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Resonance fluorescence from quantized one-dimensional molasses
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We study theoretically the spectrum of resonance Auoresence from one-dimensional molasses consist-
ing of two-level atoms with Zeeman substructure. The center-of-mass motion of the atom is treated fully
quantum mechanically. The spectrum shows sidebands due to transitions between vibrational levels in
optical potentials generated by the laser light. Detailed results are presented for the Jg = —' —+J, =—
atomic transition in a laser configuration with two counterpropagating waves with orthogonal polariza-
tions. We have solved the corresponding quantum master equation and calculated the relevant auto-
correlation function of the atomic dipole using (i) a direct numerical solution of the master equation, (ii)
a wave-function simulation of the master equation and correlation function employing periodic time-
dependent Bloch wave functions, and (iii) a semiclassical bipotential calculation for the spectrum includ-
ing a simple quantum correction.

PACS number(s): 42.50.Ar 32.80.—t

I. INTRODUCTION

Two recent experiments have reported observations of
motion-induced sidebands in the weak-field absorption
spectrum [1] and in the resonance fiuorescence spectrum
[2] from one-dimensional (1D) optical molasses in a
configuration consisting of two counterpropagating laser
beams with orthogonal polarizations (for related experi-
ments see also [3—6]). These experiments have demon-
strated for the first time we believe quantization of atom-
ic motion in optical molasses. Furthermore, these spec-
tra provide a direct means to determine the final tempera-
tures obtained in laser polarization gradient cooling [7].

In the present paper we present a theoretical study of
the spectrum of resonance fluorescence for 1D molasses
consisting of two-level atoms with Zeeman substructure
corresponding to J ~J, transitions, including a full
quantum treatment of the atomic center-of-mass degrees
of freedom. Here we will present results we have ob-
tained for a Jg=2 to J, =2 transition in a lin J- lin laser
configuration (defined in Fig. 1) with adiabatic elimina-
tion of the excited states. We have solved the corre-
sponding quantum master equation and calculated the
relevant autocorrelation function of the atomic dipole.
We have made a systematic comparison of solving our
model equations by three different approaches: (i) a
direct numerical solution of the master equation by
discretizing on a momentum grid, and calculating the di-
pole correlation function with the help of the quantum
regression theorem; (ii) a wave-function simulation of the
master equation [8—11] and correlation function employ-
ing periodic time-dependent Bloch wave functions; and
(iii) a semiclassical bipotential calculation for the spec-
trum including a simple quantum correction in the —,

' to —,
'

case. We have performed similar calculations for higher
order J ~J, transitions, without adiabatic elimination
and with different laser polarization configurations, and
these results will be presented elsewhere.

The paper is organized as follows. In Sec. II we give a
qualitative discussion of the basic physical mechanism
and present first results for the spectrum for a
J =

—,
' J, =—', atom. In Sec. III we give the master equa-

tion for general J to J, transitions, while Secs. IV and V
develop the corresponding wave-function simulation pro-
cedure used to solve the master equation and compute
the spectrum. A brief outline of the semiclassical ap-
proach is given in Sec. VI; Sec. VII discusses our results.
Technical details are summarized in the Appendixes.

II. QUALITATIVE CONSIDERATIONS

The physical picture underlying the spectrum of reso-
nance fluorescence from 1D molasses is illustrated in
Figs. 1 and 2 for a Jg= —,

' to J, =
—,
' transition. Figure 1

shows the atomic configuration for this model, as first
discussed in the context of semiclassical laser cooling (po-
larization gradient cooling) by Dalibard and Cohen-
Tannoudji [12], and more recently in a quantum version
by Castin and Dalibard [13—15]. We consider two coun-
terpropagating linearly polarized laser beams, so that the
positive-frequency part of the electric field is given by
E~~+~( t)z=~(e'" e„+e '" e )e ' '. By the substitution

!e q/2) Ie, /2) le 1/2)

lk

e,

g -1/2 g 1 /2

FIG. 1. Atomic-level scheme and Clebsch-Gordan
coefficients for a Jg = —' to J, = — transition in a linilin
configuration.
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z —+z —A. /8 and a rotation by ir/4 one gets the simpler
form of an electric field with position-dependent polariza-
tion

E,'~+'(z, t) =6'[sin(kz)e+, +cos(kz)e, ]e

where co is the frequency, k =2~/A, is the wave vector
with A, the wavelength of the laser light, and e+& are
spherical unit vectors.

For red laser detunings 6=co—co,z and low laser inten-
sities, i.e., small saturation parameter s = II /2/( b
+ I /4) ((1 with II the Rabi frequency and I the spon-
taneous decay width, the Stark shifts of the two ~g )
and ~g+ ) ground states will form an alternative pattern
of optical bipotentials U+(z). This is shown in the upper
part of Fig. 2: due to the large Clebsch-Gordan
coefficients for the outer transitions (see Fig. 1), minima
will occur for the state ~g+ ) at positions with pure cr-
light. In addition, spontaneous emission causes transi-
tions between these potentials via optical pumping pro-
cesses.

In the semiclassical picture of Sisyphus cooling [12]
one considers an atom moving on one of these potential
curves, say U (z). Transitions to the other potential
U+(z) then occur preferentially from the tops of U (z)
down to the valleys of U+ (z), so that on the average the
atomic motion is damped. In Ref. [13]the center-of-mass
motion of the atom is described fully quantum mechani-
cally in terms of optical pumping transitions between the
quantized energy levels (band structure) in the potentials
U+(z). This picture is valid in the limit of level separa-
tions Am„, much larger than the optical pumping rate

yo=2/9sl (which implies large laser detunings). In the
time domain this condition corresponds to a situation in
which a wave packet in the potential undergoes many os-
cillations with frequency cu„, before an optical pumping
process occurs. The band structure is shown in the upper
part of Fig. 2 for a potential with height Uo =100E~ with

Ez =A k /2M the recoil energy. Uo is defined by
Uo = —2/3sb. . As a result of laser cooling the atom will

occupy the lowest energy levels, and will thus be strongly
localized: for the parameters of Fig. 2, we find that 32%
of the population will be accumulated in the ground state
and 20% in the first excited state [1]. The lower part of
Fig. 2 shows the corresponding localization of the atom
in minima of the U+(z) potentials. We have calculated
these curves with the help of the wave-function simula-
tion procedure described in detail in Secs. IV and V.

Sidebands in the spectrum of resonance fluorescence
due to atomic motion can be interpreted as Raman tran-
sitions between the quantized energy bands. Figure 3
shows a typical spectrum. In this figure the spectrum
S +i(v) for cr+ polarized photons of frequency v is
plotted for emission at a small angle with respect to the
laser propagation axis z. The parameters are the same as
in Fig. 2. The frequency v is measured in units of the
recoil energy relative to the laser frequency co. This par-
ticular figure was obtained in an approximation where all
the contributions from the various Raman transitions
(Fig. 2) are added incoherently, i.e., neglecting interfer-
ence between the lines (for details see Sec. VII and Ap-
pendix C). For the present parameters this provides a
semiquantitative result for the spectrum —a comparison
of this result with the fu11 quantum calculations will be
given in Sec. VII. The vertical lines in the lower part of
this figure show the position of the transitions, as expect-
ed from the band structure (Fig. 2), and heights of these
lines according to their integrated line strengths. The
center peak in Fig. 3 consists of a coherent 5(v —co) func-
tion at the laser frequency and an incoherent background
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FICx. 2. In the upper panel the optical bipotentials and band
structure of the atom are plotted as a function of position z for a

2
to

~
transition. The potential depth is Up=100E&. The ex-

cited states were adiabatically eliminated. We schematically in-
dicate the two Raman processes between the ground and excited
states which lead to the red and blue sidebands in resonance
fluorescence. In the lower panel we show the spatial distribu-
tion of the atoms in the ~g+ ) state (solid line) and ~g ) state
(dashed line) for Up=100E& and yp=5/3E„. The atoms are
localized in the valleys of the corresponding optical potentials.

-60 -40 -20 0 20
(v—co) / co,

40 60

FIG. 3. Spectrum of resonance fluorescence S+&(v) for o.

polarized light as a function of the frequency v for a —', —transi-
tion. The parameters are Up =100E~ and pp=5/3Eg ~ The
upper curves are results of adding up incoherently emission
lines as discussed in the text. The vertical lines in the lower part
of the figure show the positions and the expected heights of the
emission lines for the two first sidebands, based on calculating
Raman transition rates between the quantized energy levels.
The excited states were adiabatically eliminated.
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of finite width (see below). The red and blue first-order
sidebands appear at frequencies corresponding to the
transitions E +Rco=E +, +Av and E +&+Aco=E +Rv
with n =0, 1, . . . principal quantum numbers for the ener-

gy bands [16]. Due to the anharmonicity of the potential
these transition frequencies are different, so that each
sideband consists of contributions from all of these close-
ly spaced transitions. The intensity of each of these lines
is related to the population of the initial states: an asym-
metry of a stronger red sideband versus a weaker blue
sideband indicates that there is more population in the
ground state than in the first excited state, etc., and is
thus a measure of the temperature of the molasses.

In Fig. 3 the first-order sidebands are dominated by the
0~1 peak, and have a shoulder due to the 1~2 transition
which gives an asymmetric line shape: this is an indica-
tion that for the present parameters the substructure due
to the various transitions n ~n+1 is almost resolved.
The vertical lines in the lower part of Fig. 3 show the po-
sition of the emission lines and their expected height
based on the interpretation in terms of Raman transitions
between energy bands. The width of the incoherent cen-
tral peak as well as widths of the individual lines in the
sidebands are determined by the time scale of the redistri-
bution rates n ~n' (n Wn'). For a constant spatial distri-
bution of atoms we would expect this time scale to be of
the order yo. In the present case, however, we see from
Fig. 2 that the atoms are well localized in the potential
wells compared with the scale given by the laser wave-
length. Thus the Lamb-Dicke parameter q=a/A, &1 is
small, where a is the localization length in one potential
valley and A, the wavelength of the light. This situation is
analogous to laser cooling of trapped ions in the Lamb-
Dicke limit, and we refer to Ref. [17] for a discussion of
resonance fIuorescence from trapped ions. In the Lamb-
Dicke limit the transition rates n ~n

'
( n Wn ') are

suppressed [1] and are of the order r) yo for r) ((1. The
widths of the individual lines in the spectrum will show
this narrowing with increasing localization (for a more
detailed discussion of this point we refer to Sec. VII and
Fig. 7). For our parameter values a second much weaker
sideband is also visible. Its substructure is better resolved
than that of the first sideband.

We conclude this section with remarks about the
different theoretical approaches presented in the follow-
ing sections. From the above discussion we infer that in
general a calculation of the spectrum of resonance
fluorescence requires a theoretical model where the
center-of-mass degrees of freedom are treated quantum
mechanically. Furthermore, no adiabatic elimination of
the internal degrees of freedom is possible, as the external
motion (cv„,) can be faster than the internal dynamics as
given by the optical pumping rate between the Zeeman
ground states (yo). In the following sections the quan-
tum master equation (generalized optical 81och equation)
is solved by the following methods.

(i) Direct solution of the master equation We have.
solved the master equation numerically by employing
discretization in a momentum basis with a grid spacing
given by the photon momentum Ak. This leads to a large
number of ordinary coupled differential equations that

can be integrated until the steady state is reached. The
same method provides, via the quantum regression
theorem, the dipole autocor relation function and the
spectrum. Alternatively, one can expand the density ma-
trix in a basis of Bloch energy eigenfunctions of the opti-
cal potential. For cu„, )&yo this gives, in a secular ap-
proximation, the population equations of Castin and
Dalibard [13]. The same scheme can be employed to cal-
culate the spectrum via the quantum regression theorem
(for details see Appendix C). This leads to the physical
picture of Raman transitions between the energy levels of
the optical potential. The advantage of this approach is
that it provides physical insight and in some cases semi-
analytical expressions for the spectrum in the limit of
well-isolated sidebands.

(ii) Wave functio-n simulations f8 1)j. Fo—r a system
with a large number of degrees of freedom X, a direct
solution of the master equation for the density matrix
p(t) becomes diflicult due to its large dimension NXN.
In the present case X is the sum of the internal and
(discretized) external degrees of freedom. As an alterna-
tive to solving the master equation for the density matrix
one can simulate the time evolution of the system in
terms of ¹omponent system wave functions which un-
dergo a sequence of quantum jumps (in the present case,
optical pumping cycles). For large N —when solution of
the density matrix becomes impractical —this quantum
Monte Carlo approach can still provide a tractable means
of obtaining spatial, momentum, and population distribu-
tions as well as spectra. This simulation is equivalent to
an exact solution of the master equation, apart from the
statistical error inherent in any simulation approach. In
the present problem we simulate a spatially periodic den-
sity matrix by propagating time dependent B-loch func
tions in the optical potential wells (see Fig. 2) while un-
dergoing a sequence of optical pumping cycles (Sec V).
This approach is of particular interest because it can be
extended to two and three dimensions.

(iii) Semiclassical bipotential motion Finally . it is of
interest to compare the spectra obtained by a fully
quantum-mechanical approach with those obtained by a
semiclassical method. The basic assumption of a semi-
classical approximation is an expansion Ak «Ap, with
Ap the width of the momentum distribution. For the pa-
rameter values studied in the present paper this assump-
tion is reasonably valid. A second assumption is that
there is no atomic coherence between the atomic ground
state Zeeman levels: while this is true for the special case
of a —,

' to —,'transition (with the excited states adiabatically
eliminated), the assumption of small Raman coherences
between ground states is not a priori correct for higher
angular momenta transitions. For the —,

' to —,
' transition

this gives a classical stochastic model of bipotential
motion [14,18], and we will compare the spectra obtained
from this model with results from the full quantum mod-
el. We emphasize that in most semiclassical treatments
further simplifications are made: a common assumption
is that the internal atomic degrees of freedom can be adi-
abatically eliminated (which leads to a Fokker-Planck
equation for the center-of-mass distribution), and a
second one is the assumption of a constant velocity
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[18—22]. Both of these simplifications are incorrect in
the present problem.

III. MODEL

A. Generalized optical Bloch equations

D =P DP +P DP =D' '+ D'+ '.
e g g e= (2)

In the rotating-wave approximation, the interaction
Hamiltonian between the laser and the atom is (we set
A'= 1 ) Hi (z, t) = —D'+ 'E,'i '(z, t) +H. c. Expanding the
electric-field amplitude in a spherical basis,

E'+'z) =e e (z)e*e ' ' g e (z)l2=1

We consider the one-dimensional situation of an atom
moving along the z axis in the electric field given by Eq.
(1). The internal atomic degrees of freedom are modeled
by a two-level system I l JgMg ), l J,M, ) I with Zeeman
substructure corresponding to a J ~J, transition.
Denoting by P and P, the projection operators on the
ground and excited atomic states, respectively, we write
the atomic dipole operator as

stant. The last term in (6) describes the recycling of the
electron to the atomic ground state by spontaneous emis-
sion and the associated momentum transfer with angular
distributions

2

ND(u)= 1—3 9

= 3
N+, (u) = 1+

Sk

Remarks

(I) Adiabatic elimination of excited states For .low in-
tensities, when the saturation parameter s is much less
than 1, the excited states can be eliminated adiabatically.
This gives the master equation for the density matrix of
the ground-state manifold pgg PgpPg,

pgg ' ( eapgg 'pgg h eir

+yo g I du N (u)[B (z)e '"']
o. =0, +1

o =0, +1

(in our model 6' is position independent), we can write H,
as where

Xp [e '"'B ~ (z)] (8)

H, (z, t) = ——2)(z )e'"'+ H. c.0
(4)

with

2)(z) = g (
—1) A e (z),

o. =0, +1

II =2@(e llD llg ) /+2J, + 1,

M, M
l J,M, ) (J,M„ I~l J,M, ) (J,M, l(~=0, +1).

H, tt= +( —b, —i—,'I )P, +H, (z)—= + V(z),

a non-Hermitian effective Hamiltonian. Equation (6) and
H ff are written in a rotating frame. H, ff describes the
motion of the damped atom and its coupling to the laser
driven internal atomic dynamics. The first term in H, ff

(7) is the kinetic energy of the atom; b, =co —co,g denotes
the laser detuning, and I is the spontaneous decay con-

Here 2)(z) is the dipole operator, 0 the Rabi frequency,
and 2 an atomic lowering operator with
(JgM; 1 tr

l J,M, ) a Clebsch-Crordan coefficient for di-

pole transition le )~ lg ) with polarization o =0,+ l.
The generalized optical Bloch equations for an atom

moving in the field (1) and coupled to a bath of vacuum
modes of the radiation field are thus

p = i (H.~p PH'. ~)— —

+I g 1 du N (u)[e '"'A ]p[Ate+'"']
o =0, +1

with

H,itch, ir, VI A ~+yoB (z) . (10)

(2) Symmetries and periodic stationary solutions.
Translation by A, according to the operator T& = e' P is a
symmetry operation in our problem. Under the unitary
transformation Ti the master equation (6) remains form
invariant: for p a solution of the master equation with
Liouville X, TipTi will also be a solution of the same
master equation (i.e. , with the same X). Actually, in view
of E,'i+ i(z +A, /2, t) = —Ei

i '(z, t) the Bloch equation (6) is
invariant under the transformation T = Ti &2(P, —P )

(see Refs. [23,18] for an analogous symmetry in the two-
level system), and the adiabatically eliminated master
equation (8) remains invariant under T = Ti zz. Thus we
define periodic stationary solutions R of the master equa-
tion according to TRT =R. For the adiabatically elim-
inated problem this condition is

& z
I
R

I
z ' ) =

& z + A, /21R
I
z '+ k /2 )

in the coordinate representation and

(plR lp') %0 (for p —p'=0, +2 irik+4A' ,k. . . ) (12)

and B (z)= A 2) (z). The second term in (9) corre-
sponds to the shift of the ground state and a width of the
ground levels due to optical pumping. In a similar way,
the operator B (z)e '"' describes absorption of a laser
photon followed by spontaneous emission with polariza-
tion o. including the momentum transfer to the atom.
Explicit formulas for B, etc. are given in Appendix A.
We see that Eq. (8) is obtained from Eq. (6) by the substi-
tutions
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in the momentum representation. Defining a Wigner
function [18]F(z,p) as a quasiprobability of position and
momentum associated with R we see that this condition
reads F (z,p) =F(z + i(.I2,p).

Note that the stationary periodic R is an improper
solution as it cannot be normalized. On the other hand,
integration of the generalized optical Bloch equations (6)
and (8) for any normalized initial density operator
p(t =0) provides us with a solution p(t) which is normal-
ized at all times, Trp(t)=1. However, this normalized
density operator p(t) never reaches a steady-state spatial
distribution. For long times, it is reasonable in our calcu-
lations to replace p(t) by the periodic stationary R
defined above, which is normalized on the unit cell. In
particular, we approximate a normalized Wigner function
f (z,p, t) associated with p(t) and with spatial extent
L =NX (N is the number of unit cells) near the center of
the distribution by f (z,p, t) =( I /N)F (z,p).

B. Spectrum of resonance Auorescence

E' '(x, t)=i g f d k'
' 1/2

ACOk x

2eo(2~)

x ek, ,e'" '"bk, , (t) (13)

H„F= —fd'x'5( x—x(t))[D'+'E' '(x', t)+H. c. ],

which leads to the Heisenberg equation

d
bk .(t)= icok b—

k (t)
dt

1/2

f Acok+ dx'
2eo(2vr)'

Xek D(+)5(x' —x(t)).

e
—ik' x'

(14)

(15)

with bk ~ destruction operators for photons in the mode
(k', o'). The Hamiltonian for the atom-vacuum field in-
teraction is

The positive-frequency part of the electric field
E'+'(x, t) in the Heisenberg picture has the mode expan-
sion

A simple definition of the spectrum is based on calculat-
ing the change in time of the occupation number of pho-
tons in the mode (k', o'),

S = (b„+ .(t)b„. (t))
dt

I
e ~~d ))g f idt '~k'

( g t (t) ik x(t)g '(ti)e —ik x( ))(+'C C (t ~ )
2eo(2~)' 2J, + 1 o

(16)

where the dipole correlation function follows from the
quantum regression theorem

(t t )
—( g 't (t)eik'. x(t) g ( t~ )

—ik x(t') )'
=TrI At eik'xex(( —i')p e

—ik'x

(t ~ t') (17)

with X the master-equation operator. For large time
difI'erences we expect the correlation function to factor-
ize; this gives rise to a coherent 6-function contribution
in the spectrum. We simplify the spectrum (16) under the
following assumptions: (i) To obtain a one-dimensional
model we replace k' x by its projection on the z axis. (ii)
We are interested in emission at small angles to the axis
given by the laser propagation k (thus the polarization
components of interest are o —), and we confine ourselves
to frequencies which allow us to approximate k'z =kz in
the exponentials of Eq. (16). This is valid for

~

k ' —k
~
L (( 1 with L the dimension of the medium (the

delocalized atom). (iii) In calculating the spectrum we
use the improper stationary density matrix R which is
periodic in i(.. (iv) With adiabatic elimination of the ex-
cited states the expression for the spectrum is obtained by
the substitution (10). A similar discussion for the spec-
trum can be given in terms of the autocorrelation func-
tion of the electic field in the far-field region.

IV. WAVE-FUNCTION SIMULATION FOR p

The Hilbert space underlying the dynamics of the gen-
eralized optical Bloch equations is the product space of
center-of-mass wave packets L (R), and the internal
atomic degrees of freedom with dimension
(2J&+ I)+(2J, +1) [or (2Js+ I) in the adiabatically el-
iminated case]. Direct numerical solution of the master
equation is complicated by the high dimensionality of the
problem [the dimension of the density operator p(t) is
N XN for an N-dimensional system space]. As an alter-
native to solving the master equation, one can simulate
the time evolution of the system in terms of system wave
functions ~P, t) (with dimension N). Apart from the
finite sampling implicit in any simulation approach, no
further approximations such as adiabatic elimination of
the internal degrees of freedom or semiclassical approxi-
mations are made. Below we give an outline of the gen-
eral wave-function simulation procedure for the master
equations (6) and (8) and the dipole correlation function
(16).

A. Generalized optical Bloch equations

Following our previous work [8] (see also Refs. [9—11])
a simulation approximation to the density matrix p(t) is
obtained as follows.

(i) Initial conditions The initial state . p(t =0) can be
specified as a pure state or a statistical mixture. Typical-
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ly, p(t =0) will be a product of a center-of-mass distribu-
tion and a density operator for atoms in the ground states
[p(t =0)=p, pz ]. In this case, we choose a set of
(normalized) initial wave functions IP, t =0) as a product
of center-of-mass wave packets and atomic ground-state
wave functions to represent this ensemble.

(ii) Propagation and quantum jumps W. e propagate
the system wave function

I P, t ) according to the
Schrodinger equation

i Ig, t & =H,~I&, t &,
dt

(18)

c(t, u, o. )=X (u)I llA Ig, t)II'. (19)

with H, s. the non-Hermitian Hamiltonian (7). This equa-
tion is a multicomponent Schrodinger equation, which
determines the evolution of the system between two spon-
taneous emission events: Eq. (18) describes the coupled
time evolution of the atomic center-of-mass wave packets
and internal atomic structure, and the non-Hermitian
part of M,~ corresponds to radiative damping due to
emission of photons from the excited state. In particular,
the probability density for spontaneous emission of a
photon at time t in the direction u and with polarization
0 is

p, (t)= f dt'f(t')e " ' 'e' A p(t'). (24)

Here X is the master operator and p(t) the density opera-
tor according to (6). p(t) and p, (t) obey the equations

p(t) =Xp(t),

p, (t)=Xp, (t)+f(t)e ''A p(t).
(25)

Following arguments given in Refs. [8—11], p&(t) (and
thus S,[f(t)]) can be simulated by propagating the pair
of system wave functions

Iy, t) =H„Iy, t),

IB,t) =H„IB,t)+ij(t)e ''A. I-y, t),. d
(26)

where
I P, t ) is the system wave function introduced in

Sec. IV A, and IB, t ) can be interpreted as describing the
weak perturbation of the system according to the source
term involving the function f (t). Equations (26) can be
simulated with quantum jumps dictated by Ip, t ) [com-
pare the discussion of Eq. (19)]. The jump condition for
Ig, t ) is again given by Eq. (20), and the corresponding
equation for IB,t) is

The time t, u, and o. of the "next quantum jump" can be
simulated from (19). The wave function after the jump is

(20)
Ensemble averaging gives

pi«)= « l»»&4' 'I~III' '&ll'& &&.

(27)

(28)
with t+ (t ) the time after (before) the jump. Thus spon-
taneous emission of a photon is associated with a transi-
tion from the excited state to the ground state ( A ) and
as kick of the center-of-mass of the atom (e '"') where
the component u (the photon momentum along z) is
drawn according to the distribution )V' (u). After the
quantum jump we continue integration of (18) up to the
next spontaneous emission, etc.

(iii) Simulation results. The density matrix is obtained
from

B. Spectrum of resonance Auorescence

The spectrum of resonance fluorescence is proportional
to the Fourier transform of the stationary dipole auto-
correlation function (16). To derive a simulation pro-
cedure for the spectrum we consider the functional

S,[f(t)]=f dt'f(t')(e' '"A (t)e ' "'A (t')),
0

(22)
with f (t) a function to be specified below. Using the
quantum regression theorem we rewrite (22)

S,[f(t)]=Tr[e' 'A p, (t)]

with

(23)

p(t)=« I@ t &&& tl~lllg t &II'&&,

where (( )) denotes averaging over wave-function realiza-
tions. In the case where the excited states are eliminated,
we make the replacement (10) in Eqs. (18) and (20), re-
spectively.

Note that both (27) and (28) involve normalization with
respect to Ip, t ).

Two special cases for the function f (t) are of interest.
(i) f,(t)=e+'": This gives the spectrum directly ac-

cording to Eqs. (16)

S(v)=e ' 'S, [e'"]+c.c. (t~ ~ ). (29)

(e' '"A" (t)e ' A. (t, ) &= &((B, , tie' 'At Ig, t »&,
0

(30)

where IB, , t) for t )to obeys the same homogeneous
0

equation as lg, t ) with initial condition at to as imposed
by the 5 kick, IB, , to+ ) =e ' 'A Ig, to). To obtain the

stationary correlation function as a function of ~=t —tp
these simulations have to be repeated for randomly distri-
buted t0 ~ In the numerical calculations of this paper the
second method was used.

From a physical point of view the first case corre-
sponds to probing the system with a fixed frequency field,
whereas in the second case the correlation function is de-
rived by kicking the system with 6-function pulses.

This method requires that a perturbed wave function
I B,t ) is solved for each frequency component v.

(ii) f, (t)=5(t —to): This gives the correlation func-

tion
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V. WAVE-FUNCTION SIMULATION
OF THE PERIODIC STATIONARY

DENSITY MATRIX R

In Sec. III A we have argued that for sufficiently long
times the density matrix p(t) is well approximated by the
periodic stationary solution R. Here we discuss the
wave-function solution for R, and simulation of the cor-
responding spectrum of resonance fluorescence.

In view of the translational invariance of H,z, 3 and
B (z) with respect to translations by A, we take for the
Monte Carlo wave function the ansatz

(z~/, t ) = —e'q'u (z, t),
1

277
(31)

i u (z, t)=H",gu (z, t)—: + V(z) u (z, t).a, , (p+q)
2M

(0 ~ z ~ A, ). (32)

with u (z, t)=u (z+A, , t) the periodic part of the time-
dependent Bloch function and q H( —k/2, k/2] a quasi-
momentum in the first Brillouin zone. The Schrodinger
equation for u (z, t) is

over a time during which the periodic ensemble reaches
the stationary state. In the steady state we follow a single
Monte Carlo wave function, replacing ensemble averages
by time averages, and taking "measurements" of the spa-
tial, momentum, and energy distributions, etc. (see re-
marks below) at time steps large enough to guarantee sta-
tistical independence. This gives us the periodic density
matrix

(z~R ~z') =(([e' 'u (z, t)][e' 'u (z', t)] )) . (35)

Remarks

(1) For the stationary periodic density matrix (35) there
are no coherences between different families qWq' [com-
pare Eq. (11)]. We emphasize that in the wave-function
simulation the quasimomentum q is treated as a continu-
ous variable (and is not discretized as in our numerical
solution of the master equation).

(2) Consider a single "measurement of the spatial
and/or momentum distribution" for a given Bloch func-
tion (31) at time t in the Monte Carlo simulation. The
(periodic) spatial distribution of atoms in the atomic state
E 1S

Note that the quasimomenturn q now appears as a shift of
the momentum in the kinetic-energy term. The wave
function (31) describes a periodic system with finite ex-
tent and (z~P, t) is an improper wave function. We
choose to normalize the wave function on the unit cell,
restricting us to the Hilbert space L ([O, A, )). Propaga-
tion of the Bloch function according to (32) can be done
very efficiently employing a fast Fourier transform (FFT)
split operator method [24] outlined in Appendix B.

Consider now the action of the jump operator B (z)
on the Bloch wave function (31). We have

P;(z, t)= ~(z, i~(b, t) ['—:~u;(z, t)~ .

The momentum distribution is

P;(p, t)= ((p, l'~y, t )
~

5(p —
q

—mk) c'; '(t)~

with a Fourier expansion for the Bloch functions

+ oo

uq, (z, t)= g c'; '(t)e'

(36)

(37)

(38)

e '"'B (z)[e'~'u, (z, t )]=e 'q "'[B (z)u (z, t + )]

~e'q'u (z, t+), (33)

where q'=q —u +nk H( —k/2, k/2] with n =0,+1 the
quasimomentum after emission, i.e., the initial quasi-
momentum q minus the momentum transfer due to the
photon shifted by 0, +k back to the first Brillouin zone.
Thus a quantum jurnp of the Bloch wave function with
quasimomentum q produces another Bloch state with
quasimomentum q' given by Eq. (33) and

u .(z, t) 8 (z)e '"+" 'u (z, t). (34)

The quasimomentum q, therefore, plays the role of a
"family index": q is preserved during the propagation
(32) between two spontaneous emissions, while spontane-
ous emission mixes the different families q —+q . It is
straightforward to generalize these equations to the cal-
culation of the spectrum and dipole correlation function
(see Sec. IV B).

Thus a wave-function simulation of the stationary
periodic density matrix proceeds as follows. First we
propagate a Bloch function (31), with arbitrarily chosen
initial (z ~P, t =0), according to (32) and (33) over a
time interval large compared with the cooling time, i.e.,

where the coefficients c', '(t) are provided directly by the
FFT algorithm of Appendix B. A similar expression can
be derived for the Wigner function.

(3) In the limit where the laser-induced conservative
potentials in H, tt (7) and (9) are much larger than the
imaginary part (i.e. , the widths introduced by radiative
decay or optical pumping), the results for the spectrum of
resonance Auorescence can be readily interpreted in
terms of transitions between band-structure eigenstates of
a Hamiltonian H =P /2M + U(z) obtained from H, tt by
setting the non-Hermitian part equal to zero. With the
Bloch ansatz (z~aq) =1/&2vre'q'u (z) we have the ei-

genvalue problem

H'~'u ~(z)= +U(z) u (z)=E qu (z)(q) (p+q)'
2M

with a a set of quantum numbers labeling the bands.
This band structure is illustrated for the J =

—,
' —+J, = —,

'
together with potentials in Fig. 2.

Wave packets of Bloch states are superpositions

(z~P, t ) = g f dq a (t)e('q'u (z), (40)
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—= g a (t)e'~'u (z). (41)

Equation (41) is a wave packet periodically repeated with
As we remarked before, the density matrix (35) has no

coherences qWq', but will in general develop atomic
coherences between different a quantum numbers.

Energy distributions of the Bloch functions (31) with
respect to the Hamiltonian H, which defines the energy
bands, are

while the Bloch wave functions (31) used in the simula-
tions are superpositions of states with different 0. but
fixed q,

( z~ y, t ) = e '~'u (z, t)

with f+(z,p, t) the Wigner distribution of the population
for the ~g+ ) states. The interpretation of the above
equation is straightforward [26,27]. The left-hand side of
Eq. (44) corresponds to Brownian motion in a potential
U+(z), the difFusion D+ being due to random kicks from
the spontaneous emission of o.+—photons. The right-hand
side describes jumps between the potentials due to emis-
sion of m.-polarized photons.

It is straightforward to solve (44) by simulation in a
way analogous to the quantum version described in Sec.
V. The simulation algorithm follows by expanding Eq.
(44) for small time steps [26]: we start with an arbitrary
initial condition z, p, and, e.g. , state ~g+ ). We evolve
z(t) and p (t) over a small time step b, t according to

P (E, t) = ( P„t ~(5(E H) P„—t )
—= ( u, t ~(5(E H'~' )

~

—u, t ) . (42)
dz(t)=p(t), dt,

dp(t)= —dU+ ldz dt++2D+ [z(t)] dW(t),
(46)

In practice, we introduce an energy window of width AE
according to

gE 2K

P+( E, t) = (u„ t u, , t . 43
(E H(q))2K+ gEzlc

The parameter K should be taken sufficiently large to ob-
tain a rectangular window function; typically a value of
K =2 is sufficient. As outlined in detail in Ref. [25], Eq.
(43) can be calculated by solving a set of K inhomogene-
ous Schrodinger equations. We have used this scheme as
one way to find the populations of the energy bands.

VI. SEMICLASSICAL SPECTRA

As mentioned in Sec. II, for the J =
—,
' to J, =

—,
' transi-

tions the ground-state coherences are exactly zero after
adiabatic elimination. This allows a classical interpreta-
tion of the time evolution of the atom in terms of motion
in a bipotential [14,22]. By taking the Wigner transform
of Eq. (8) and subsequent expansion of f (z,p +fik, t) in
i5k, we get

( t)ex(tf t)g( t ~)e 1k'(()p( t ) (47)

where W(t) is a Wiener process. The rate y+(z) deter-
mines the probability of a jump from U+ to U: if we
find [1 yo(z)t) t] (—g, where q is uniformly distributed
random number in (0, 1], we change the potential +~—,
and give the momentum p (t) a random kick:
p~p++2D+ (z)ly+(z) G, where G is a random num-
ber with Gaussian distribution, etc. Finally, the momen-
tum and space distributions are determined as histograms
of realizations of z( t) and p (t) trajectories.

The asymmetry of sidebands in the spectrum of reso-
nance fluorescence is a quantum feature. Semiclassical
spectra are symmetric. To obtain the asymmetry in the
spectrum we keep the momentum kicks due to photons in
the semiclassical calculation of the two-time correlation
function. Using the quantum regression theorem the
two-time correlation c+, (t —t') may be written as
Tr[B+, (t)e+' '"p, (t)] with

p
Bt m Bz

where

a2
+D++ (z) f+ (z,p, t)

Bp
(44)

d U+(z) D(z) —f (z,p, t)
dz Bp Qp

=+I r (z)f (z p, t) -)'+(z—)f+(z p —t)]

The Wigner transform reads

f )
= —e'" ' '[3f+ (z p, t)+ 2 2

—e 2'"'f + (z,p —k, t') ] (4&)

U+ (z) = Uocos (kz), U (z) = Uosin (kz),

y+(z) =yocos(kz), y (z) =yosin (kz),

D+ (z) = [35+7cos(2kz) ],
Xk rs

90

D++ (z) = [6-+cos(2kz) ],
Ak Is

90

(45)

[where L is the master equation of Eq. (44) and a similar
equation follows for f, ]. Note that the two terms on
the right-hand. side of the above equation correspond to
two processes: the first term describes absorption of a
laser photon and emission of a Auorescence photon in the
same direction (with no net momentum transfer to the
atom), and absorption and emission into opposite direc-
tions (with momentum transfer 2))lk). We get
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c+, (t —r')= g f dz f dp fdz'f dp'[(1 —e '"')g p(j, z p, t~j', z',p', r')

+(1—e""')e ""'g P(j z p t~j' z' p' —Ak r)]f (z' p'), (49)

where we define the conditional probability density

P(j,z,p, t) ~j ', z',p', t') = [e " ' ']JJ'.Biz —z')lip —p')

(50)

for the atom to be found at time t in state j at z,p, given it
started in state j ' at z', p' at time r'. The gJ' are weight
factors due to the di8'erent transition rates: (++ =

—,',
(++=

—,', and ( =1.

VII. DISCUSSION

A first survey of the features of the spectrum and the
numerical results for the configuration of Fig. 1 has al-
ready been given in Sec. II. In Fig. 2 we have plotted the
band structure in the optical potential for Uo=100E~,
and have semiclassically indicated the Raman processes
between the energy bands in the optical potential. Figure
3 is a resonance fluorescence spectrum obtained by add-
ing incoherently the contributions from the various Ra-
man lines: for a discussion of the spectrum in a basis of
energy bands, see Appendix C. The vertical lines in the
lower part of Fig. 3 at frequencies predicted by the band-
structure calculation have heights proportion-
al to the populations of the initial states times the
square of the Raman transition matrix elements,
(q'n'g ~e ~qn g ). Here ~qn g ) are Bloch en-

ergy eigenfunctions with q the quasimomentum, n the
principal quantum number, and g the atomic-state la-
bel.

As outlined above, we have calculated the spectra
S +&(v) by three methods, a direct numerical solution
of the quantum master equation, a wave function simula-
tion, and a semiclassical approach. We find that the pre-
dictions of all three methods agree to within a few per-
cent. As part of the calculations for the spectrum we ob-
tained spatial and momentum distribution functions and
populations of the vibrational levels in the optical poten-
tials for polarization gradient cooling, in agreement with
those given in Refs. [13,15]. In Figs. 4(a) —4(d) we com-
pare the —'-—' spectrum according to the three approaches2 2

for the same parameters as in Figs. 2 and 3: we plot the
spectra calculated by (a) numerical solution of the master
equation, (b) wave function simulation with 4000 realiza-
tions for the dipole correlation function, (c) wave func-
tion simulation with 80000 realizations, and (d) the semi-
classical spectrum (according to Sec. VI). Agreement be-
tween these calculations for both the position of the lines
and the line shape is excellent, apart from some minor
differences in details of the sharp features of the red side-
band. For the present parameters we find almost quanti-
tative agreement with the simple spectrum of Fig. 3 ob-
tained by incoherently adding Raman transition lines. In
addition, our approach allows us to compute the coher-

ences n n—' between the energy bands (which are
neglected in the secular approximation [13,15]): for the
parameter values of Fig. 4 these density-matrix coher-
ences are two orders of magnitude smaller than the corre-
sponding population terms. For the solution of the mas-
ter equation a discretization of momenta of an A'k grid
with 64 points was used. The wave-function simulation
was performed by simulating quantum jumps between
family states with a continuum of quasimomenta q while
representing the Bloch function on a spatial and momen-
tum grid of 64 points. The time step At for integration
was typically between At = T/6 to T/30 with
T=27r/co„, the classical oscillation time of the wave
packet in the optical potential. Convergence of the
Monte Carlo approach can be seen from a comparison of
Figs. 4b) and 4(c). In practice, 10000 realizations are
sufficient to obtain a reasonably smooth spectrum. It is
somewhat surprising that the semiclassical spectrum with
a simple quantum correction agrees so well with the full
quantum calculation. We emphasize, however, that —,

' to
—' is a special case as the atomic coherences between the2

ground states are exactly zero. To calculate the spec-
trum, we tabulated the stationary dipole correlation func-
tion c+&(r) as a function of time. The time interval was
chosen large enough to guarantee convergence to the
asymptotic value [obtained by factorizing the correlation
function in Eq. (17) for large times]. Spectra were then

(b)

(c)

-60 -40 -20 0 20 40 60
(v—co) i co,

FIT+. 4. Comparison of the (a) spectra of resonance Auores-
cence S+ & ( v) for a —' to —transition obtained by discretizing the
master equation (8) on an Ak grid and computing the spectrum
via the quantum regression theorem; (b) spectra from wave-
function simulations (Sec. IV) with 400 realizations and (c)
80000 realizations; (d) spectrum from a semiclassical bipotential
calculation with a simple quantum correction (Sec. V). The pa-
rameters are the same as in Fig. 3. The excited states were adia-
batically eliminated.
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d t U =200E& and 20E&, respective y.dashed lines correspon to

In both cases yo= 5/3E&.

0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1--

0
-3 -1 0 1

(v—m)&c „
2 3

FIG. 7. The incoherent contribution n S (v) to the central
lotted for Uo= ~ s=200E (solid) U = 100E& (dashed), and

=5/3E . The inset shows theU =20ER (dash-dotted) with yo=
s for

—A. /8&z (A./8. Increasing Uo localizes atoms in t e va ey
the potential and leads to a narrowing of the spectrum.
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where (~ ~) denotes matrix elements obtained by integrat-
ing the Bloch functions over the unit cell O~z ~A, /2.
The two matrix elements of B+ in the above
equation show that transitions n ~n' (n'Wn )

within U are suppressed by a factor g, while inter-
well transitions —~+, i.e., the matrix elements
(qn' —

~e
'" Bo(z)~qn+), are exponentially small. The

atom localized at z =0 experiences predominantly o.

polarized light, so transitions ~g &~~e 3/2& are back
are dominant; due to the small overlap between wave
functions with different n, these transitions change the vi-
brational level only rarely. The resulting reduction of the
cooling rates is rejected in a line narrowing of the spec-
tra (Fig. 7) and slow damping time scales in the correla-
tion functions (Fig. 5). The width of the sidebands in
Figs. 4 and 6 is determined by two factors. First, due to
the anharmonicity of the optical potentials the Raman
transitions n ~n+1 between the bands will have different
transition frequencies (compare the vertical lines in the
lower part of Fig. 3). Second, we have broadening due to
optical pumping. The substructure which develops in
Figs. 4 and 6 for large Uo corresponds to the 0~1 transi-
tion and indicates that the lowest transition is almost
resolved within the sidebands.

We conclude this section with a brief comparison of
the computational efficiency of the direct integration of
the master equation (on an A'k grid) versus the wave-
function simulation method based on propagating time-
dependent Bloch functions with the split-operator FFT.
In both cases the excited states were adiabatically elim-
inated. Within the time it takes to compute the steady-
state momentum and spatial distributions for the —,

' to —,'
transitions from the master equation, approximately
115000 realizations are done. Since typically 10000 real-
izations are necessary to obtain smooth distributions, we
see a clear advantage for the wave-function simulation
method. For the spectrum, on the other hand, we obtain
approximately 12000 realizations within the time needed
to solve the master equation and correlation function.
Thus in this case we did not find a computational advan-
tage of the simulation method. We could see the trend,
however, that the Monte Carlo approach becomes more
eKcient for higher-order J ~J, transitions. All these
comparisons are for a single-CPU computer. According
to our experience, one of the central advantages of the
Monte Carlo method is that it allows a trivial paralleliza-
tion by running the same program in parallel on several
computers. In practice, we have run the wave-function
simulation in parallel on up to 25 medium and low-end
computer workstations with a corresponding significant
gain in computational speed.

cal bipotential model. An interpretation of the sidebands
and their substructure in the spectrum has been given in
terms of Raman transitions between the energy bands,
and the widths and heights of these lines have been relat-
ed to Raman transition rates between these energy eigen-
states in the optical potential. Localization of the atomic
distribution on the scale given by the wavelength (Lamb-
Dicke limit) leads to a slow time scale of laser cooling
which is reAected in the widths of the lines. In the
present paper we have reported results for —,

' and —', transi-
tions in a linllin configuration with the excited states adi-
abatically eliminated. We have performed similar calcu-
lations for higher angular momenta transitions and other
laser configurations. These results will be reported else-
where. It seems promising to extend the wave-function
simulations using split-operator FFT methods to 2D
problems [28].
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APPENDIX A: EXPLICIT FORMULAS
FOR THE JUMP OPERATORS

+ [2+cos(2z) ] I
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& &

—
I ] . (A 1)

If we set UD = —2/3s b„ the bipotential U+ (z) = (s /
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APPENDIX 8: PROPAGATION
OF THE MULTICOMPONENT WAVE FUNCTION

USING THE SPLIT-OPERATOR FFT METHOD

In this appendix we give the explicit formulas of
different operators found in the master equation, in the
adiabatically eliminated case derived in Sec. III:

X2) =
—,
'

I [2—cos(2z) ] i
+ & & +

i

VIII. CONCLUSION 1. Split-operator method

We have given a theoretical analysis of resonance
fluorescence from 1D molasses. We have formulated the
theory for a general J to J, transition. The center-of-
mass motion has been treated quantum mechanically.
The autocorrelation function for the atomic dipole has
been calculated by numerical solution of the master equa-
tion, a wave-function simulation, and within a semiclassi-

According to Sec. III A the multicomponent wave
function ~P, t & EL(IR)C obeys t-he Schrodinger equa-
tion (18) between two spontaneous-emission events. The
Hamiltonian H, tt has the form H,~=P /2M + V(z ).
Note that V(z)=g, . ~i & V, .(z)&j ~, with i,j atomic level
indices, is an operator acting both on the center of mass
and internal degrees of freedom. It is important for the
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= U~( b t ) Uv(b t )+O(ht )',

or in symmetrized form

U(ht ) = U~(b t12) Uv(b t ) U~(b t /2)+O(b t')

(Bl)

(B2)

with error of order At . Details and an estimate of the
error can be found in [24]. The time evolution due to
Ux(b, t) and Ux(t) and Uv(b, t) can be calculated readily
in a momentum and coordinate representation, respec-
tively,

discussion below that H,z can be written as the sum of
two terms, the first one depending on p and the second
one being a function of z alone. We define a time-
evolution operator U ( t —t '

) =exp [ —iH, ft( t —t '
) ]. Since

the exact U is not known, we approximate U for a small
time step At by the split operator

U(gt )
((P /2M)(at —iv(2)kt+O(gt2)

Choosing n =2 with m E N, one can use the coeKcient
FFT algorithm which involves only n log(0(n) operations.

By using the FFT split-operator technique one enforces
periodic boundary conditions: (t (z) =P(z +L). This fact
makes this method well adapted for propagating the
time-dependent (periodic) Bloch function introduced in
Sec. IV. This Bloch function has period A, ; thus choosing
A, =L we discretize the wave function in the unit cell
0 z k while the FFT guarantees the periodic continua-
tion.

3. Band-structure calculation

We have employed the Fourier basis ( lz; ), lp; ) ) [29] to
solve the band-structure eigenvalue problem (with period-
ic boundary conditions&. The discretized Hamiltonian in
this basis is

U~(&t)ly, t &= f dplp)e '" " "'&ply, t &,

U (bt)ly, t&= fdzlz&e 'v" '&zip, t),
(B3)

n

&z, lH'"lz ) = g [l bp cos[l(i —j)bzbp]
1=1

where & p l P, t ) and & zl P, t ) are connected by a Fourier
transform. Note that Uz involves exponentiation of the
N-level system matrix V(z) (which has to be calculated
once).

2ilq—hp sin[1 (i j)bzbp )]—
+ [ V(z, )+q ]6, . (B8)

2. Discretization

We represent the wave function on a space grid in the
interval (0,L ] by

APPENDIX C: SPECTRUM AND MASTER EQUATION
IN THE BASIS OF BLOCH

ENERGY EIGENFUNCTIONS

with z, =i Az (i = 1, . . . , n ), bz =L /n and normalization
convention

n

I, = y hzlz; &&z;l.
i =1

For the momentum representation we use a grid

(B&)

(B6)

+,.p.g e
277

(B7)

with p, = —p „+re, p „=n~/I, and Ap =2~/
(nb, z). The pair P, and y, is connected by a discrete
Fourier transformation

The spectrum S (v) can be obtained by solving the set
of equations (25) according to Sec. III B. In this appen-
dix we will write out the equation for the periodic per-
turbed density matrix R1 for —,

' to —,
' in the basis of Bloch

eigenfunctions lnqm ). Here n is the main quantum num-
ber, q denotes the quasimomentum, and I=+—,

' is an

atomic state label. We derive this equation under a secu-
lar approximation valid for co„,)&@0, i.e., when the side-
bands are well separated. This relates the various lines in
the spectrum to Raman transitions between the energy
bands. The corresponding population equations for the
density matrix R can be found in Ref. [13].

Consider a matrix element of the periodic density ma-
trix R between Bloch states lnql ), & nql Rln'q'l'). Note
that by writing angular brackets, we mean integration
over the interval —~ &z & + ~. The periodicity of R al-
lows us to split up each of these integrals into a sum of
integrals over the unit cell. With z =g+ N A, /2
(g'E(O, A/2], N =0,+1,. . . ) we have

&«llRln'q'l'&= ge 'I"' ')"ge'I ""f d'gf 'dg'~„*, (g)~„,(g')e '«e+'~"&llR(g, g'+~'X/2li'& (Cl)
M M' 0 0

—(q —q') R„'i(„(.. (C2)
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Thus the consequence of the periodicity of R is that we can factor out the 6 function in q
—

q . In a similar way we can
reduce transition matrix elements of the operators B (z)e '" with u H [

—k, +k]

(n, q, l ~B (z)e '"' n', q', l') =5 —(q —q'+u —k) (n, q, l ~B (z)e '" ~n', q', l'), (C3)

where we have used the periodicity property B (z +XX,/2) =( —1) B (z ) and introduced (
~ ~

) as a shorthand notation
for the integral of the Bloch function over the unit cell, f o d g .

The correlation function c (r), which determines the spectrum, is given by

(r)= J dq g g (nql~B (z)e ' '~n'ql')R[. „ i „i,
n, l n', I'

(C4)

where (nql~R, ~n'q'l') =5[(vr/k)(q —q')]R f.„ i „i.
In the secular approximation the equation for R f.„+ i „t separates into blocks for m =0, +1, . . . , which giVes the

spectrum for the central line, the first sidebands, etc. These equations are

0= —i (v E„—E„+—
)
— g[(n +mql~B B ~n +mql)+(nql BtB +nql)] R f.„+

+ g J du X (u)g g(n+mql~B e '" ~n'+mq+u kl')R'f —+„"+ ".i„i(n'q. +u kl' B —e+'"'~nql)Xo

C7 I' n'

+(n+mqlle ' 'B
l nql )R qt„t. (C5)

The first term on the right-hand side of this equation contains the detuning of the emission frequency v from the tran-
sition n+ n and the sum of the decay width due to Raman transitions out of the initial and final states. The second
term comes from the recycling term in the master equation, while the inhomogeneous term involves the populations
which weight the different lines.
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