,
this prediction based on the classical simulations was
promptly disproved by the 3D quantum simulations of
hydrogen atoms by Kulander, Schafer, and Krause [15]
which clearly exhibited KH stabilization and also by two-
dimensional simulations of a model potential by You,
Mostowski, and Cooper [22].

Does this failure imply that classical mechanics is not
applicable to this problem? The answer is an emphatic
no, as shown by the results of our detailed analysis of the
classical nonlinear dynamics in Sec. IV. For the Beld pa-
rameters studied in the 1D simulations of Grochmalicki,
Lewenstein, and Rzazewski [21], the classical dynamics
in the vicinity of the nucleus becomes completely stable.
Many classical electron orbits starting near the nucleus
never ionize. In the classical theory this stabilization
arises because the perturbing field becomes much larger

than the binding field of the atom which can then be
treated as a small perturbation on the regular, integrable
motion in the oscillating Beld alone.

In contrast, the classical dynamics for all of the m = 0
orbits in the 3D hydrogen atom appear to remain highly
unstable and chaotic in large fields, as the oscillating field
can never dominate the bare Coulomb singularity. A
more appropriate 1D case to compare with 3D simula-
tions would be the original parameters chosen by SEJ
[7]. In this example we find that (except for a very small
set of initial conditions) the 1D classical dynamics is also
completely unstable and chaotic, like the generic, m = 0,
case in 3D. In these situations, recent developments in
the quantum description of classically chaotic systems
suggest that quantum states may still remain localized
in so-called "scarred" states that are associated with un-
stable periodic orbits.

In Sec. V we construct these scarred quantum states
for SEJ's paraineters and demonstrate how the proper in-
terpretation of the classical-quantum correspondence for
this classically chaotic system successfully describes the
quantum 1D simulations. From this agreement we sug-
gest that the stabilization observed by Kulander, Schafer,
and Krause [15] in 3D is also due to the excitation of
a superposition of scarred quasienergy wave functions.
Although the quantum dynamics may be very diferent
from the classical dynamics, a detailed understanding of
the structure of the classical space for this strongly per-
turbed system can nevertheless prove to be very useful in
understanding the structure of the stabilized wave func-
tions.

C. Role of KH states

A common explanation for KH stabilization is to ar-
gue that in high-frequency fields the electron only sees an
effective, time-averaged potential. On Fourier transform-
ing the potential in the oscillating KH frame, the time-
dependent parts of the potential can be separated from
the time-averaged piece and treated as small perturba-
tions [8]. The bound eigenstates, called KH states, of the
effective time-independent Hamiltonian are stable by def-
inition. As a consequence, many authors talk about the
excitation of KH states in strong, high-frequency fields.

However, this terminology can lead to some confusion
since the original time-periodic dynamical system can-
not be so easily replaced by a time-independent prob-
lem. In particular, we show in Secs. III and IV that the
time-dependent contributions in the Fourier expansion
of oscillating potential can be comparable to the time-
independent piece. Consequently, in our map approxi-
mation for the classical and quantum dynamics in the
oscillating Beld we treat all terms in the Fourier expan-
sion as equal in importance.

It is important to recognize that, in the presence of a
periodic radiation field, a superposition of Floquet, QE
states is excited. These time-dependent states are not
the same as the time-independent KH states. However,
we demonstrate in Sec. V that for wide ranges of parame-
ters, the structure of these QE states, viewed once every
period of the perturbation, can be very similar to the
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eigenfunctions of the time-averaged potential. In these
cases, the stabilized QE wave functions can be said to
resemble the KH states.

When the classical dynamics is regular in the 1D model
as for small values of the stochasticity parameter S this
connection between the QE states and the KH states can
be more firmly established using traditional semiclassical
methods. However, when the classical motion is chaotic
but the quantum evolution remains stable (for 8 ~ 1),
the most stable QE states correspond to scarred states.
In the latter case the persistent resemblance of these two
very different types of wave functions is quite remarkable
and is an outstanding problem for future research [23].

H(q, p, t) = p /2 + V(q —a [cos (art + P) —cos P]),

which can be conveniently expanded in a discrete Fourier
series

H(q, p, t) =iv /2+ ) V„(q)e'" ',

as the perturbation is periodic with period T = 2vr/w.
The Fourier coefBeients are

1
V„(q) = — U(q —o.[cos(cA+ P) —cosP])e '" 'dt,

II. CLASSICAL DYNAMICS

Hp(x, v, t) = v /2 —xFcos(art+ P) . (4)

The classical equations of motion can be integrated ex-
actly and the solution for the position of the electron as
a function of time,

x(t) = xp — [cos (cdt + P) —cos P]+ vp ——sin P t,
(d

describes a particle that oscillates back and forth in the
electric field with frequency v = u/2vr and amplitude o.
and drifts away from its initial position 2:0 with velocity

In the high-field limit (F )) 1 a.u. ) the smoothed
Coulomb potential in Eq. (1) can be treated as a pertur-
bation on the regular, classical motion of a free electron
in an oscillating field. So, we first consider the Hamilto-
nian for the one-dimensional motion of a free electron in
the oscillating electric field E = Fcos(wt + P),

where

1
Vp(q) =-

T V(q —n[cos (ut + P) —cosP])dt (11)

is simply the time average of the oscillating potential. It
is this time-averaged component that is often referred to
as the KH potential.

In general, the effects of the perturbation can only
be assessed by numerically integrating the Hamiltonian
equations of motion generated by Eqs. (10) or (11). How-
ever, if the perturbing potential is not too singular and
has a limited effective range r, which is much less than
the excursion of the oscillating electron o, , then the elec-
tron receives the largest impulse from the potential dur-
ing the short time when the oscillating electron is moving
slowly as it reverses its direction on the side closest to the
perturbing potential [24].

This can also be seen mathematically if we express the
Fourier coefficients of the V(x(t)) as integrals over x,

vg = vp ——sing .
Cd

[Note that even if the initial velocity vp is zero, a nonzero
initial phase P of the oscillating field can lead to a large
drift velocity, v~ = (F/w) sing—.]

The classical motion is considerably simplified if we
perform a canonical change of variables to the oscillating
frame

V(x(t))e '" 'dt

~
—inst(x)

V(x) dx,
v x (12)

v(x) = —sin(cut+ P) = —gl —[(x —q)/a+ cosg]2,

where the velocity of the oscillating electron, for fixed q

q = x + o.[cos (cut + P) —cos P],

p = v — —sin(mt+ P)

In the absence of any other forces p = vp is constant
and the oscillation center drifts at the constant velocity
q(t) = x(0) + vga. In particular, if vg = 0 (e.g. , vp = 0
and P = 0 or vr), then q(t) = xp is constant.

The introduction of a perturbing potential U(x) will
alter the free motion of the oscillation center q. In the
oscillating frame V(x) appears as a time-dependent po-
tential in the transformed Hamiltonian

goes to zero at the turning points x+ = +o; —o; cos P+ q.
Moreover, as the range of the potential is much less than
o, , the contribution from one of the turning points will
always be greater than the other. The exception is when
the oscillating orbit is centered on the potential, but in
this case the contributions from both turning points will
be relatively small.

Therefore when o, && r, we find that the classical equa-
tions of motion in the oscillating, Kramers-Henneberger
frame are well approximated by assuming the electron
experiences an impulsive "kick" once every period of the
oscillation, T = 2x/a. Then the classical difFerential
equations of motion can be replaced by a pair of differ-
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ence equations that define a nonlinear, area-preserving
map,

@~+i = Q~ + Tpn+1)

p-+ =p- + G'(q-)

(14)

where q„and p„are the positions and momenta of the
electron in the oscillating KH frame, evaluated once every
period T = 2z/w of the field. The total impulse of each
kick G(q„) is the time integral of the force over one period
of an unperturbed oscillation with q(0) = q„and p(0) =
0 which can be simply expressed in terms of the space
derivative of the time integral of the oscillating potential,

&(q ) = —
d &Vs(q)l~=~.
dg

This physically motivated derivation of our nonlinear
map, Eq. (14), is equivalent to simply approximating all
of the Fourier coefficients, V„(q), in Eq. (9) by Vo(q) e'" ~.
Then the Hamiltonian in the oscillating frame reduces to

generated by Eq. (10) or by explicitly checking the as-
sumption that the Fourier coefficients V„(q) are approx-
imately equal to Vo(q) for a wide range of n.

III. THE CLASSICAL MAP FOR A SMOOTHED
COULOMB POTENTIAL

Let us now illustrate the arguments of Sec. II when
the perturbation of the free, oscillatory motion of the
electron is due to a smoothed Coulomb potential

V(x) = —Z/Qa2+ x2,

where Z is the nuclear charge and a is a smoothing pa-
rameter that eliminates the x singularity at the origin
and also defines a characteristic length scale. In the os-
cillating KH frame with P = 0, this potential transforms
to

V(q, t) = —Z/ga + (q —a[cosut —1])

H(q, p, t) = p /2+ Vc(q) ) e'" 'e'" ~

= p2/2+ Vo(q) ) b(t —nT+ PT/2~),

1
V„(q = x+) =— V (x+ ~ ~)e—an(+2e/a)

+1 —[1 —e/n] 2de
(17)

Given the limited, effective range r of the perturbing
potential the main contribution to the integral arises for
E (( cR. Then as long as e ~„- r && n/2n we can
neglect the exponential phase in Eq. (17) to conclude
that V„(q) —Vo(q) for n (& gn/2r. When n )) r,
this condition will be satisfied for a number of Fourier
components [25].

The validity of the map approximation for the clas-
sical dynamics of an electron interacting with a strong,
oscillating Beld and a restricted range potential can also
be checked a posteriori either by comparing the map dy-
namics with the solution of the full differential equations

using the Poisson sum rule. Since the phase of the per-
turbation simply determines the timing of the kicks, we
will henceforth choose P = 0 with no loss of general-
ity. [This choice of phase was motivated by the desire
to avoid any unneccesary complications associated with
the induced classical drift motion in Eq. (6) for P g 0 or
7r.] Finally, integrating the equations of motion for this
kicked Hamiltonian with P = 0 over a single period leads
to the map defined by Eq. (14).

A mathematical justification for our assumption that
the Fourier coefficients are equal can be provided by ex-
panding the integrand in Eq. (12) near the turning points.
For example, when the electron experiences the largest
interaction with the nucleus on the left side of its oscil-
lating motion in the external Beld, then we can expand
Eq. (10) about the right turning point x = x++ e, to get

(In SEJ's original studies [7] a was set to 1 a.u. of length
and P was chosen to be x/2. )

The time average of V(q, t) can be evaluated exactly in
terms of complete elliptic integrals. We defer the explicit
derivation to Appendix A and use instead an analogy
with the full Coulomb potential. As the time average of
the smoothed Coulomb potential, Eq. (18), is identical
to the time average of the three-dimensional Coulomb
potential in cylindrical coordinates (p, x)

V(x, y) = —Z/Qx + p

with ~pi—:a, we can simply take the previous result of
Pont et al. [Eq. (5) of Ref. [8] ]

Vo(q) = —(2Z/m)(r+r ) K(2 / (1—r+r )1/2),

(20)

where K is the complete elliptic integral of the first kind.
If we shift the origin to the oscillation center at —a of
the free motion defined by Eq. (5), then r+ ——qx+ ay
and r = (q+ 2n)x+ ay.

As shown in Fig. 1, the time-averaged potential in the
oscillating KH frame, Vo(q), for SEJ's field parameters
of F = 5.0 (a.u. ) and w = 0.52 a.u. is a double-welled
potential with minima near the classical turning points
for the free electron in the oscillating field at 0 and —2n.
For the smoothed Coulomb potential the effective range
r is set by the scale parameter a. Consequently, when
o. )& c we can expand the time-averaged potential near
the turning point close to q = 0

z~ ( 2 2)1/4 ( +) (21)

z
&W+ [a'+ (q+ 2~)']"' (22)

with 0+2 ——21 (1—q/ga2 + q2). Similarly near the turning
point close to q = —2a
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where k = —[1+(q+2ct)/QG + (q+2o') ]. By adding
these two contributions together we get an approximate
expression for the double-well potential Vo(q) = Vo+(q) +
Vz (q) + const which is compared with the exact expres-

sion in Fig. 1, for the SE3 parameter values.
Using the approximate expressions for the kicking po-

tential in the vicinity of the turning points we can derive
an analytic formula for the kicking force

2 3
([ (k ) —0.5K(k )]/( '+q') —[E(k ) —O.5~(k )]/[ '+(q+2 )'] )F

in terms of complete elliptic integrals of the B.rst and
second kind with arguments k~ defined above. For com-
pleteness, an explicit derivation of the time-averaged po-
tential (in 1D) as well as the approximate kicking force
are included in Appendix A [26].

Finally, the approximation of the classical dynamics
by a map requires that V~(q) be approximately equal to
Vo (q) for a range of n values. We show a direct confirma-
tion of the validity of the assumption over a wide range
f f = 1 2 and for the SEJ parameter values ino q orn=

= 100 inFig. 2(a) as well as for field parameters giving a; = in
Fi . 2(b). The relative importance of the higher Fourier
weights increases with increasing a but it is already clear
from Fig. 2 that more than the time-averaged compo-
nent Vc(q) must be included to describe the dynamics
for o. & a.

More generally, the validity of this approximation can
be checked a posteriori by comparing the magnitude o
the impulses experienced by the electron after each pe-
riod of the oscillating field with those predicted for the

map, Eq. (14). Figure 3 contrasts the impulse delivered
over each cycle of the external field by the full differential
d namics with the single-valued function in Eq. (23), or
four different values of o, spanning a large range.e. It is
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FIG. 1. Kick potential as a function of q for I" = 5.0
(a.u. ) and u = 0.52 (a.u. ), for both exact and approximate
(evaluated only in the vicinity of the classical turning points)
k k g terms. The curves clearly show that a simple constant
shift is the only difference.

FIG. 2. Variation of the three lowest Fourier weights
(Vo i,2, from top to bottom) of the time-dependent poten-
tial in the KH frame, as a function of the position q. The
field parameters correspond to n values of (a) . b)18.5 and b
100. Note that the quantities relevant to the dynamics are
the gradients dV„(q)/dq which are seen to be very similar for
n = 0, 1, 2 in both cases.
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FIG. 3. Comparison of the impulse generated over a single
period from the difFerential dynamics (crosses) and the single
valued function [Eq. (23)] for the map. The parameter n is (a)
0.37, (b) 3.7, (c) 18.5, and (d) 295.9. (d) displays only a small
portion of the total range so as to emphasize the maximum
discrepancy.
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clear from Fig. 3 that with increasing n, Eq. (23) is a
very good approximation to the true impulse felt by the
electron over each period of the oscillating field [27].

FIG. 4. Poincare section for I = 5.0 and cu = 0.52 which
is typical for large values of the stochasticity parameter. As
discussed in the text, no stable (island) structures are ex-
pected and the classical dynamics is dominated by rapidly
ionizing orbits.

IV. CLASSICAL MAP DYNAMICS, FIXED
POINTS) STABILITY, AND CHAOS

The linear stability analysis of the fixed points is based
on the Jacobian matrix of the map given by

Having established the map as a good approximation
to the true classical dynamics, we will now proceed with
a general analysis of the stability of trajectories in the
classical phase space. By iterating the map for a vari-
ety of initial conditions and plotting the trajectories in
the two-dimensional (q„,p„) phase space, we can con-
struct a Poincare surface of section which provides an
overview of the classical dynamics. For example, Fig. 4
shows the surface of section for the SEJ field parameters.
Almost all of the classical electron orbits that start out
near the nucleus are chaotic and ionizing. In contrast
Fig. 5 shows the corresponding surface of section for the
parameters used in Ref. [21]. In this case many initial
conditions starting out near the nucleus are regular and
remain bound, tracing out regular island structures in
the classical phase space [28].

The global stability and instability of the classical
phase space illustrated in Figs. 4 and 5 can be char-
acterized by the stability of a special set of points in
the phase space (q', p*) which are mapped into them-
selves under the action of th'e map, q„+1 ——q„= q* and
p„+~ ——p„= p*. By linearizing the map about each of
these fixed points we can analyze the local stability of the
classical trajectories.

For the map defined by (14) there are, in general, three
fixed points for o, & 1. All three have p* = 0 with q* given
by the solutions of the transcendental equation G(q') =
0. One of these solutions is always at q* = —o, , on the
saddle point of the kicking potential Vo, while the other
two lie in the minima of V0 near q = —2a and 0.

(24)

0.5—

0—
'V. ~ .

~,

J '
x ~

—05

-10
I

0

FIG. 5. Poincare section for the "half-photon" ionization
parameters u = 1.34, F = 5.0 of Ref. [21] showing the pres-
ence of stable classical islands. The occurrence of these stable
regions is typical for small values of the stochasticity param-
eter.
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where T = 2~/w and —dG(q)/dq = d Ue(q)/dq is the
local curvature of the kicking potential. The symplec-
tic or area-preserving character of the map is evident as
det(J) = 1 while the eigenvalues are

(2+ S) + QS(S+4)
2

(25)

with S = T~
When S~f~. „.l ( —4, both eigenvalues are real and

negative, the Bxed point is unstable and called hyperbolic
nnth rej7ection. When —4 ( S]fq. „.

&
( 0, the eigenvalues

are complex and the fixed point is a stable, elliptic point.
While for S~ f~. „.

&
) 0 the eigenvalues are real and posi-

tive and the fixed point is an unstable, hyperbolic point.
Thus, the changing character of the fixed points which
govern the nature of the classical phase space can be de-
termined by the magnitude and sign of S.

In the case of the smoothed Coulomb potential, there
is first a regime where a. = F/~ ( 1 and Ve is a single well
with minimum at —o;. In this case all three fixed points
coalesce at q* = —n and So = S~(—n, 0) ( 0 because
the curvature of Ue is positive. As the field strength F
is increased at fixed frequency, the fixed point at (—o;, 0)
changes (as shown above) from hyperbolic with reflection
(or an orientation reversing saddle) to elliptic on increas-
ing F. Further increase to o. & 1 leads to the general case
of three distinct fixed points where either (i) the primary
fixed point at (—n, 0) is hyperbolic while the secondary
fixed points near (0, 0) and (—2n, 0) remain stable and
elliptic as in Fig. 5 or (ii) all three are hyperbolic with no
stable structures in the classical phase space as in Fig. 4.

For o; ) 1 the primary fixed point (—n, 0) on the sad-
dle between the double wells of Vo is always unstable
with So ) 0 because the local curvature of Vo at this
point is negative. Therefore, the global stability of the
classical dynamics is controlled by the stability of the
secondary fixed points. Because of the symmetry of the
map we need only focus attention on the secondary fixed
point, (qi, 0) near (0, 0). To assess its stability, we must
first determine its precise location, qi, and then eval-
uate the curvature of the map potential at this point,
Si = —T d Ve/dq ~f~, el. In practice the secondaryfixed
points and their stability can only be determined numer-
ically; however, this analysis can be greatly simplified by
approximating the map potential in the limit n )) 1 by

—S+ QS(4+ S)
2T q. (28)

When the two eigenvalues are real (and positive, say),
then the area-preserving character of the map demands
that they be inversely related, i.e. , A+ ——A . The eigen-

0.5—

0—

that —4 ( Si & 0, the secondary fixed points are sta-
ble elliptic points surrounded by stable island structures
in the classical phase space as shown in Fig. 5, which
corresponds to Beld parameters giving Si ———2.1. How-
ever, when Si & —4 both the primary and secondary
fixed points are unstable and the global classical dynam-
ics tends to be unstable. This is the case for the SE3
field parameters where Si = —5.4, which lies beyond the
boundary of stability predicted by Eq. (27) [29].

The scaling properties of Eq. (27) with respect to the
shielding parameter a also clearly illustrates the sensi-
tive dependence of the classical stabilization on a. As
a ~ 0 and we approach the bare Coulomb potential, Si
increases rapidly as 1/as~2 and the classical dynamics
becomes increasingly unstable [30].

Finally we note that although the primary Bxed point
and secondary fixed points may be unstable there re-
mains an important dynamically invariant, but still un-
stable, classical structure called the homocjtinic tangle
which appears to play an important role in the quan-
tum theory of stabilization described in Sec. V. The lin-
ear stability analysis gives, together with the eigenvalues
(25), the corresponding eigenvectors which are straight
lines in phase space

2~2Z
Vo+(q) =—,] K(k+), (26) —0.5—

where x = q/a and k+ ——2(l —x//1+x~). Numeri-
cal differentiation of Eq. (26) with respect to x indicates
that the fixed point (where dVe/dx = 0) is approximately
equal to qi/a = 0.8 and the stability parameter at this
point is approximately determined by

(27)

For the SEJ case with Z = 1 and a = 1, Eq. (27)
reduces to our earlier prediction for the stochasticity pa-
rameter that determines the relative stability of the clas-
sical dynamics. For large Belds E and frequency ~, so

—1—60
I

—40
I

—20 20

q
FIG. 6. Homoclinic tangle associated with the fixed point

at ( n, 0) for F = 5.0—and &u = 0.52. Near the fixed point, the
solid line gives the unstable direction while the dashed line is
the stable direction. The size of Planck's constant h is shown
to illustrate that several states can be supported by the single
structure. An estimate of the number of states is given by the
number of 6 boxes needed to cover the structure.
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Several conclusions can be immediately drawn from
this analysis. First, if these QE functions are excited
by the application of the strong oscillating field, then
some of the electron probability will remain localized to
the vicinity of the atom. Second, a superposition of the
three QE functions in Fig. 7 will yield a distribution with
three peaks spaced o, apart. Moreover, a superposition of
almost equal amounts of the odd and even states in the
wells [Figs. 7(a) and 7(b)] will suppress one of the out-
side peaks relative to the other by interference leading to
a double-peaked wave function with two prominent peaks
separated by o. (In .fact a close examination of Su's fig-
ures [7] reveals a smaller third peak separated by o. from
the other two. ) Third, since the excitation of these wave
functions requires the crossing of the classical separatrix
(the boundary that separates two distinct types of mo-
tion, such as libration and rotation in the case of a simple
pendulum) of the double well, they can only be excited
diabatically which requires a fast turn-on of the radiation
field. The excitation of these localized states and the sup-
pression of the ionization would be greatly diminished by
a field that is applied slowly as observed in simulations
[7, 12, 15].

As outlined in Appendix B, we can also calculate eigen-
states of the KH potential. Figure 8 shows that for the
SEJ parameters there are KH eigenstates that show a
remarkable resemblance to the quasienergy states whose
Husimi distributions were shown earlier. Prom the co-
incidence of the peak positions it is clear that the KH
states are also well correlated with the classical invariant
structures. Although it would be incorrect to conclude
that the excited wave function in the time-dependent
field is a superposition of the KH states of the time-
independent, integrable Hamiltonian, Fig. 8 does indicate
that the proper QE states of the time-dependent, nonin-
tegrable Hamiltonian exhibit very similar structure. Why
the scarred wave functions of the chaotic systems should
have such a strong resemblance to the wave functions of
the regular case remains an outstanding open problem
for future research.

VI. EXPERIMENTAL IMPLICATIONS

arbitrary P, this can be achieved by switching on the field
over a number of cycles of the external field. The physical
mechanism in eliminating the drift is that the pondero-
motive potential associated with the field gradient is used
to compensate for the energy in the drift motion.

This is easily shown for a smooth switching function
of the form sin [7rt/2~, ], where w, is the time over which
the field is being turned-on. As in Sec. II the classical
equations of motion can be solved leading to a drift ve-
locity

f
vg = vo — sing I

1—
id 4 id 7I rs

instead of Eq. (6). It is clear from (30) that when vo = 0
the drift velocity vanishes for all P provided i; &) i/2
where ~ is the external period. On considering v; = s~
this condition becomes 48~ && 1, which illustrates clearly
why switching over only a few cycles is necessary. The
same arguments hold true in the case of any smooth
pulse.

Second is the problem of how the high-field stabiliza-
tion can be detected. The most direct experimental sig-
nature would be a measurement of the residual or sta-
bilized atoms. An alternative means of observing the
high-field stabilization of electrons is provided by the pe-
riodic bremsstrahlung emitted as the stabilized electron
scatters off the nucleus each period of the oscillating per-
turbation. As in the case of harmonic generation (see
Ref. [17]), the single-atom emission spectra are obtained
from the Fourier transform of a time series of the dipole
expectation value. In all cases, the time-dependent dipole
expectation value

(&(t)) = &I@(»t) I'd&

I I

I l(II&&IIII&ll
I

)I

The viability of experimentally observing KH stabi-
lization remains an open question. First, the temporal
and spatial features of a "real" laser pulse together with
possible effects of a finite bandwidth may preclude the
observation. The temporal structure is most crucial to
the preparation of the stabilized state and, even within
the context of model systems, needs further study. For
example, recent 3D numerical simulations suggest that
stabilization may be less dependent on turn-on effects in
three dimensions than in one dimension [15].

The question of the pulse shape on stabilization is eas-
ily addressed within the physical picture we have con-
structed of the process, that of a free electron interacting
with trapping centers. As seen from Eq. (6), a sudden
turn-on results in a drift velocity (away from the trap-
ping centers) which is a function of the phase P of the
time-dependent field. Stabilization can still occur if the
phase of the field is chosen to eliminate this drift. For

~ —50—

v 0

—10

o.

QQ0

—20

—30

20 30

—10—

10

FIG. 9. Time series of dipole expectation values [(a) and
(c)] and the associated harmonic generation spectra [(b) and
(d)]. The frequency was taken to be 0.52 in all cases. I" = 1.0
for (a) and (c), which is below the critical field for the onset
of stabilization, while for (b) and (d) a higher value F = 5.0,
where significant stabilization occurs, was considered. The
presence of higher harmonics in the spectrum correlates well
with increased stabilization.
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TABLE I. Conversion eKciencies for harmonics in the stabilized regime contrasted with those
for a low-field case. 0 = 0.52 a.u. for all the high-field values and 0.148 for the low-field case. 1
labels the fundamental while Hn represent the nth harmonic. In all cases, the logarithms of the
efBciencies are listed.

Field
(a.u. )

5.0
8.0
10.0
20.0
40.0
0.05
0.06

—1.1
—0.9
—0.6
—0.8
—0.8
—0.46
—0.54

H2

—7.0
—7.1
—7.2
—6.2
—5.9
—7.8
—7.5

H3

—6.7
—5.9
—5.3
—4.7
—4.2
—1.8
—2.2

H4

—8.2
—8.2
—8.1
—8.4
—8.3

—10.1
—9.5

H5

—8.7
—8.7
—8.5

7.3
—6.6
—3.3
—3.5

H6

—9.2
—9.1
—9.3
—9.1
—9.0

—10.3
—10.1

H7

—9.3
—9.4
—8.8
—8.4
—5.3
—5,4

H8

—9.7
—9.6
—9.8
—9.6
—9.6

—10.9
—10.4

H9

—9.8
—9.8

—10.0
9 9

—9.8
—7.9
—7.4

0.6
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FIG. 10. Intensity (in atomic units) dependence of' the
power in the fundamental and first four odd harmonics. Un-
like the case of low-field harmonic generation, there is no clear
intensity dependence and the lines are drawn to guide the eye
rather than for any quantitative fit. However, all the higher
harmonics are activated at the same value of n which is con-
sistent with the critical intensity for the onset of stabilization.
~ = 0.52 for all cases.

was constructed using 4(x, t) obtained by the direct
space-time integration method outlined in Appendix B.
For our purposes, it is adequate to define the spectra to
be simply the squared modulus of the Fourier amplitudes.

Figure 9 shows the time series and spectra for two val-
ues of the field for fixed u. At the lower field no stabi-
lization has occurred while it has at the higher-field value
[32]. Tile flelcl ls swltchecl OI1 81110otllly oveI' 5.25K though
the transform is taken only after the peak-Geld value is
reached. In both cases a net drift to one side of the ori-
gin is seen, which leads us to anticipate the presence of
even harmonics in the emitted light spectrum. Further,
in each ease, the excursion over a cycle is +n. In the ab-
sence of stabilization, the time series Fig. 9(a) reffects the
classical behavior of a drifting oscillating particle. At the
lower-field value, the power spectrum in Fig. 9(c) is domi-
nated by the fundamental testifying again to free-particle
motion. With increased stabilization at the higher-G. eld
value, the free-particle motion is affected by the trap-
ping centers and the time series in Fig. 9(b) shows a re-
tardation of the drift motion. The corresponding power

spectrum Fig. 9(d) shows more harmonic structure and
the presence of even harmonics in the spectra as well as
the absence of a "plateau" of higher harmonics, even at
the largest Geld values. These features distinguish these
spectra from those seen at lower, weakly ionizing, field
values [17].

For experimental purposes, the conversion efIiciency
is the most important measure. In particular, as the
low-field spectra have been observed, it is interesting to
contrast (within the same model) the efficiencies in the
stabilized regime with those in typical low-field harmonic
spectra. The conversion efIiciencies for both even and
odd harmonics (the "even" ones being negligibly small)
in the low-field case are compared, in Table I, with those
in the stabilization regime [33]. Note that the conversion
efIieiency is deGned to be the fraction of the fundamental
photon converted into the higher harmonic. Although
the conversion eKciencies even at the highest fields are
small, the important point is that in the absence of the
stabilization there would be no harmonic generation at
all.

For the sake of completeness, it should be noted that
the power in the odd harmonics, as a function of inten-
sity, shows no distinctive pattern. This is illustrated in
Fig. 10 where the power in the fundamental as well as in
the first four odd harmonics are shown over a v~~.de range
of intensities. The frequency is taken to be 0.52. All
the higher harmonics appear to be activated at roughly
the same intensity, a = 10, which is consistent with the
critical field strength for the onset of stabilization at this
frequency [7, 20]. The lines are drawn to guide the eye
to an overall trend of increase though there are signifi-
cant fluctuations about this trend. This is not surpris-
ing considering the nulnber of factors that determine the
fraction of the population that is stabilized. This, too,
is in marked contrast with the intensity dependence seen
in low-field harmonic generation [34].

V'Il. CONCLUSIONS

We have demonstrated that the language of nonlinear
dynamical systems provides a compact and useful de-
scription of the phenomenon of atomic stabilization in
very intense radiation fields. The key to this analysis
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is the construction of a stroboscopic approximation to
the full classical dynamics, in the high-field regime. The
classical map embodies the realization that the dynamics
is specified by more than just the time-averaged behav-
ior. The stability analysis of this mapping based on the
computation of classical invariant structures then pro-
vides a complete picture of the classical response. Ad-
ditionally, the quantized version of this map is a good
approximation to the full evolution operator over an ex-
ternal period. The quasienergy or Floquet eigenstates of
this operator completely specify the quantum response.
Thus, the residual stabilized wave function is a super-
position of a number of these quasienergy states. The
exact composition is decided by the classical invariant
structures as well as pulse characteristics. In particular,
it is shown that the scarring of some eigenstates on un-
stable, classical structures is crucial to interpreting the
structure of the remnant wave function. The application
of these ideas to a ground-state atom interacting with
optical laser fields may appear to violate traditional in-
tuition which limits the application of classical methods
to more obviously "semiclassical" systems, like Rydberg
atoms. However, since the stabilized wave function for
a )) 1 extends over many atomic units of distance many
unperturbed quantum states are strongly coupled, which
is precisely the situation where the approximate classical
theory is most effective.
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which, expressed in terms of roots of a quartic, gives

Vo(q) =
r1 dg
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where a.i, P are real; p, p are complex; ni & s ) P which
is satisfied (in our case ni = s), and where

1 2 (ai —p)2 —(A —B)2
gAB 4AB

and (for the case s = ai) P = x,
= (o'i —bi) +ai i B = (P —bi) +ai

with

and

(& —&)'
4

Using these, we get the value of the integral to be

This is evaluated using [35]

dt = gF(P, k),
v (~i —t) (t —P) (t —&)(t —/)
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APPENDIX A: DERIVATION OF THE TIME-
AVERAGED POTENTIAL AND KICKING TERM

The time-averaged potential is defined to be

I
V(q) =-

T V(q —n[cos (cut + P) —cos P])dt,

which for the smoothed Coulomb potential and P = 0
can be written as

T/2
Vp(q) = dt/Qa2+ (q+ n[cos~t+ 1])2 . (Al)T

g=
Q(q2 + a2)i/2 [(q + 2~)2 + a2] i/2

k' = 2(1 —g'[a'+ (q+ 2~)q]) .

Defining two vectors,

r = ai+ (q+ 2n)j,
r+ ——ai+ qj

leads to

(A5)

Let y = q + n[cos ~t + 1] which gives

dt =
—1 dy

A s1n cdt

where

Vp(q) =
Q(a + y )(ri —y)(y —rg)

n sin wt = y (ri —y) (y —rz),
and r1 ——q+ 2a and r2 ——q. With these definitions, the
time-averaged potential

These definitions and the relations

F(nor 6 P, k) = 2nR'(k) + F(Q, k)

as well as

F(0, k) = 0

lead to the desired expression [Eq. (20)] for the time-
averaged potential.

In deriving the kicking term or impulse, the explicit
form
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Vp(q) = K(k) {A6) 2 2 1
k Iq=p = k+ ——— 1—

2
q

(q2 i a2)l/2

is more appropriate, where g and k2 are given above. The
impulse over one cycle T is given by

dVO dVO

dq dq

which leads to

dVp 2 [E(k+) —0.5K(k+)]
dq &2n~ (q' + a')'/'

q=0
(A9)

where Tp denotes the turning points of the classical free-
particle motion. The derivative of (A6) is

Similarly at the other turning point q = —2o. we get

+2n [(q + 2n) 2 + a2] '/

= —[AK(k) i BE(k)], (A7)

where

dg gdk
dq k dq

g dk

k(1 —k2) dq
'

It is readily shown that

which gives

dVo

1 (q+ 2n)

[(q i 2n)2 i a2]l/2

2 [E(k ) —0.5K(k )]
v'2n~ [(q+ 2n)'+ a']"'

Q= —2'
(A10)

gdk g dg -2 ga + (q + 2n)q — (q i n),
kdq 2k2dq- 2k2

Thus the impulse or kick over a cycle is simply T times
the sum of these two contributions which results in (using
n = F/u)2)

which on using (A5) becomes

gdk 1 ) dg gs—1
I

—— (q+n).
k dq 2k2 p dq 2k2

Therefore

~8 [E(k+) —0.5K(k+)]
(q2 i a2)3/4

[E(k ) —0.5K(k )]
[(q+ 2n)'+ a'] "4 (All)

and

A = „;—„ i „,(q+n)
APPENDIX B: QUANTUM SIMULATIONS

(1 —2k2) dg gs

2k2(1 k2) dq 2k2(1 k2)

which can be rewritten as

In addressing the quantum dynamics, we considered
three distinct approaches.

(i) The first of these is a straightforward space-time
integration of the time-dependent Schrodinger equation
(in atomic units)

(k'2 —k2) dg gs

kk ('+ ) . B@(z,t)
Bt

1 0 —V(2:) —zE(t) @(z,t),2 Bx

B -" ——(quan) .g
k2

Therefore, Ap is given by

[E(k) —0.5K(k)], (A8)

where this expression has to be evaluated at both turning
points. At q = 0, the other parameters are

j.

+2n(q2 i a2)i/4

and

As discussed in the text, the turning points are well ap-
proximated by q = 0 and —2o. where k k'2 —0.5.
This leads to a simple relation A = B/2 where—

using the standard two-sweep algorithm [36]. The pa-
rameters of the space-time grid were chosen to optimally
ensure both convergence as well as the option to consider
reasonably long interaction times. A stringent monitor-
ing of the population reaching the edges of the spatial
grid was sufficient to indicate when finite-size eEects sig-
nificantly affected the calculations. The computational
procedure was essentially the same as that discussed in
Ref. [17] and readers are directed to that work for details.

The one major difference between our calculations and
those published earlier is in the measure of ionization.
Eberly and co-workers [17] employ the conventional form
by projecting out the positive-energy part of the time-
dependent wave function. This fraction is then studied as
a function of time. Given our picture of the stabilization
mechanism as resulting from a free-particle interacting
periodically with trapping centers (in this case a double-
well potential), we can consider the measure of ionization
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to be simply the fraction of wave function that is outside
the "interaction volume. " As the maximum spacing of
the double wells (averaging over an external period) is
4a, a suitable choice for this interaction volume (in one
dimension) would be —4a & 2: & 4a. . This definition of
ionization as

PI(t) =
()4n

(B3)

where N is the size of the basis, Hi = 2vrJ'/N, and h, = 1.
The corresponding eigenvalue equation is

is adequate to ascertain when stabilization is significant.
(ii) The second of our three methods employs the map

formulation of the classical problem. As shown in Eq.
(16), the effective Hamiltonian consists of free-particle
motion except for a series of impulses provided by the
time-averaged (KH) potential Vc(n, z). As the potential
dominates the kinetic term at the kicks, the single period
evolution operator is simply expressed as

p(T) —ip /zhe —ivo(a, zl/h

This is the corresponding quantum map and it pro-
vides a very efficient description of the dynamics. The
quasienergy states associated with this operator are then
obtained by diagonalizing U within a large basis of plane
waves. This amounts to considering a matrix form for U
which in the p representation is

where the eigenphases P„, p, = 1, . . . , N are real. These
quasienergy wave functions are sufficient to completely
determine the quantum dynamics associated with the
map.

The notion of scarring associates individual eigenvec-
tors with invariant structures in the classical phase space.
This association is most transparent within a coherent
state representation (or "Husirni" distribution [37])of the
individual eigenvectors, that is

N

(n[q p) —) e [I (n+ )j / ~e
l,=1

(B5)

where o. acts as a "squeezing" parameter. This is easily
verified from computing the Gaussian distribution corre-
sponding to the Husirni distribution of a coherent state
where, for o = 1, one recovers the usual minimum uncer-
tainty variances Aq = Ap = V 1/2.

(iii) The third of our methods simply diagonalizes the
time-averaged potential Vc(n, x) within the same plane-
wave basis as the evolution operator, to obtain the KH
eigenstates. The procedure outlined above can be used
also to construct the Husimi distributions of the KH
eigenstates which, in turn, can be correlated with in-
variant structures in the classical phase space. This is
necessary to allow a comparison of the quasienergy and
KH states supported by the same classical structure.

where ]q, p) is a coherent state centered at the phase-
space point (q, p) and Pi» picks up the contribution of
@("&at that point. The choice of the coherent-state repre-
sentation is motivated by the symmetries of the classical
phase space and here we consider (in p representation)
the form
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