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This paper describes the atomic dynamics when a Rydberg atom is in a laser field which is resonant
with a dipole-allowed core transition. The main approximation is to comp/etely ignore the (short-range,
direct) interaction of the outer electron with the resonant laser which is the same approximation used

with great success in calculating the spectrum due to isolated core excitations (ICE). The atom autoion-
izes when the core absorbs a photon, because the electron can then inelastically scatter from the excited
core state, gaining enough energy to escape the atom. Despite neglecting the direct interaction between
the outermost electron and the laser, the laser profoundly affects the autoionization dynamics. This
effect is incorporated through a frame transformation between the dressed and undressed core states
which only utilizes the field free atomic scattering parameters. A two-color experiment is proposed
which might be able to measure nonperturbative effects arising from the dressed core states. The usual

ICE transition rate is obtained through a perturbative expansion. Generic effects are examined through
a model problem. A calculation of the Mg spectrum when the driving laser is tuned to the 3s, ~2-3p &z& or
the 3s

& z2-3p3/2 transition is presented.

PACS number(s): 32.80.Rm, 32.80.Dz, 32.80.Fb, 32.80.Wr

I. INTRODUCTION

The description of nonperturbative atom-light interac-
tions is an intractable problem at this point for all but the
simplest atoms and ions [1,2]. In this paper, we describe
a class of interactions which seems to be amenable to a
nearly exact treatment. The dynamics is similar in spirit
to that in isolated core excitations [3] (ICE) where a Ryd-
berg atom is immersed in light which is nearly resonant
with a dipole-allowed core transition. The Rydberg elec-
tron hardly interacts with the light because it spends
most of its time at very large distances from the nucleus
where it only feels a very small force. The calculated ion-
ization rates due to isolated core excitations are in very
good agreement with experiment; the theoretical rates are
obtained by comp/etely ignoring the amplitude for direct
excitation of the outer electron into the continuum.

The effects seen in ICE experiments are perturbative;
we propose examining the nonperturbative regime where
the Rabi oscillation of the dressed core states is nearly
equal to or faster than the classical Rydberg frequency of
the outer electron. In the language of multichannel
quantum-defect theory (MQDT) j4], we will describe the
atomic dynamics (autoionization, etc.) of dressed chan-
nels. An experiment which might show these effects
would bathe atoms with a strong laser near a transition
frequency of the positive ion; this laser has practically no
effect on the low atomic states since it is not resonant
with any atomic transition. A weak probe laser can be
scanned in the region near the atomic thresholds (the ion-
ic core states are resonant with the strong laser once the
electron excited by the probe laser is farther than -20
a.u. from the nucleus). The ionization rate will show
nonperturbative effects due to the dressed core states
when the Rabi frequency d]p is nearly equal to or larger
than the classical orbital frequency 1/n* of the outer

Rydberg electron, i.e., d, zn
* 1.

The motivation for studying the dynamics of a Ryd-
berg atom with dressed core states is similar to the
motivation for studying atomic dynamics in static fields
[5]. The external field breaks the rotational symmetry of
the atom and forces the electron to explore larger regions
of phase space. The resulting dynamics is much richer
that the unperturbed atomic dynamics. Unlike the static
electric and magnetic fie1ds which dominate the Coulomb
field at large distances, the laser field only breaks the
symmetry near the nucleus; it does not change the long-
range forces felt by the electron [6]. The number of chan-
nels needed to describe the interaction of an electron with
dressed core states is much less than that needed to de-
scribe Rydberg electrons in static electric or magnetic
fields which makes the theory more tractable. In a sense,
this work is also related to the studies of atom-atom
scattering in laser fields [7]; the detailed dynamics de-
pends on the atom, but some important processes which
can be easily interpreted do not depend on the specific
atom.

In Sec. II we give a brief description of dressed states
in a classical laser field in the rotating-wave approxima-
tion. In Sec. III we describe in detail the atomic dynam-
ics with dressed core states, discussing our approximation
and the range of its validity. In Sec. IV, we discuss the
perturbative limit of the dressed core dynamics; we show
how to obtain the isolated core excitation results and the
frequency range over which the perturbative limit is val-
id. In Sec. V, we discuss a simple model problem which
should illustrate the dynamics. In Sec. VI we apply the
formalism of Sec. III to Mg with the strong laser driving
either the 3s, &z-3p & &z or the 3s

& &2-3p 3/p transitions. The
atomic case is more subtle than the model described in
Sec. V due to the coupling of the core angular momen-
tum to that of the outer electron. We conclude with Sec.
VII.
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II. DRESSED STATES
IN THE FI.OQUET REPRESENTATION

where the U and E are constants. We now make the
rotating-wave approximation to obtain an eigenvalue ma-
trix equation for E and U; . This equation is

d2& /2 E2 —co

Ui Ui

20:
(3)

For the experiments we are interested in, we do not think
it is presently possible to obtain ld, z l

) 10 a.u. , and the
rotating-wave approximation should thus work very well.
The eigenvectors U are unitary, i.e., U U= UU ~=1.
The final important point is that Eq. (2) can be "inverted"
to obtain states

l
1) and l2) in terms of the eigenstates,

lP (t)). These formulas are important for the formula-
tion presented in Sec. III and are given by

ll) = g lP (t))exp(iE t)(U") „ (4a)

l2) = g (t (t))exp(i[E +co]t)(U ),.

Equations (1)—(4) can be easily generalized when there
are more than two atomic states or laser fields.

III. ATOMIC DYNAMICS
WITH DRESSED CORK STATES

A. Proposed experiment and approximations

The basic dynamics of isolated core excitations are
very simple [3]. A Rydberg electron orbits a positively
charged ion, spending most of its time at very large dis-

In this section, we show how to obtain the dressed
states from the Floquet representation within the
rotating-wave approximation. This procedure for obtain-
ing the dressed states is well known; we go into the de-
tails here so that various parameters used in the later sec-
tions have specific definitions. We will always use classi-
cal oscillating fields to drive the core states; we ignore
spontaneous emission from the dressed states which will
be a good approximation as long as the Rydberg elec-
trons autoionize faster than the natural lifetime of the
core states (and as long as the Rabi frequency is much
greater than the spontaneous decay rate).

The Hamiltonian for two states being driven by a clas-
sical laser field is

H =
I 1)E,&1 + 2)E2&21+ I i)d»cosset &21

+ l2)d, cosset & 1 l,

where (we assume) F2)F. , and d, 2=& llF. rl2) =dz, .
There are two linearly independent solutions of the equa-
tion (iBIBt)lg (t)) =Hi/ (t) ), which have a quasi-time-
independent form. We expand lP (t)) in terms of states

l
1 ) and

l
2 ) with time-dependent coefficients,

lP (t)) =exp( iE t)(l 1 )—U, +exp( idiot)l2) U—
2 ),

(2)

tances. A laser field (nearly resonant with a dipole-
allowed transition between two of the ionic states) in-
teracts with the Rydberg atom causing the atom to ion-
ize. The outer electron does not directly absorb any pho-
tons because it spends most of its time at large distances
from the nucleus. However, the core electrons can (and
do) absorb photons; the outer electron inelastically
scatters from the excited core producing an ionization
signal. No significant discrepancy between theory and
experiment has been detected, even though the interac-
tion between the Rydberg electron and the laser is com-
pletely ignored when calculating the rate of ionization.
Most importantly, the calculations and experiments agree
on differential cross sections which are notoriously sensi-
tive to theoretical errors.

The dynamical situation we are exploring is simply an
extension of the isolated core excitations. What we pro-
pose to do is to examine the dynamics when the laser
which drives the core electrons is strong enough to give a
large Rabi splitting to the core states. A new dynamical
process occurs when the Rabi oscillations of the core
states is nearly equal to or larger than the Rydberg fre-
quency, 1/n', of the outer electron. It is clear that we
do not need to directly account for the interaction of the
outer electron with the driving laser field for the same
reason as in the theory of isolated core excitations; the
outer electron only feels the effects of this field through
its interaction with the core electrons.

An experiment which should see these effects is easy to
visualize but will be very dificult to implement in prac-
tice. (i) Pass a "strong" laser field which has its frequen-
cy resonant (or nearly resonant) with a transition of a
positive ion through the atomic gas. This will be called
the driving laser field. Because the driving laser is not
resonant with a bound atomic transition, it has no effect
on the gas. (ii) While the driving laser is on, pass a weak-
er probe laser through the same region of the gas; the
probe laser having a higher frequency than the driving
laser. The probe-laser frequency needs to be high enough
to excite the atoms to their threshold region. (iii) Mea-
sure the cross section for absorbing a probe-laser photon,
or for photoionization, as a function of the probe-laser
frequency for given intensity and detuning of the driving
laser. Once the probe laser ejects an electron to large dis-
tances, the core becomes resonant with the driving laser
and starts oscillating between the resonant states with the
Rabi oscillation frequency, d &2. If the outer electron re-
turns to the core before the states begin to oscillate (i.e.,
d, 2 is much less than the classical frequency of the outer
electron), the dynamics are nearly identical to that with
the driving laser off. This is the perturbative case and is
identical to the usual ICE experiments; we discuss this
limit in Sec. IV. If the electron returns to the core on the
scale of the period of the Rabi oscillations (d, z

—1/n* ),
the dynamic of the core and outer electron becomes
strongly entangled; the resulting dynamics is thus com-
pletely changed from field-free atomic dynamics. As seen
in Secs. V and VI there are some regions near n ' -d

&&&

where spectra will appear to be simple. When the core
oscillates many times before the electron returns, the dy-
namics again decouples and we see simple Rydberg series
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attached to thresholds given by the Floquet quasienergy
of the dressed core states.

The difhculty with real experiments lies with the neces-
sity of achieving a strong enough driving field. The
strength of the driving field needed to see the nonpertur-
bative effects is directly related to the resolution of the
weak probe laser. The resolution of the probe laser deter-
mines how high in n * the atomic states can be resolved
and thus the size of diz needed to find nonperturbative
effects. Basically, nonperturbative effects will be ob-
served if the frequency of the Rabi oscillations induced
by the driving laser is larger than the resolution of the
probe laser. Note that we were vague about which core
transitions need to be driven. In fact, any allowed transi-
tion in which one of the terms is part of an important
channel in the undressed atomic dynamics will suKce.
This includes downward transitions, transitions between
two excited ionic states, as well as upward transitions.
For example, in Ca the driving laser can be tuned to the
4si&2-4pJ transitions, or the 3dJ-4pJ transitions, or the
3dJ 4fJ transiti-ons.

Before introducing the formalism which we will use to
describe this problem, we will discuss the suitability as
well as the range of applicability of the main approxima-
tion contained in our method. This approximation con-
sists of completely ignoring the direct effect of the driving
field on the Rydberg electron. The interaction we are ig-
noring is what causes above-threshold ionization (ATI) in
one-electron atoms. So our method completely breaks
down when the driving laser field is strong enough to give
substantial above threshold ionization. For optical fields,
we expect our approximations to hold for field strengths
less than —10" W/cm —10 a.u. The Rabi frequency
goes like the square root of the field strength, when the
driving frequency is exactly on resonance. Assuming the
probe laser can resolve Rydberg states near n =35 gives a
minimum field strength (needed to see nonperturbative
efFects) of —10 " a.u. , five orders of magnitude smaller
than the fields for which the approximation breaks down.
For infrared fields, the field strength for substantial ATI
is smaller but there is still a large range of acceptable field
strengths. Of course, our method fails completely for
driving fields in the microwave regime.

B. Formalism

We now introduce the tools to describe the dynamical
problem through a model problem. In Sec. VI we discuss
a real atomic problem and introduce at that point some
extra features which are not described in this section.

Our model is the simplest that will still show these
dynamical efFects. In this model problem, the core (ionic)
state ~1) of Sec. II will be an s state ~S), and the core
state ~2) will be a p state ~P ); the energy of the s state is
lower than that of the p state. The outer Rydberg elec-
tron can be either an s wave or a p wave. The driving
laser has a frequency ~d near the s-p transition of the ion,
E —E, . The probe laser has a frequency co which is
near the transition from the ground state (which is as-
sumed to have even parity) to the lower threshold of the
ionic state ~S). In this energy range the channel at-
tached to the core ~P) is assumed to be strongly closed
and thus the wave function excited by the probe laser (in
the absence of the driving laser) is

q,")=e "'[ls)Y,[f .,. .(r) —g „, (r)K,(,')(E)]I,

r) r„(5)
where we have explicitly written the time dependence
exp( iEt), Y,—is the spherical harmonic of the outer
electron, r, is the size of the core state, f (o), (g (0), ) is

c, , 1 c, , i

the regular (irregular) Coulomb function of angular
momentum l = 1 and energy E,' '=E +co —E„and
K,(, '(E) is the reaction matrix at energy E which is

tansy@, (E) in this simple one-channel problem. The only
other dynamical parameter, of interest is the reduced di-
pole matrix element d,' ', which connects the ground state
to the excited state of Eq. (5).

The driving laser field will connect the wave function
of Eq. (5) to those of opposite parity and higher in energy
by cod, the driving laser causes a mixing between the wave
function of Eq. (5) and the next higher Floquet mode. At
this energy E+cod, both channels are open and weakly
closed. There are two linearly independent solutions of
the field-free Schrodinger s equation of even parity and
energy E +cod given by

g(+)=e [~S)Yo[f (~) —g (~) X(, )(E+cod)]—~P) Y,g (~),K',+)(E+cod)],

"
I IP & Yolf, (+), g,(+I,&,',+'«+—~d )1 ~S & Yog,(+),&,',+'«+~d )]

where c,'+'=E +co —E, +cod and K'+' is the reaction
matrix at energy E +cod for the states of even parity. The
most important point is that the wave functions of Eqs.
(5) and (6) are slowly varying in energy at small radii [4]
because (as is usual in MQDT) we have not imposed the
boundary conditions at r ~ 0() . Equations (5) and (6) con-
tain exponentially diverging pieces if any of the channels

are closed. When the driving field is off; these wave func-
tions are exact solutions of the time-dependent
Schrodinger equation for the atom.

We now obtain the three linearly independent solu-
tions, when the outer electron is at distances r )r„
which satisfy the full time-dependent Schrodinger equa-
tion with the driving field on. They are
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—lS )e Yog (+~ K, &
(7a)

Yog,(+) 0&,p (7b)

(t)=e ' lS )e YD(f (~~ g (~~ E )

2

lP (t)) Y,g, ,K, )
j=1

(7c)

where e =E +co E. Equ—ations (7) are exact solu-
tions of the full time-dependent Schrodinger equation for
r ) r, when we ignore the direct coupling of the driving
laser field to the outer electron. The purpose of this pa-
per is to show how it is possible to obtain the K matrix of
scattering parameters from the scattering parameters of
the wave functions of Eqs. (5) and (6) which are solutions
of the time-dependent Schrodinger s equation with the
driving laser off.

Actually, the term exp[ —i (E +cod )t]lS) Yog I+~ o
in

all three solutions is not an exact solution of the time-
dependent Schrodinger equation. It should be mixed
with the state exp[ i (E+2c—od)t]lP) Yog ~2+I . Howev-

p 7

er, this mixing has no measurable effect since this channel
is open. In MQDT, a frame transformation (which is all
that our theory amounts to) that only mixes open chan-
nels has no effect on the total cross section; it only mixes
the partial cross sections. If we were to take into account
this mixing, instead of having an outward Aux F of elec-
trons with energy E,'+' we would have a flux F

l U, &l with
energy E,'+'+E, E, and a Q—ux FlU, 2l with energy
c.,'+'+E, —E2. The Rabi splitting would need to be
—10 a.u. before this energy difference would be detect-
able.

When the driving field is turned on, the solutions (5)
and (6) become mixed. To determine how to accomplish
this mixture we will examine the solutions at r —r, . We
first make two linearly independent solutions in the place
of g,' ' and g„'+' by superposing them

(8a)

where o.= 1 and 2 and

(8b)

The g 's are exact solutions of the time-dependent
Schrodinger s equation with the driving field off. We as-
sume that the driving field is nearly resonant with the s-p
transition of the core (i.e., cod- E E, ) which m—eans—
E'+ ~ —=e,' '. (Furthermore, since we are at small radii
f Io~, =f ~+~, and g, o, , =-g I+~, —). Now substitute the

U1 U2 0

0 0 1

U1 U2 0

takes the atomic solutions in the absence of an interac-
tion to the exact solutions,

(10)

Furthermore, all of the exact dynamical parameters are
obtained by a transformation of the field-free dynamical
parameters. The exact reaction matrix and dipole matrix
elements are

K=UKU,

d =dU. (12)

All of the barred parameters refer to the states with the
driving laser on; however, they are not the physical pa-
rameters because the barred wave functions diverge ex-
ponentially in all of the closed channels when propagated
to large distances.

In the discussion above it was easier to use real wave
functions and scattering parameters, K and d. However,
in Secs. IV and V it is easier to understand some of the
dynamics using the S matrix and complex dipole matrix
elements. It is very easy to obtain one set of scattering
parameters [4] in terms of the other set. The scattering
matrix can be easily found in terms of the reaction matrix
using

1+iK
1—iK

(13)

expression for lS ) of Eq. (4a) into Eq. (5) and the expres-
sion for lP ) of Eq. (4b) into Eqs. (6). If we now use the
fact that f, =f I—O&-f I—+& at r —= r, (and similarly for g),

we can obtain the K matrix from K''+' and K' ' using
simple algebra. This step is the heart of our approximate
procedure since the time-dependent wave functions of
Eq. (8) are not exact solutions to the full time-dependent
Schrodinger's equation. The error in the K matrix is due
to the neglect of the interaction of the atom with the
driving laser when all of the electrons are at distances
r (r, . However, when all of the electrons are at small
distances the driving laser is not in resonance because the
core states are strongly perturbed by the extra electron.
The error in our approximate K matrix is of the size of
d12. For the reasons mentioned in Sec. III A we do not
expect our approximations to work for ld, 2 l

)10; the
errors in K probably have a negligible effect on the cross
section for ld&zl (10 . In Ba, the LS to jj frame trans-
formation (which ignores the spin-orbit interaction when
all of the electrons are at distances r ( r, ) works very well
even though the fine-structure splitting of the 6p thresh-
olds is —8 X 10 a.u.

In MQDT, the transformation of the solutions (5) and
(6) to the exact solutions (7) is called a frame transforma-
tion [8]. The transformation matrix [if the solutions are
ordered P&

=PI ', Pz= PI+ ', and g3=g'+ ' and g3= g,'+ '],
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The analog of Eq. (11) for the S matrix is

S= U'S U= 1+iE
1 —iE

(14)

= g P [(1 iK) —']

The dipole matrix elements which connect the ground
state to the states 4 are

D =d(1 iK—
) '=DU, (16)

where

The wave function which has purely incoming waves in
all of its channels except the o."th can be found in terms
of the wave function with standing-wave boundary condi-
tions as

are identical to those in Eq. (3). For this discussion we
will use the simple three-channel model of Sec. III to fa-
cilitate the derivations in Secs. IV A and IV B of this sec-
tion. The results we derive below are valid for more corn-
plicated problems as could be easily shown. In all of
what follows we will be in the frequency range where
both channels 1 and 2 are closed.

A. Perturbatively split thresholds

In this section we are trying to determine the smallest
n * for which a perturbative treatment breaks down. It is
clear that the most effective mixing occurs when
cod=E2 E, (—i.e., the driving laser is exactly on reso-
nance); we will only focus on this situation. To see the
perturbative limit most clearly we substitute Eqs. (15) and
(16) for the barred values of Eq. (19) to obtain

D =d (1—iK) Df ——DU(U tS„U—e
'- )-1U tS,3 (20)

'Pf =4'3 —(4) ~I'2)

S
x

—217Tvl
S)) —e

S2)

Si2
21 ll V2

S22 —e

where v = I/+2(E E) is the effe—ctive quantum num-
ber of channel j which is also written as n*. The dipole
matrix element which connects this state to the ground
state is

Df =D3 —(D) D2)

S

—21 7Tv]

S)) —e

S2&

S
2

—2l 7TV

S22'

All of the barred parameters refer to the dynamical pa-
rameters with the driving laser on; the unbarred parame-
ters are for the states with the driving laser off.

To obtain the cross section we need to superpose the
to obtain the correct boundary conditions at r~ ~.

These conditions are that the wave function must con-
verge to zero in the closed channels and obey incoming
wave boundary conditions in the open channels. For the
case when channels 1 and 2 are closed and channel 3 is
open, these conditions are satisfied by the wave function
[4]

where we have used the fact that D; =D,' '6;„and

we can easily rewrite Df as

Df =D(S„—U e 'U) 'S,3. (21)

The threshold splitting will be small since d &2 is
small and therefore for some range of energy v&-—v2.—21 7TVWe use this fact to approximate (e ')

k

=5 ke ' '[1 2ia(v ——v)] where v= 1/Q(E E,)—=n* is the effective quantum number when d&2=0. In
the perturbative regime v, —v= d &2v /2 and
v2 v — d ]2v /2 ~ Substituting these results into Eq.
(21) we obtain

(22)

where o„ is the x component of the Pauli spinors. The
only "new" term in Eq. (22) (i.e., absent in the field-free
limit) is the term proportional to hard&2v . This means
that perturbative limit obtains when ~d&2v (&1; con-
versely we expect nonperturbative effects to start occur-
ring when d&2v )0. 15. This result confirms our intui-
tion discussed in the Introduction, i.e., new effects appear
when the Rabi frequency times the classical orbital
period of the outer electron is on the order of one.

x (19) B. Isolated core excitations

When there are closed channels imposing the boundary
conditions at r ~ ~ introduces rapid energy dependences
and causes the appearance of the autoionizing Rydberg
series in the cross section.

IV. PERTURBATIVK LIMITS

In this section we describe the perturbative limit,
d &2 ~0. In Sec. IV A we show where the perturbative
limit fails as n* increases for a fixed d, 2. In Sec. IV B we
show how our formalism reproduces the usual ICE re-
sults when d&2 « IE&+cod E2I where these pa—rameters

We expect a perturbative calculation using our formal-
ism to be able to reproduce the spectrum of isolated core
excitations since we are essentially making the same ap-
proximation as that made in the ICE calculations. How-
ever, it is unclear what will be the mechanism (in our ap-
proach) that produces the ICE ripples; in the usual ICE
calculations they result from the overlap of the radial
wave function of the initial state with the radial wave
function of the final state after the core has been excited
[3,9]. In this section we obtain the ICE results with our
method and describe the mechanism which produces
these results.
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The ICE experiments [3] use a slightly diFerent setup
than that described in Sec. III. In these experiments, the
frequency of what we call the probe laser is fixed to a
transition from the ground state to a bound Rydberg
state with n ~10. What we call the driving laser is
scanned in a frequency range near the transition between
the core states ~1) and ~2). The experiment measures
the ionization rate as a function of the frequency cod of
the driving laser. In this section, we derive the usual ICE
formula for the dipole matrix element for the simple
three-channel problem of Sec. III; the extension to more
complicated situations is straightforward, but tedious.

The physical dipole matrix element connecting the
ground state to the state with the correct boundary con-
ditions is the same as that of Eq. (20). However, now the
driving laser is not resonant and it is weak enough so that
we can solve Eq. (3) perturbatively in diz. The unitary
transformation matrix U can be approximated as

(23)

to order y=d, 2/[2(E„E, —cod—)]. The eigenenergies
are E, =E, and E2 =Ep —cod to first order in d». Substi-
tuting these approximations into Eq. (20) and only retain-
ing terms up to first order in y gives

D =D,' '(1 y)f $

s"'— '" (s'+' —s'")
$$ 7 PP SS

(s'+' —s'") s'+'—
PP SS PP

(+)X
1 S„. (24)

We now invert the matrix to order y and only keep terms
in the final result to this order to obtain

D =D,' '[y(e ~ —e ')]f S

x[(s'+' —e
' ")-'s'+']

x(s"'— (25)

where

v, =l/+2(E, E —co )—
and

v = I/+2(E E —ei —co )—
p p g p

The first term in brackets is identical (within a phase fac-
tor) to the term in the ICE dipole matrix element result-
ing from the overlap of the outer Rydberg electron's
wave function. To see how this works, use

and

[exp( —2i mv) —exp( —2i m
.v, ) ]

=2i exp( iir[v, +v —]sin(m[v, —v ]);
compare this result with Eqs. (20b) and (22) of Ref. [3(c)].

This equivalence is amazing because the first factor in Df
does not appear to have anything to do with the overlap
of Rydberg wave functions, Eqs. (6). The second term in
brackets is the modulation of the physical dipole matrix
element which results from closing the p channel in the
(+ ) wave functions. The final term is a constant since co

is fixed. The dipole matrix element of Eq. (25) is exactly
the ICE dipole matrix element leaving out phase factors
and factors which do not depend on the frequency of the
driving laser md.

V. MODEL PROBLEM

In this section, we illuminate the workings of the for-
malism described in Sec. III by choosing specific values
for the parameters of Eqs. (3), (5), and (6). In real atoms,
there are many more channels and the dynamics induced
by the driving laser can become obscured by the compli-
cated dynamics of the undriven atom.

In this section we fix the dynamic parameters of Eqs.
(5) and (6) to be K,', '=1, E,',+'= —0.5, K',+'=0.5, and
IC'+'= 1.5. In the absence of the field, ~S',+ '~ =0.2 is the
width of the ~P)np autoionizing state times n . Lastly,
the threshold energy E, —E =0. 1 a.u.

For the first step in examining the dynamics we set the
driving frequency equal to the s-p transition and investi-
gate the dynamics as a function of the field strength of
the driving laser measured by d» ~ We assume the
ground state has even parity and the probe-laser frequen-
cy is slightly less than 0.1 a.u.

In Fig. 1 we examine how the driving laser disturbs a
particular bound level, ~S)30p, of the g,' ' state. We
graph the three important parameters which characterize
this disturbance: the induced width of the state, the shift,
and the integrated photoabsorption rate. When the driv-
ing laser is oft; the ~S)30p state is, of course, stable.
Once the driving laser is turned on this state can decay by
photoabsorption with a subsequent autoionization; the
width measures this decay rate. For small d», the width
of this level is proportional to ~d, z~ as expected from
time-dependent perturbation theory, Fig. 1(a). Near
d, 2 =2 X 10, the width stops increasing like ~d, 2 ~

and
begins to fIatten. At this value of d, 2 the parameter
d»n —

—,', which means that the beginnings of nonpertur-
bative effects may be detectable at smaller d, 2n than ex-
pected. The shift in the level position also increases in
magnitude like ~diz~ for small di2, Fig. 1(b). In Fig. 1(c)
we plot the integrated cross section of this line. This
quantity is defined to be jcr(k)drover the , line width.
This is the quantity which will be measured experimen-
tally if the resolution of the probe laser is great enough to
resolve the individual Rydberg levels near this state but
not great enough to resolve the width of this state. This
quantity is flat for small dl2 and begins to decrease near
the beginning of the nonperturbative regime. It is possi-
ble that the beginnings of the nonperturbative effects will
be seen with these parameters, but the evolution of these
parameters with dI2 will possibly never be seen because
of the finite resolution of the probe laser.

In Fig. 2 we show the cross section for absorption of a
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FIG. 1. Parameters which characterize a particular state as a
function of d» when the driving laser is exactly on resonance.
(a) Width in angstroms of the ~S)30p model state. (b) Shift in
angstroms of the ~S)30p model state. (c) Integrated cross sec-
tion of the ~S)30p model state.

probe photon as a function of the probe-laser frequency
for several different values of d&2, the driving laser is,
again, exactly on resonance. We have assumed that the
probe laser has a resolution of 5 X 10 a.u. —1 cm ' full
width at half maximum (FWHM). This figure is meant to
give an idea of what combination of experimental tools
will be necessary to obtain nonperturbative results. The
top curve is the cross section when the Rabi frequency is
slightly less than the resolution of the probe laser. The
series of peaks follows a strict Rydberg progression and is
nearly indistinguishable from the cross sections for much
smaller values of the Rabi frequency. For d &2

=6X 10
a.u. , which is slightly larger than the resolution of the
probe laser, we can definitely see nonperturbative effects;
two Rydberg series are visible near 0.0997 a.u. , one going
to each of the Rabi-split thresholds. For even larger d&2
the nonperturbative effects become more easily visible.
This figure shows that the ionization signal as a function
of the probe-laser frequency will appear to be identical to
that calculated by perturbation theory unless the Rabi
frequency is nearly equal to or greater than the resolution

.LI.

r errrrLrj ~&a
=10 'a. LI.cl 12

0 )JI 4 4 /4 4, /A vnhnhm

0.0992 0.0994 0.0996
~,(a.u. )

0.0998

FIG. 2. Cross section for absorption of a probe photon as a
function of its frequency, co~, for several values of d». The
driving laser is exactly on resonance. The resolution of the
probe laser is taken to be 5X 10 a.u.

Df =D(S„—e ') 'S,3. (26)

There is no coupling between channel
~
S ) and

~P )exp( i ~& t ) and hence th—e resonances in
~
S ) cannot

decay because df now has the same form as when there is
no driving laser. The resonances are at an energy such
that v&

=n —p( '. We have two parameters which
characterize the driving laser, d, 2 and co&, we can always
adjust these two parameters to produce a zero width res-

of the probe laser.
Another interesting feature of Fig. 2 is the appearance

of theoretical deviations in three out of four of the
curves. They are at -0.09988 a.u. in the top curve, at
-0.0998 a.u. in the d &z

= 8 X 10 curve, and at
-0.099 76 a.u. in the bottom curve. These are the ener-
gies where d, 2

= I ln . The reason for these glitches is
that there is a state with an extremely small width at
these energies [10]. To calculate the convoluted cross
section, we find the theoretical cross section at 60000 en-

ergy mesh points between 0.099 and 0.1 a.u. We then nu-
merically integrate the theoretical cross section with a
Gaussian weight function to obtain the convoluted cross
section at —1200 energy mesh points. Spurious results
are obtained when the theoretical width of a resonance is
smaller than or equal to the energy mesh. These glitches
are artifacts of the finite theoretical mesh which will not
appear in an experimental spectrum.

It should not be surprising that the autoionizing width
is extremely small when d, 2=1/n . At this energy, the
classical electron frequency is identical to the Rabi fre-
quency. In other words, the time it takes the electron to
return to the nucleus is exactly the same as the time it
takes the driving laser to excite and deexcite the core. In
this case the electron cannot gain energy by inelastically
scattering from the core and therefore it cannot ionize.
From Eq. (21) it is fairly easy to show where the zero
width states should be or, conversely, what are the values
of d&2 and co& which produce zero width states. When
vl =v2+ integer, the matrix [exp( —2i harv, ) ],.~
=5,jexp( —2irrvl). Since the identity matrix commutes
with all matrices, Eq. (21) reduces to
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FIG. 3. (a) Cross section for absorption of a probe photon as
a function of its frequency, co~. The resolution of the probe
laser is taken to be 10 a.u. The driving laser is exactly on res-
onance and d12 =10 a.u. (b) The vertical bars mark the ener-
gies where vl =v2+ k with k = 1,2, 3.

onance for any n. The glitches in Fig. 2 arise from ac-
cidental zero width resonances with v]:v2+ 1.

In Fig. 2 we show the evolution of the spectra with d, 2

when d&z is nearly equal to the resolution of the probe
laser. In Fig. 3 we present the spectrum when d i2 =10
a.u. and the resolution of the probe laser is 10 a.u. at
FWHM. In this figure we can clearly see the complex na-
ture of this spectrum. Near 0.0994 a.u. the spectrum is
fairly simple, consisting of two Rydberg series which can
be unambiguously identified by their field-free quantum
numbers. The series at slightly higher energy which has
more of the oscillator strength can be identified with the
bound-state series in zero field. The series at slightly
lower energy can be identified with the ~P )ns autoioniz-
ing series in zero field. Near 0.099 65 a.u. these two series
become strongly mixed. This is the energy at which the
classical frequency of the outer electron is twice the Rabi
frequency. If the electron leaves the nucleus with the
core in state ~S ), by the time it returns to the nucleus the
core is in state ~P ) and vice versa.

In Fig. 3(b) we show the energy region with the compli-
cated spectrum on an expanded energy scale. One strik-
ing feature of this graph is a periodicity in the "number"
of Rydberg series visible in the spectrum with increasing
n*. Near co =0.09977 a.u. , 0.09985 a.u. , and 0.09989
a.u. , the two Rydberg series merge into one within the as-
sumed resolution of the probe laser. The three vertical

2.0 I
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I I
I
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I
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0.0992 0.0994 0 ~ 0996 0.0998
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FIG. 4. Cross section for absorption of a probe photon as a
function of its frequency, co~. The resolution of the probe laser
is taken to be 5X 10 a.u. The driving laser is exactly on reso-
nance and d]2=8X10 a.u. The bottom curve is the same as
in Fig. 2. The upper curve assumes the photoabsorption instead
takes place from an excited state with dipole matrix elements
d' ' =0 d'+ ' = 1 and d'+ ' = 1.S 9 S P

bars in Fig. 3(b) mark the energies where a zero width
resonance can appear, and in fact the resonances closest
to these energies are extremely narrow and have not been
theoretically resolved even though we have used 40000
energy mesh points over the energy range shown in Fig.
3(b). The zero width resonances are at energies such that
vi=v2+k where k =1,2, 3. . . .

Another striking feature of these merged Rydberg lev-
els is that the number of merged peaks is roughly the
same (four, five, five) for each k. This fact can be under-
stood from fairly simple scaling arguments. As long as
k « v2, the values for which v, =v2+ k are
v2(k)=—(k/di2)' . If the probe laser has a fixed resolu-
tion 8' the fraction F of a Rydberg spacing at effective
quantum number vz which can be resolved is F =sWv2
(when F=1, the Rydberg levels near effective quantum
number v2 cannot be resolved). For each k, the fraction
of a Rydberg spacing which can be resolved is
F( k)=sW vz( k)=sW k/d zi. As long as ~v2+k —v, ~(F (k) the two Rydberg series will appear merged into
one. This gives a lower value of vz for which the series
appears merged as vz-—(1 —sW/diz)'~ (k/diz)'~ and an
upper value of vz—-(1+st/di2)'~ (k/diz)'~ . Using
8'/d&&=0. 1, s =1.2, and d]p:10 a.u. , this argument
gives 3.7, 4.7, and 5.3 for the width in effective quantum
number of the merged series. The two Rydberg series
merged into one near v, =v2+k because of the simple
model which we chose. In general, the spectra near
vi=v2+k [where ~vz+k —

vi~ (F(k)] will look like the
spectra with the driving laser off.

In Fig. 4 we show the cross section for photoabsorp-
tion from two different ground states when the driving
laser is tuned exactly to resonance and d, z =8 X 10 a.u.
The lower curve is the same as in Fig. 2 with
d ]2

= 8 X 10 a.u. The upper curve is the photoabsorp-
tion cross section when the initial state has odd parity.
For this case we choose d,' '=0, and d'+ '= 1 and

d,'+'= —1. When the driving laser is off the probe laser
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excites the atom to the autoionizing region below the
l
P )

state threshold. However, when the driving laser is
turned on, it can de-excite the core state before the elec-
tron can return to the nucleus. In the nonperturbative
region, two Rydberg series approaching the dressed
thresholds are visible in the spectrum. This shows that
the nonperturbative effects will be equally visible in spec-
tra where the core state is excited or de-excited by the
driving laser. For Fig. 4 we have again assumed the
probe laser has a resolution of 5 X 10 a.u. —1 cm

VI. REAL ATOMIC SYSTEM

In this section we show how to obtain the frame trans-
formation matrix U for a general atomic system. We also
show results for Mg when both lasers are linearly polar-
ized in the same direction and the driving laser is reso-
nant with either the 3s, /2-3p, /2 transition or 3s, /2-3p3/2
transition.

A. Frame transformation for Mg 3s-3p transitions

The specific atomic system which we will treat is the
photoabsorption from the Mg 3s ground state when the
driving laser is tuned to either the 3s&/2-3p&/2 or the
3s&/2-3p3/2 transition. The dynamics will be presented as
a cross section for photoabsorption of a probe-laser pho-
ton as a function of the probe-laser frequency for a given
frequency and intensity (represented by d, 2) of the driv-
ing laser. The frequency ~ of the probe-laser photon
will be large enough to excite the Mg 3s ground state to
a high Rydberg state 3snp. Finally, the driving laser and
the probe laser are taken to be linearly polarized in the
same direction; this direction will be taken to be the
direction of the z axis. Since the ground state has J =0
and the driving and probe lasers are linearly polarized in
the z direction, only the M =0 states will play a role in
the dynamics. Furthermore, only the odd-parity states
with odd J at energy E +~ and the even-parity states
with even J at energy E +co +cod will be coupled to-
gether because of the specific combination of polarization
and ground-state angular momentum and symmetry of
our problem [11]. The channels which we include in the
calculation at energy E +co of the undressed atomic
syste~ are 3~&/2Ep, /2 and 3s, /2cp3/2 with J=1 and
3s, /2Ef 5/2 and 3s &/2ef 7/2 with J =3. The channels
which we include in the calculation at energy
Eg + cLlp +cod of the undressed atomic system are
3s, /zcs»2, 3p»2', /2, and 3p3/2Ep3/2 with J=0, and
3s &/zc, d3/2, 3s, /2c. d ~/2, 3P &/zcP3/2, 3P3/2' &/2,

3p3/2Ep3/2 3pl/2ef5/2 3p3/2ef5/2 an p3/2Ef7/2
J =2, and 3si/2Eg7/2 3si/2Eg9/2 3p&/2ef7/2 3p3/2Ef 5/2
and 3p3/2Ef7/2 with J =4. Of course all of the channels
have M =0.

The frame transformation for a real atom is only
slightly more complicated than that discussed for the
model problem of Sec. III B. The only difficulty is that
for the undressed atom the total angular momentum of
the core is coupled to the total angular momentum of the
outer electron to give the total angular momentum of the
atom and its projection along the z axis. However, this

d,, = g dj, (JMlj, m,jomo).
J,M

(28)

The driving laser causes transitions between some of the
core states; this channel mixing is handled in the same
way as the model problem,

K
ap jo m O, a'pj'Om

O

)ap, ij m
. I I

i,j,m, i,j,m

XK.. . . , . . . , U. . . , , . (29)
iJcmcJOmo'I JcmcJOmo i Jcmc'a 'P

The dipole matrix element is

d = T d U,Pj OmO ~ ijcmcjomO 'j.m. aP
i,j,m

(30)

Equations (27)—(30) show the full frame transformation
for a general dressed channel atom. However, it is not al-
ways necessary to use these general equations because the
final reaction matrix, Eq. (29), will often have a "simple"
block-diagonal form. For example, for the Mg example
discussed in this section, we were able to obtain the full;
frame transformation matrix by listing all of the relevant
channels and inspecting their angular couplings.

B. Results

In Figs. 5 —7 we show our calculated cross sections
when the driving laser is tuned to the 3s&/2-3p»z transi-
tion to Mg. In all of these figures the driving laser is ex-
actly on resonance. These figures show how the spectrum
evolves for several values of d, 2 and the resolution of the

150—
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FIG. 5. Same as Fig. 2 except for Mg with the driving laser
exactly on resonance with the 3s, /2-3p &/2 transition in Mg+.

difFiculty is easily overcome by applying a frame transfor-
mation which decouples the two angular momenta,

.p. I I.I IK. .
ij m jomo, i'j m j Omo

= g(j,m,jomol JM)K. . . , . , (JMlj,'m,'j Omo),
JcJo'Jc JO

I

where K is the atomic, jj-coupled K matrix and
(j,m,j o m o l

JM) = (JMj,m, jom o ) is the Clebsch-Gordan
coefficient as defined in Edmonds [12]. The dipole matrix
element in this frame is
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FIG. 7. Same as Fig. 6 except with a probe-laser resolution
10 'a.u. FWHM.

FIG. 6. Same as Fig. 2 except for Mg with the driving laser
exactly on resonance with the 3s &/~-3p &/~ transition in Mg+.

probe laser. The ratio of d&z divided by the resolution is
probably the most important parameter which deter-
mines the appearance of the spectrum. When this ratio is
less than one, the spectrum looks like a simple unper-
turbed Rydberg series approaching the 3s, /z threshold.
As this ratio becomes larger, the spectrum becomes in-

creasingly complex. Probably one of the more striking
features of these figures is the similarity between some of
the Mg spectra and the corresponding model problem
spectra of Sec. V.

In Fig. 5 we show the cross section for absorption of a
probe photon as a function of the probe-laser frequency
for several diferent values of d&2 which are nearly equal
to the resolution of the probe laser. We have assumed
the probe laser has a resolution of 5 X 10 a.u. —1 cm
FWHM. This figure should be compared to Fig. 2. The
similarity between these two figures is remarkable.
Remember that the model problem which generated Fig.
2 had two Rydberg series approaching the Rabi split
thresholds and one open channel while Mg has eight
Rydberg series approaching the Rabi split thresholds as
well as hundreds of perturbing states which are attached
to the 3p3/2 threshold. In Sec. V we say that the nonper-
turbative effects become visible for d, 2=(8—10)X10
a.u. because both Rydberg series are clearly visible as
well as strongly interacting. However, because Fig. 5

resembles Fig. 2 so closely, it is safe to say that these non-
perturbative efI'ects are a generic characteristic of the
Rabi splitting and the resolution and do not depend
strongly on the atomic dynamics.

In Fig. 6 we show the cross section when the assumed
probe-laser resolution is 10 a.u. FWHM and

d&2 =10 a.u. These figures should be compared to Fig.
3 for the model problem. At this combination of resolu-
tion and Rabi splitting the complex underlying dynamics
of Mg is clearly visible near 0.2803 a.u. in Fig. 6(a). The
complex appearance of the resonances near this energy is
due to the interaction induced by the driving laser as well
as perturbations from the Rydberg states attached to the

3p3/2 threshold. It is pointless at this time to name each
of these structures because the spectrum is specific to our
chosen atomic system and excitation scheme. SuSce it to
say that when the Rabi splitting of the thresholds is a fac-
tor of 10 or larger than the resolution, the spectrum be-
comes dependent on the specific atom or molecule used in
the experiment. In Fig. 6(b) we show the spectrum on an
expanded energy scale which should be compared to Fig.
3(b) for the model problem. Again we see regions of re-
markable simplicity in a region where the spectrum
"should" be very complex. On this figure, we have again
marked the energies where vl=vz+k (k =1,2, 3,4) with
vertical bars. These are the energies where there is a pos-
sibility of zero width resonances. In fact, the resonance
at -0.280 75 a.u. has a very small theoretical width; we
used 60000 energy mesh points to cover the energy range
of Fig. 6(b) and this resonance is still unresolved (because
it is unresolved it appears to have an anomalously small
oscillator strength). Physically, the vertical bars mark
the energies where the excited electron is just returning
to the nucleus when the driving laser has just finished ex-
citing and de-exciting the core once (for k = 1), twice (for
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k =2), etc. Since the outer electron is returning to the
nucleus when the core is exactly the same state as when
the outer electron left, the dynamics is identical to that
with the driving laser turned off. Therefore, the spec-
trum appears to be simple at these energies.

In Fig. 7 we show the cross section when the assumed
probe-laser resolution is 10 a.u. FWHM and d, 2

= 10
a.u. At this higher resolution, the simple spectrum of
Fig. 6(b) becomes complex. However, there are still some
islands of simplicity near v, =v2+k (which are marked
by vertical bars on the graph) although these islands are
smaller than in Fig. 6(b) because of the higher resolution.
Again some of the resonances have a very complex struc-
ture which we have not tried to classify. In Fig. 7(b)
there appears to be possibly other islands of simplicity
around the energies v&

=v2+ k +—,'. At these energies, if
the electron leaves the core in the 3s&/z state, it returns
when the core is in the 3p &'2 state and vice versa (i.e., the
second time the electron returns to the nucleus the core is
in the same state as when the electron originally left).

In Fig. 8 we show the cross section when the driving
laser is exactly on resonance with the 3s&/2-3p3/2 transi-
tion. The assumed probe-laser resolution is 10 a.u.
FWHM and d ]2

= 10 a.u. These figures should be
compared with Fig. 7 for the 3s&/2-3p&/2 transition. No-
tice that the spectra are nearly identical when v& =v2+k
as expected. The differing atomic dynamics is only ap-
parent for the energies near v&

=vz+ k +—,'.
Finally, there is one last factor which may affect the

observability of the phenomenon which we have dis-

100
( )

80—

60—

cussed in this paper. Namely, the positions of the reso-
nances depends on d &2 and therefore if d I2 changes from
measurement to measurement or even during a particular
measurement, the resonances could become smeared out.
In Fig. 9 we try to model this effect by averaging the
cross sections with d, 2=9, 10, and 11 X 10 a.u. for a
probe laser with a resolution of 10 a.u. FWHM. The
coefficients which we have used for the averaging are —,',
—,', and —,

' [i.e., in Fig. 9 we plot the "averaged" cross sec-
tion, o =o9/4+o. ,o/2+cr»/4]. In Fig. 9 the spectra are
definitely smeared out compared to those in Fig. 8. The
resonances near the energies v, =v2+k with k =1,2, 3,4
(which are marked by the vertical bars in the figures) in
Fig. 9 have broadened compared to those in Fig. 8 but
they still seem to be distinct. However, at the energies
near v, =v2+k —

—,
' (which are about halfway between ad-

jacent vertical bars) the spectra are very smeared out due
to the higher density of resonances at these energies.
Fluctuations in d, z definitely lead to a smearing of the
spectra. As a rule of thumb, the smearing will be of the
same size as the "Auctuations" in d&z. For example, if
the resolution of the probe laser is 10 a.u. and d&2 can
change by 10 a.u. from measurement to measurement,
the apparent resolution will be close to 10 a.u. As
another example, if the resolution of the probe laser is
10 a.u. and d&2 can change by 10 a.u. the apparent
resolution will be close to 10 a.u. This analysis shows
that it will be crucial to keep d &2 as consistent as is exper-
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FIG. 9. Same as Fig. 8 except we have averaged the cross
sections with d]p=9 10 and 11X10 a.u. with coe%cients 4,
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imentally possible to avoid having the effect washed out.
At this point, we would like to repeat some of the main

ideas in this section. When the Rabi frequency is slightly
larger than the resolution, the spectrum does not depend
very much on the atomic dynamics. The amount of com-
plexity in the spectrum depends crucially on the Rabi fre-
quency compared to the resolution. Many of the reso-
nances are weak and/or closely spaced. It seems that the
full complexity of the atom-laser dynamics starts to be-
come apparent when the Rabi frequency is a factor of 100
or more larger than the resolution. However, striking
nonperturbative effects are apparent at much smaller
Rabi frequencies (e.g. , when the Rabi frequency is only a
factor of 10 larger than the resolution).

VII. CONCLUSIONS

In this paper we have presented the formalism neces-
sary to theoretically describe the atomic dynamics when
two core states of an atom are strongly coupled by a reso-
nant laser field. We use a frame transformation to obtain
the scattering parameters for the dressed channels in
terms of scattering parameters of the undressed channels.
In this approximation we are completely ignoring the in-
teraction of the driving laser with the outer electron; we
also ignore the interaction of the atom with the driving
laser when all of the electrons are near the nucleus. The
interaction we are ignoring gives above threshold ioniza-
tion; we are confident that our method will work when
there is very little above threshold ionization.

We have described a type of experiment which should
be able to detect nonperturbative effects due to the Rabi
oscillation of the core states. It seems that the sole re-
quirement for detecting these effects is that the Rabi fre-
quency of the driven core states must be larger than the
total resolution of a probe-laser —atom system. By total
resolution, we mean the broadening due to the laser, the
doppler effect, scattering, etc. When the Rabi frequency

is greater than twice the experimental resolution, Ryd-
berg series converging to each of the dressed state thresh-
olds become clearly visible in the spectra.

We have calculated the spectra which results from a
simple model problem in order to get a feel for the basic
effects. From this calculation we see that striking effects
occur both when the driving laser excites the core and
also when it deexcites the core. The driving laser needs
to couple two states in which one of the states is a part of
an important channel in the undressed atomic dynamics.
For example, in Ca the driving laser can be tuned to any
of the 4s, &2-4pz transitions, or 3dJ-4pJ, or 3dJ 4f~ t-ran-
sitions. We have also calculated the ionization spectra
for Mg as a function of the frequency of the probe laser
when the driving laser is tuned to the 3s, &2-3p, &2 transi-
tion as well as the 3s, &2-3p3/2 transition. The probe laser
has enough energy to excite Mg from its 3s ground state
to high-lying Rydberg states, 3s, &2np~, just below the
3si&z threshold. This system is probably not experimen-
tally accessible due to the high-frequency photons which
are needed for the excitations; however, these calcula-
tions for a real, multichannel atom give an idea of what
to expect experimentally for given combinations of Rabi
frequency and resolution. It is impossible that the most
accessible systems experimentally will be the heavier
atoms, for which substantial intensity in the lower-
frequency driving laser can be obtained.
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