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Collisional effects in gas lasers
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The effects of phase-interrupting and velocity-changing collisions between active and perturber atoms
on the spectral profile of a gas laser are studied. Exact analytical results for the density matrix are
presented for the case of strong collisions in a unidirectional ring laser, and the laser intensity is then
evaluated in the Doppler limit under the condition of self-consistency. The washout of the hole burning
in the steady-state population difference and the broadening of the laser line shape are discussed. The re-
sults of the third-order perturbation theory are compared with the exact calculations valid for an arbi-
trarily intense pump.

PACS number(s): 42.55.—f, 34.10.+x, 42.60.Jf

I. INTRODUCTION

For the past 25 years or so, the effect of collisions on
spectroscopic line shapes of atomic and molecular vapors
has invited the attention of researchers in the field [1,2].
Recently, the effects of collisions on nonlinear mixing sig-
nal line shapes have also been investigated [3]. In order
to explain the observed line shapes of these systems, it
was found necessary to include atomic collisions in the
theory.

In the case of gas lasers, the lasing atoms are not sta-
tionary and the field appears Doppler shifted in frequen-
cy to the atoms resulting in inhomogeneous broadening.
The existing theories of gas lasers [4,5] do not take into
account the effect of atomic collisions in a microscopic
way. Assuming that the atoms have a M axwellian
(Gaussian) velocity distribution, the laser spectrum in the
absence of collisions is given by a Voigt profile, which is
the convolution of the Gaussian and a Lorentzian associ-
ated with each velocity subclass of atoms. There have
been quite a few attempts [6] to modify Lamb's theory [4]
to include gas-collision effects and fit experimental data
of collision-broadened linewidth, but with not much suc-
cess. Collisions of active atoms with buffer atoms can re-
sult in changes in the velocity of active atoms in addition
to being phase interrupting (dephasing) in their effect on
level coherences (off-diagonal elements of the density ma-
trix of the system under consideration). It is known that
elastic and inelastic collisions, which only perturb the
phase or amplitude of an oscillating atom without chang-
ing its velocity, lead to homogeneous line broadening and
a shift of its line center. The collision-induced
modification of the velocity associated with the atomic
state coherence may, however, become significant and
affect the line shape when the collision time (given by the
ratio of the mean free path and the average speed of ac-
tive atoms) is much shorter compared with the interac-
tion time (lifetime of the excited level) with the radiation
field. Thus these effects show up at high perturber pres-
sures or when the lifetime of the active atoms is long (i.e.,
the natural width of the laser line is small).

In this paper, we incorporate these collisional mecha-

nisms following the scheme of Berman [1,3], and develop
a self-consistent microscopic theory of the gas laser. For
simplicity, we consider the case of a single-mode uni-
directional ring laser, but the results can be readily gen-
eralized to the standing-wave and multimode cases. In
Sec. II, we present a scheme for calculation of the
density-matrix elements of the active atoms, undergoing
collisions with perturber atoms, in the presence of a
single-mode electric field in a unidirectional ring laser
cavity. The field-atom interaction is written in the
rotating-wave approximation (RWA) and the collisions
are treated in the impact approximation. In Sec. III, us-
ing the strong-collision model, an exact analytical solu-
tion for the steady-state density matrix is obtained. In
Sec. IV, the steady-state population difference is calculat-
ed in the Doppler limit. In the absence of velocity-
changing collisions (VCC's), the plot of the population
difference versus atomic velocity shows "hole burning" as
usual, but VCC's are shown to cause a washout of the
holes. In Sec. V, the macroscopic polarization induced in
the medium is calculated as a sum of the individual atom-
ic dipole moments, and then inserted into the self-
consistency equation to yield a single-mode amplitude-
determining equation. In Sec. VA, the laser threshold
condition and the tuning dependence of the intensity are
calculated using third-order perturbation theory, valid
for low excitations (weak pumps). In Sec. VB, the prob-
lem is treated nonperturbatively and the intensity spec-
tral profile is calculated for arbitrarily high excitations.
Deviations from the third-order predictions are pointed
out. Finally, we summarize the results in Sec. VI.

II. COLLISIONAL MODEL IN A GAS LASER

In order to illustrate the basic laser principles, it
suKces to consider an active medium consisting of two-
level atoms interacting with a single longitudinal mode of
a scalar, plane-wave electric field in a one-dimensional
resonant cavity of length L (say, along the z direction).

The electric field in the laser cavity can be written as

N(z, t)= —,'E(t)exp[ i [vt+P(t)]]—U(z)+c. c. (2.1)
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Here the mode amplitude E(t) and phase P(t) vary little
in an optical period, and (v+P) is the mode frequency.
U(z) is the normal-mode function. For the two-mirror
laser, it is the standing wave,

U(z}=sin(Kz ), (2.2)

and for the unidirectional ring laser, it is the running
wave,

U(z) =exp(iKz ), (2.3)

with wave vector K. With Eq. (2.1) for the field, the in-
duced polarization of the medium can be written in the
form

P(z, t ) = —,'P(t)exp[ i (v—t+P)] U(z)+c. c. , (2.4)

p= i' '[&,p—]——,'(Yp+pY)+A, (2.5)

where matrix elements of the Hamiltonian A' are given
by

~;.=E;5; —p, B(z, t)(1—5, ), (2.6)

where P(t) is a complex, slowly varying component of the
polarization. The real part of P(t) is in phase with the
electric field and results in dispersion due to the medium.
The imaginary part is in quadrature with the electric field
and results in gain or loss.

In the standard model [4] of a gas laser, the laser medi-
um consists of two-level atoms (upper level a, lower level
b) interacting with a radiation field. The levels a and b,
separated by an optical frequency co, are assumed to be of
opposite parity. Each level is incoherently pumped at
some rate A, (z, u, t ) from outside the two-level atom sub-

space, and owing to spontaneous emission, each level de-
cays at a rate y;, where i =a, b. An atom at time t and
position z and with z component of velocity v is described
by the density matrix p(z, v, t ).

Neglecting collisions, the time evolution of the active
atom density matrix p(z, u, t ) is given by the master or
transport equation [4],

state, with cu corresponding to a fine structure, vibration,
or rotation transition. For a state-independent collision
interaction, collisions result solely in a change of velocity
of the active atom, with no instantaneous change in phase
for the dipoles.

The active atom-perturber atom collisions are treated
in the impact approximation. In this approximation, the
duration of a typical collision ~, is assumed to be much
less than the various time scales in the problem, with the
exception of the optical period, i.e., ~, is much greater
than the atom-field detuning, Rabi frequency, and col-
lisional decay rates. Changes in velocity U occur through
jumps from the value of U to another value. The jump
time is assumed to be instantaneous with respect to all
other relevant time scales in the problem. Moreover, we
make the Markov approximation, so that the value of v

following a jump depends at most on its value before the
jump. We further assume the statistical independence of
velocity-changing and phase-interrupting collisions.

Each collision produces a change in the density matrix
associated with the active atoms. The change produced
by the field during the collisions is assumed to be negligi-
ble. With these approximations, the net effect of col-
lisions is the addition of a term [Bp(z, v, t )/dt ]„ii to the
right-hand side of Eq. (2.5). Explicitly, the collisional
contribution is found to be [1]

a
p; (z, u, t)

Bt coll

= —),(v)(i —S„)p„(z,v, t )
—r„(u )p„(z,u, t )

+ f du'W~(u'~u)p, (z, v', t) . (2.9)

The quantity y (u) is the decay rate corresponding to
phase-interrupting collisions; it vanishes for i =j. The
quantity W;, (u ~u ) is a collision kernel giving the prob-
ability density per unit time that a collision changes the
velocity of an active atom in state i from U' to U. Changes
in v occur at some average rate I;J(u), which is related to
the kernel in the following way:

and the decay operator Y and the excitation matrix A
have the elements I,i(v)= f d Wu,~( u+u') . (2.10)

lJ V l lj

A J X 6 J 7

(2.7)

(2.8)

where i,j=a, b; c., is the energy of level i and p, is the
dipole-matrix element between states i and j, assumed to
be real and equal to p.

The active or emitter atoms (i.e., those atoms that in-
teract strongly with the external radiation field) of the gas
undergo collisions with perturber or buffer atoms (i.e.,
atoms for which the radiation field is far off resonance).
The density of active atoms is assumed to be sufficiently
low so that collisions between two active atoms are
neglected. The atomic transition frequency cu is shifted
by KU as a result of atomic motion. Collisions with per-
turber atoms can cause a shift in velocity U besides inter-
rupting the phase of the oscillating dipoles. The limiting
case of a state-independent collision interaction might
occur if a and b are two levels within the same electronic

= [pb, (z, v, t )]*, (2.11a)

p, , (z, v, t ) =JVp, , ( v, t ), i =a, b, (2.11b)

where JV is the active atom density, and thereby eliminate

Thus the second term on the right-hand side in Eq. (2.9)
can be viewed as the "out term" resulting from collisions
that remove active atoms in state i from the velocity sub-
class U, and the last term is the "in term" bringing atoms
from other velocity subclasses into the subclass v. 8,, is
related to the differential scattering cross section and I;,
is related to the corresponding total scattering cross sec-
tion.

For the case of the unidirectional running wave laser
with the mode function given by Eq. (2.3), we introduce
an interaction representation in which

p, b (z, u, t ) =JVp, ( btu) exp [ i [Kz —vt —i'( t ) ] ]
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the optical frequency variations of the off-diagonal ele-
ments of the density matrix. Using Eqs. (2.5) and (2.9),
we find that the density-matrix elements evolve as

p,b(u, t ) = —[y+y~(v)+ l,b(u)+i Q(v) ]P,b(u, t )
d
dt " and

A, (z, u, t)=JUL, ;(v, t), i =a, b (2.13a)

where we have assumed a spatially uniform excitation
mechanism such that

+i g(t) [p„(u, t ) p&—b( v, t ) ]

+ du'8'b u'~u p, b u', t

Q(u):—Kv+(u —v —P,
(2 12a) and y is the Rabi frequency given by

(2.13b)

p„(v, t)=A., (u, t) —[y, +I „(u)]p„(u,t)d
di and

y(t) = pE(t)
2A

(2.13c)

+i [y(t)p,*b(v, t) y*(t)p,—b(v, t )]

+ du'8'„u'~u p„u', t

d
p (v, t)=A. (u, t) —[y + I (u)]p (u, t)

dt

i [y—(t)P,*&(u, t ) y*(t)Pa&(—V, t ) ]

+ f du'Wbb(u ~u)pbb(v', t),

(2.12b)

(2.12c)

y= —(y +yb) (2.13d)

In the above equations, the perturbation energy [second
term on the right-hand side in Eq. (2.6)] has been written
in the rotating-wave approximation [4(a)].

The solution of Eqs. (2.12) for an arbitrary collision
kernel can be obtained through extensive numerical com-
putation. In the steady state, from Eq. (2.12a), the solu-
tion for the off-diagonal element can be written as [1]

p, (b)u=

iaaf

—dv' f dt exp[ —[y+y~+i((u &)]t]—G,&(v' +,u)t[p—., ( u)
—pbb(v')]

oo 0

where the propagator G,b(u'~u, t ) satisfies

(2.14)

()G,b(v'~v, t ) =iK GV, (ub'~v, t) —r,b(v)G, &(v'~v, t)+ f du" Wb(u" +u)G,—&(v'~u", t), (2.15a)

subject to the initial condition

G,b(u'~V, O)=5(u —v') .

The iterative solution to Eq. (2.15) is

G,b(v'~v, t)=exp[ —I,b(v')t]exp(iKV't )5(v —u')

+ f dt'exp[ —I,b(u')t']exp(iKu't')W, b(u'~v )exp[ —I,b(u )(t t')]e px[iKV(—t t')]+—
0

(2.15b)

(2.16)

III. RESULTS
IN THE STRONG COLLISION MODEL

I

varying functions of v. Equations (2.12) for density-
matrix elements can then be recast in a compact form,

W„(u u ) = r„(u)M(u), (3.1)

Exact analytical solutions of Eqs. (2.12) can be worked
out for various limiting forms of the collision kernel. Of
particular interest is the so-called strong-collision model.
The model is especially suited if the mass of the perturber
atoms is much larger than the mass of the active atoms.
A single collision, on average, thermalizes the velocity
distribution. The collision kernel is then given by

$(v, t)=
Pab(U, t )

pa& (v It t)
Paa(v~t) Pbb(u~t)
p„(v, t)+pbb(u, t)

P(u, t)= —A( tu)g( tu)
d
dt

+BM(u) f g(v', t)d +uC(v, t),
where

(3.3)

(3.4a)

M(v)=(&m. u ) 'exp[ —(ulu ) ], (3.2)

with u being the most probable speed. We can further
neglect the velocity dependence of y (u) and 1;.(u)
without much error because they are generally slowly

where M(u) is the Maxwellian velocity distribution given
by

A(v, t)=

I 0+i'(u)

2iy*(t)
0

2iy(t)—
0

iy(t) 0

(3.4b)
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and nonvanishing elements of B and C( v, t ) are given by f dv M(v)[v +Q(u) ] '=(Euv) 'Z;(v+i(tv —v)),
Bii B—zz r—ab B33 —B44 —z(raa+rbb»

B34 B43,' ( r..—r» )

C3, =A,,(v, t )
—Ab(v, t ), C4, =A.,(u, t )+Ab(u, t ),

(3.4c) (4.4)

where Z, is the imaginary part of plasma dispersion func-
tion Z. In the Doppler limit

r =y+y +r,
and

a =-,'(r. +rb+r..+r»),
b = ,'(r—.—rb+r- rbb) —.

(3.4d)

(3.4e)

(3.4f)

«1,
Ku

integral (4.4) reduces to [4(a)]

dvM v v +0 v '-= exp
&7r

Kuv

(4.5)

(4.6)

g(u)= A '(v)BM(u)[2 f dv—"M(v")A '(u")B]

X dv'2 v'Cv'+3 vCv (3.5)

where J is a unit matrix of dimension (4X4) and A(v)
and C(u) are steady-state values of A(v, t) and C(u, t),
respectively.

We are interested in the steady-state behavior of the
laser system. The steady-state solution for g can be ob-
tained by setting the left-hand side of Eq. (3.3) equal to
zero. This yields the exact analytical solution for the
density matrix,

x(Q)=iy(r, +iQ) .

The steady-state population difference is

(4.8)

Also it is assumed that the perturber pressure is low
enough so that I,b «Ku, and the terms with r,b/Eu
dependence can be ignored in the expression for g(v).
With these approximations, the formal expression for the
steady-state value of p, b is obtained from Eq. (3.5) as

p.b(v) = —t'y[p. , (v) —pbb(v)]&(Q(v)),

where we have used the notation 2)(Q) for a complex
Lorentzian,

IV. CALCULATION
OF POPULATION DIFFERENCE

IN DOPPLER LIMIT

It is almost impossible to calculate the polarization and
the intensity in its exact form using (3.5). One may use
the relatively simple and often applicable Doppler limit
in which the Doppler width Ku is much larger than the
homogeneous decay constant y, collisional parameters,
and the Rabi frequency. Let y be the steady-state value
of Rabi frequency y(t), and A,, (v) and Ab(u) the steady-
state values of the excitation rates A,, ( tu) and A, b(u, t),
respectively. We further assume a pumping mechanism
which factors as

XM( v)

S[1+R(u)/R, ]

where the unsaturated population difference is

N=k, y, ' —~bye

the rate constant is

= 2X'R(u)= X(Q(v)),
r0

the dimensionless LorentzianX(Q) is

X(Q)=
I +0

(4.9)

(4.10)

(4. 1 1)

(4.12)

A, ;(v)=A, ;M(v), i =a,b, (4.1)

is the "power-broadened" total decay constant, and

for which the velocity distribution M(v) is Maxwellian
(3.2) with most probable speed u. Integrals in the above
expression for g(u) can be reduced to the form

f dv M(v)[v +Q(u) ] ', where

1/2

v=t 0 1+ 2X'
(4.2)

R, I 0

r..~y. rbb /yb

(r, +r..) (rb+I bb)
2

X exp
Ku

and the scaling factor due to VCC's is
—1/2

2 2S=1+ y 1+
Ku R, I 0

(4.13)

1 1 1

R, y. +r.. +
y, +r„ (4.3)

This integral can be written in terms of the plasma
dispersion function [4(a)] as

In the absence of field, R(v)=0 and S=1, and so the
population difference is XM(u). In the absence of col-
lisions, to the lowest order in g, the spectrum is a Voigt
profile, i.e., the convolution of a Gaussian of width Ku
and a Lorentzian of width 2y,
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FIG. l. Plots of the steady-state saturated population difference p„—p» [in the units of (&rru ) 'ÃJ vs velocity v (in the units of
y/K) [Eq. (4.9)]; curve a, on resonance (co=v), without VCC's (I,b =0); curve b, on resonance (co= v), with moderate VCC parame-
ters (I,b =0.5y); curve c, off resonance (co—v=10y), without VCC's (I,& =0); curve d, off resonance (co—v= 10y), with moderate
VCC parameters (I,&

=0.5y). We have made the choice I „=3I,&, I » =I,b, decay rates y, =0.6y, yb = 1.4y, collisional dephas-
ing parameter y~ =0.6y, Doppler width Ku =20y, and Rabi frequency y=0. 3y.

p,b= f duP, „(u)= f dv M(u)y /[y +Q(u) ]

(4.14)

to first order in g, where the Lorentzian absorption
profile [(4.12) with I o

—+y] associated with each velocity
subclass of atoms is weighted by the Gaussian distribu-
tion M(u) of (3.2). Collisions modify the line shape in
two ways. First, there is a broadening and shifting of the
line because of y . Second, there is a collision-induced
modification of the velocity associated with the atomic
state coherence p, b which becomes significant at high
pressures. Figure 1 shows the plots of the steady-state
population difference p„—pbb [Eq. (4.9)] versus velocity
U on and off resonance, with and without VCC's. As ex-
pected, the Lorentzian (4.12) in (4.9) gives rise to hole
burning in the absence of VCC's. The Lorentzian is
peaked at the detuning value co —v= —Kv, i.e., a hole is
burned at u =(v —cv)/K =c(1—cv/v), where c is the ve-
locity of light, as shown in Fig. 1, curve a (on resonance)
and curve c (off resonance). But the VCC's tend to wash
out the hole burning (Fig. 1, curves b and d). This is in
qualitative agreement with the computed and experimen-
tal findings of Smith [ [6(b)], Fig. 3]. The washout of the
hole burning can be explained by the process of cross re-
laxation between atoms of different velocity groups. As
collisions change the atomic velocity without inducing
transitions, the burnt hole gets spread over the entire ve-
locity distribution.

is given by Eqs. (2.5) and (2.9). Comparing Eq. (5.1) with
Eq. (2.4) and using the transformation (2.11a), we get the
complex polarization

P(t)=2JVp f du p, b(v, t) . (5.2)

Substituting the value of p,b(u) from Eq. (4.7), and using
(4.9), we find the complex polarization in the steady state
as

2ipA'Ny f d
M(u)2)(Q(u))

S " [1+R(u)/R, ]
(5.3)

The above integral can be evaluated using again the plas-
ma dispersion function in the Doppler limit (4.5) and us-
ing the result (4.6). We find that

1/2
2i &vrpANy '2y

KuS R, I
2

X exp (5.4)

In a laser, the field has to obey the condition of self
consistency; that is, the electric field that induces polar-
ization in the gain medium should be equal to the one
supported by that gain in the cavity. This leads to the
following self-consistency equation for the mode ampli-
tude [4].

V. CALCULATION OF INTENSITY PROFILE

The macroscopic polarization P(z, t) induced in the
laser medium is contributed by all atoms regardless of
their velocity and is given by [4]

P(z, t)=@f dv p,b(z, v, t)+c.c. , (5.1)

where the evolution of the population matrix p,b(z, v, t )

E+ E = — Im(P),
2Q 2eo

(5.5)

where Q is the laser cavity quality factor and eo is the
permittivity of vacuum. Combining the complex polar-
ization (5.4) with the self-consistency equation (5.5) in the
steady state, we have the single-mode amplitude-
determining equation
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&re'JVXv
1

P'E'
2&o&&» 2&'R. I o

—1/2
&vrp JVXv

exp
2eoAKu Ku

2

2Q
(5.10)

X exp

2

=0. (5.6)
&harp AÃv

2EoflKu
exp

Ku

and p is the self-saturation coefficient,
2

A. Third-order perturbation results

In the perturbation-theory approach, valid for weak
excitations only, 5 in the denominator on the left-hand
side of Eq. (5.6) is expanded to third order in E for calcu-
lation of the steady-state intensity. Making the approxi-
mations

X exp
Ku

yayb V7l Yb aa ya bb
X ~

2R I o Ku y, +I „yb+rbb
2

(5.1 1)

and

2 2

&( Il

R,r, (S.7a)

&re'JV 1

eofiKu "
Q

(5.12)

Setting the linear gain coefficient a=0 in Eq. (5.10), we
determine the threshold condition (at resonance),

f'bb /y b
R, I"0 + ~ 1, (S.7b)

(y. +1 ..) (yb+f'bb)

we can write the steady-state amplitude-determining
equation (5.6) as

where NT is the value of the unsaturated population
difference N at threshold. This can be used to express the
coefficients a and p defined by (S.10) and (5.11) in terms
of the relative excitation

E(a PI ) =0,—
where I is the dimensionless intensity,

pEI—=
2A y, yb

a is the linear net gain coefficient,

(5.8)

(5.9)

&rrp, JVNQ

eoAKu
(5.13)

which is more easily measured than the excitation N.
From Eq. (5.8), we get the steady-state solution for the in-
tensity in the third-order perturbation theory,

1 exp

2

(5.14)
yayb V rr Yb aa Ya bb

2R, r, Xu y. +r.. yb+~bb
exp

Ku

As in traditional pressure-broadening theories, if
collision-induced changes in active atoms velocities are
neglected, the third-order intensity profile reduces to the
known result [4(a)] for a unidirectional ring laser,

excitation is kept fixed. It is evident that the line shape of
the laser under combined velocity and phase modulations
is not a simple Voigt convolution of the line shapes due to
spontaneous decay and the velocity distribution of atoms.

I= 1 —exp[(co —v) /(Ku) ]%
y/(y+y~ )

(5.15) B. Exact results

Figure 2 gives the plots of the third-order intensity I as a
function of detuning (co —v) in the absence of VCC's [Eq.
(5.15)] for various values of the excitation 92 slightly
above threshold, with moderate collisional dephasing pa-
rameter y . As expected, laser intensity and linewidth
increase with increasing excitation. Figure 3 shows the
efFect of increasing VCC parameters on intensity I of
(5.14). Curve a of Fig. 3 is the same as curve d of Fig. 2.
The width of the intensity profile and the intensity max-
imum increase with increasing VCC parameters while the

I(a' P'I+BI )=0, —

where e' is the modified net gain coefficient,
2

CO V
o.' =% —exp 2

Ku

(5.16)

(5.17)

p' is the modified self-saturation coefficient,

In the following, an exact solution for the intensity is
obtained by multiplying Eq. (5.6) by S, defined in Eq.
(4.13), and squaring, which yields
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0.2—
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1-0 15 2-0 2-5 3 0
FIG. 2. Third-order intensity I as a function of detuning

(co —v) [Eq. (5.15)] in the absence of VCC's
(I „=I»=I,&=0), for various values of the excitation %
slightly above threshold: curve a, %=1.05; curve b, %=1.10;
curve c, %= 1.15; curve d, %= 1.20. Decay constants
y, =0.6y, y b

= 1.4y, collisional dephasing parameter
y~ =0.6y, and Doppler width Ku =20y.

Xa7b CO V
exp 2

2R, I Ku

2

+2&892, (5.18)

and 8 is the nonlinear coefficient, with p' +4a'8,
2

77 7 b ~aa Va ~bb+
(1~& ) ) +~ Yb+~bb

(5.19)

The solution of Eq. (5.16) gives the steady-state intensity
as

FIG. 4. Plots of the steady-state intensity I vs relative excita-
tion % near threshold at resonance (co= v): (i) third-order result
(dashed line) curve a, without VCC's (I,b=0) [Eq. (5.15)],
curve b, with moderate VCC parameters (i,b=0. 5y) [Eq.
(5.14)]; (ii) exact result (solid line) curve c, without VCC's
(l,b =0) [Eq. (5.21)], curve d, with moderate VCC parameters
(I,b =0.5y) [Eq. (5.20)]. Here r..=3r., r» r., ; d——ecay
rates y, =0.6y, y b

= 1.4y, collisional dephasing parameter
y~ =0.6y, and Doppler width Ku =20y.

We have discarded the other root,
(28) '[p'+(p' —4a'8)'~ ] of Eq. (5.16), since it does
not satisfy the threshold criterion, I=O for o."=—0. If
collision-induced changes in active atoms velocities are
neglected, intensity profile reduces to the known result
[ [4(b)] Chap. 6] for a unidirectional ring laser,

I=(28) '[P' —(P' —4a'8)' ] . (5.20) 30—
C

20—

10—

0.2-

0.0
—10 0

(m-v)/p
10

FIG. 3. Effect of increasing VCC parameters on third-order
intensity I [Eq. (5.14)] for curve a, I,b =0; curve b, I,b =O. ly;
curve c, I",b =0.3y; curve d, I,&

=0.5y, with I „=3I,&,
I » =I,b. Decay rates y, =0.6y, yb = 1.4y, collisional dephas-
ing parameter y~ =0.6y, Doppler width Eu =20y, and excita-
tion %= 1.2.

0
—30 -20

I I

-10 0
(u)-vi/p

10 20 30

FIG. 5. Effect of increasing VCC parameters on intensity I
[Eq. (5.20)] for (i) excitation 2 =3; curve a, I,b =0 (dashed line);
curve 6, I,b=0. 5y (solid line); (ii) excitation %=6; curve c,
I"gb=0 (dashed line); curve d, I,b=0. 5y (solid line). Here
I „=3I,b, I » =I,b, decay rates y, =0.6y, y& =1.4y, col-
lisional dephasing parameter y~ =0.6y, and Doppler width
Ku =20y.
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much above threshold, in presence of moderate collision-
al dephasing parameter y . Curve b of Fig. 6 is the same
as curve d of Fig. 5. As expected, laser intensity and
linewidth increase with increasing excitation.

Typical values of the collision cross section and dura-
tion are found [7(b)] to be 10 ' cm and 10 ' s, respec-
tively. For a perturber density of 1016 mole/cm3 and ac-
tive atom-perturber relative speed of 10 cm/s, the col-
lision rate turns out to be I -10 MHz at 1 Torr. This
may be compared with the decay rates y, —10 MHz and
yb —50 MHz for a He-Ne laser at 632.8 nm with the
pressures of He (perturber) and Ne (active atom) being 1

Torr and 0.1 Torr, respectively. The Doppler width Ku
is typically about 1.3 GHz.

0
—3Q —10

((t) —v) /p
10 20 3Q

FIG. 6. Intensity I as a function of detuning (to —v) [Eq.
(5.20)] with moderate VCC parameters (I,b =0.5y, I „=31,&,

I »=l,b), for various values of the excitation % well above
threshold: curve a, %=4; curve b, %=6; curve c, %=8; curve
d, %=10. Decay constants y, =0.6y, yb =1.4y, colhsional de-
phasing parameter y~ =0.6y, and Doppler width Ku =20y.

I= % exp[ —2(co —v) /(Ku ) ]—1

y/(y+y )
(5.21)

Figure 4 shows the plots of steady-state laser intensity I
versus excitation % near threshold, with and without
VCC's, and compares the perturbation-theory result [Eq.
(5.14)] with the exact result (5.20). As is known [5], for
large 92, intensity I of (5.14) saturates to a value (viz. ,
1+y /y in the absence of VCC's), rather than increasing
with %. The third-order theory over-estimates the satu-
ration and is shown here to differ from the exact result
for % ~ 1.1. Figure 5 shows the effect of increasing VCC
parameters on intensity I of (5.20). The width of the in-
tensity profile increases with increasing VCC parameters
while the excitation is kept fixed at two values (%=3 and
6) above threshold. It is seen that at lower values of exci-
tation 9, the intensity maximum (at co=v) slowly in-
creases with increasing VCC parameters, whereas at
higher values of % ( ~ 5), the peak value is reduced with
increase in I,b. Figure 6 gives the plots of intensity I of
(5.20) as a function of detuning (co —v) with moderate
VCC parameters for various values of the excitation %

VI. SUMMARY

In summary, we have presented a general theory of gas
lasers taking into account both phase-interrupting and
velocity-changing collisions between active atoms and
perturber atoms. For simplicity, we have considered the
case of a single-mode field in a unidirectional ring laser,
but the results can be generalized very easily. The case of
a standing-wave electric field in a two-mirror laser can be
treated similarly by considering it as the sum of two op-
positely directed running waves. Here exact analytical
solutions in the strong-collision limit have been obtained
and the laser intensity has been evaluated in the Doppler
limit using the cavity self-consistency equation. The in-
tensity can, of course, be calculated without the Doppler
limit using (4.4). However, only for v/(Ku )-1 apprecia-
ble deviation from the Doppler limit can be noticed. The
"hole burning" in the steady-state population difference
is shown to get washed out in the presence of VCC's.
Also it is shown that the laser line shape cannot, in gen-
eral, be written as a simple Voigt profile.

As is known [5], our results confirm that, in general,
third-order perturbation theories provide accurate ex-
pressions for the mode amplitude near threshold, but
overestimate the saturation and differ appreciably from
the exact results for relative excitations as low as 1.1.
For lasers operated far above threshold, one has to use
the exact results given in Sec. V B, while the third-order
perturbation-theory results (Section VA) are valid for
low relative excitations.
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