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Relativistic coupled-cluster calculations for open-shell atoms
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Ground- and excited-state energies are calculated by the relativistic coupled-cluster open-shell Fock-
space method for Li, C, 0, F, and Na and their ions. The coupled-cluster approximation including sin-

gle and double excitations in a self-consistent manner, is implemented. The no-pair Dirac-Coulomb
Hamiltonian is taken as the starting point. Mean-length basis sets of balanced Gaussian spinors are used

to span the atomic orbitals.

PACS number(s): 31.20.Tz, 31.30.Jv, 31.50.+w

I. INTRODUCTION

Relativistic quantum mechanics and field theory are
essential in order to model a wide range of observable
phenomena in atomic and molecular physics to the accu-
racy demanded by many current experiments [1].
Efticient and accurate theoretical and computational
methods, incorporating relativistic effects together with a
good treatment of electron correlation, are required for
the purpose. The past few years have seen an intensive
development of relativistic many-body techniques in
quantum chemistry and, in particular, the method of ful-
ly relativistic (Dirac-equation-based) many-body pertur-
bation theory (RMBPT) [2,3]. The RMBPT provides a
powerful and systematic method for calculating the prop-
erties of many-electron systems. The first few terms of
the perturbation series sufBce for accurate calculations of
the properties of highly charged ions [4], but the method
is less suitable for neutral atoms, where higher orders of
RMBPT are non-negligible. The expressions for the
higher orders become so complicated that direct pertur-
bative studies are rarely carried out beyond second order.
An alternative treatment is provided by so-called all-
order methods, where infinite subclasses of contributions
are summed. One of the most promising of these is the
coupled-cluster (CC) formalism [5]. It leads to all-order
equations, which upon iteration yield the order-by-order
expressions for the Rayleigh-Schrodinger linked-diagram
expansion. The formalism thus shares with the order-
by-order approach the property of size extensivity, im-
portant for accurate calculations on heavy elements,
where the relativistic effects are the most significant. The
CC method gives electron correlation with high accura-
cy, and is widely applied in nonrelativistic atomic and
molecular calculations [6]. The development of relativis-
tic CC methods has been discussed [7], but few applica-
tions have appeared. The closed-shell relativistic CC
scheme was used, both in numerical and finite-basis-set
forms, for ground-state calculations of two- [8] and four-
[9,10] electron atoms only, with the exception of our re-
cent report [11]including the Ne and Ar atoms. Applica-
tions to open-shell systems are even fewer. To our
knowledge, only the linearized coupled-cluster approach
in the pair approximation, suitable for systems with just

V= g A+A+ A+A+ —g A,+U(t)A,+ .
1

i(j lJ I

(2)

Here an arbitrary potential U was included in the unper-
turbed Hamiltonian Ho and subtracted from the pertur-
bation V. The potential U is chosen to approximate the
effect of the electron-electron interaction; in particular, it
may be the Dirac-Fock self-consistent-field (DFSCF) po-
tential. The nuclear potential V„„,includes the effect of
finite nuclear size. The A+ are projection operators onto
the positive-energy states of the Dirac Hamiltonian in the
potential V„„,+ U. Due to the presence of these opera-
tors, the Hamiltonian (1) has normalizable, bound-state
solutions. Lindgren [7,15(a)] has shown that a well-
defined subset of the full QED perturbation series may be
based on this no-virtual-pair Hamiltonian. Omitted rela-
tivistic and QED effects can be identified, sorted in order
of a (the fine-structure constant), and added later, if
desired, either in a perturbative manner or in the usual
coupled-cluster procedure. These effects include (1) in or-
der O(a )—the leading, unretarded part of the trans-
verse photon exchange (the Breit interaction)

+12 Ial a2+«i r12)(a2 r12~ 12)]«12 (3)

(2) in order O(a )—retardation, negative-energy state
effects, and radiative corrections.

The Coulomb potential I lr&z describes the instantane-
ous electrostatic interaction, and the Breit potential (3) is
the magnetostatic term. Adding the two leads to the best
description of Lorentz invariance in relativistic interac-
tions, and increases the accuracy of calculated fine-

one valence particle, was implemented for Li, Be+ [12],
and Cs [13].

The starting point for our development of relativistic
CC calculations in c-number theory is the time-honored
relativistic "no-pair" Dirac-Coulomb Hamiltonian
(HDC), originally introduced by Sucher [14] to avoid the
"continuum dissolution" problem associated with relativ-
istic many-body calculations. We write this Hamiltonian
as HDC =Ho+ V, where (using atomic units )

Ho= g A,+[ca; p;+c (P; —1)+V„„,(i)+ U(i)]A,+. , (1)
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structure splittings and inner electron bonding energies
[3,16,17]. The potential (3) has been used in relativistic
calculations for atoms, in particular in the DFSCF pro-
cedure [18—20], where effects through order a are in-
cluded in the zero-order Hamiltonian. Other relativistic
atomic calculations [21—25], both Dirac-Fock and corre-
lated, show that the Coulomb interaction alone yields
good results for light elements (Z (20). The latter ap-
proximation is used in the present work.

II. COMPUTATIONAL METHOD

where

7;S r, s, t, u

&rs~~tu &=&rs~tu &
—

&rs~ut & (5)

&rs~tu &= f dx, dx~V„*(x,)%,'(x2)r, ~'+, (x, )%„(x2). (6)

Here f„,and &rs~ tu & are, respectively, one-electron DF
and antisymmetrized two-electron Coulomb interaction
matrices over Dirac four-component spinors. The effect
of the projection operators A+ is now taken over by the
normal ordering, which requires annihilation operators to
be moved to the right of creation operators, as if all an-
ticommutation relations vanish. The Fermi level is set at
the top of the highest occupied. positive-energy state, and
the negative-energy states are ignored.

By adopting the no-pair approximation, a natural and
straightforward extension of the nonrelativistic open-
shell CC theory emerges. The multireference state-
universal Fock space coupled-cluster approach is em-

ployed here, which defines and calculates an effective
Hamiltonian in a low-dimensional model (or I') space,
with eigenvalues approximating some desirable eigenval-

ues of the physical Hamiltonian. According to
Lindgren's formulation of the open-shell CC method
[15(b)], the effective Hamiltonian has the form

In q-number theory, the Dirac-Coulomb Hamiltonian

HDC is rewritten in terms of normal ordered products of
the spinor operators [r+s I and I

r+s+ut
J [14,25],

H~ —HDc —
& oIHDc lo &

= g f„,[r+s]+—,
' g &rs~~tu &[r+s+ut], (4)

The upper indices in the excitation amplitudes reAect the
partitioning of the Fock space into sectors, which corre-
spond to the different numbers of electrons in the physi-
cal system. This partitioning allows for partial decou-
pling of the open-shell CC equations [26]. The equation
for the (m, n) sector involves only S elements from sec-
tors (k, l), with k & m and l ~ n, so that the very large sys-
tem of coupled nonlinear equations is separated into
smaller subsystems, which are solved consecutively: first,
the equations for S' ' ' are iterated to convergence; theS" ' (or S' ") equations are then solved using the
known S' ' ', and so on. This separation, which does not
involve any approximation, reduces the computational
effort significantly. Presently our relativistic CC program
includes the (0,0), (1,0), (2,0), (0,1), (0,2), and (1,1) sectors.

The lower index l in (9) goes, in principle, to the total
number of electrons. In practice, it has to be truncated.
The level of truncation rejects the quality of the approxi-
mation, i.e., the extent to which the effect of the comple-
mentary Q space is taken into account in the calculation
of the effective Hamiltonian. The most common trunca-
tion level is at l=2. The resulting CCSD (coupled clus-
ters with single and double excitations) scheme involves
the fully self-consistent, iterative calculation of all one-
and two-body virtual excitation amplitudes, and sums all
diagrams with these excitations to infinite order. As
negative-energy states are excluded from the Q space, the
diagrammatic summations in the CC equations are car-
ried out only within the subspace of the positive-energy
branch of the DF spectrum.

The selection of the model space plays a crucial role in
this method. From the practice of nonrelativistic calcu-
lations, it is known that intruder states [27], which spoil
the convergence of the calculation, occur sometimes.
The relativistic case may be expected to present even
more difficulties because of fine-structure split tings.
Careful construction of the model space may alleviate the
problem. In particular, the so-called incomplete model
space [28] may be useful in many cases. Our relativistic
CC programs can implement complete as well as incom-
plete model spaces.

TABLE I. CCSD energies for Li and Na (a.u. ). See scheme

(10).

H,~=PHQP,

where 0 is the normal ordered wave operator,

(7)

Q =
t exp(S) ] (8)

X X X
m ~On +0 l&m+n

In addition to the traditional decomposition into the sum
of terms with different total (l) number of excited elec-
trons, the excitation operator S may be partitioned ac-
cording to the number of valence holes (m) and valence
parttcles (n) to be excited,

Li+

Li

Li
Na+

Na

1s 'So

2s Slq2
2

2p P 1 y2

2p P3 g2

3s S,q2
23p P1g23g2

2s' 'So
6 1S

3s Sln2

3p Ply2
3p P3 y2

3s''S,

Relativistic

—7.276 447 2

—7.474 055 8
—7.406 205 5
—7.406 202 6
—7.350 107 7
—7.333 186 5

—7.496 804 4
—162.074 431

—162.260 395
—162.184 524
—162.184 445

—162.280 023

Nonrelativistic

—7.275 472 1

—7.473 241 6

—7.404 9108

—7.349 374 6
—7.332 327 8

—7.495 972 2
—161.855 681

—162.041 389

—161.965 719

—162.061 024
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TABLE II. Transition energies in Li and Na (cm j. Here and in subsequent tables, IP is the ioniza-
tion potential, EA denotes electron alnity, and EE is the excitation energy, relative to the ground state
of the same species. The sign & is followed by the fine-structure splitting.

Li
IP
EE

2s Slg2
2p Pl y2

Relativistic

43 370
14 891.38

Nonrelativistic

43 346

Expt. '

43 487
14 903.66

Li
EA

2p P3zz
3$ S& g2

3p 'P~n, 3r2

2s SQ

14 892.01
27 204
30 917

4 993

& 0.63 14 997

27 186
30 927

4989

14 904.00
27 206
30 925

5 000

& 0.34

Na
IP
EE

Na
EA

'Reference [37].

3s S1/2

3p P3y2

3s' 'S,

40 815
16 651.44

16 668.79

4 308

40 758

& 17.35 16 608

4 310

41 449
16 956.18

16 973.38

4 403

& 17.20

Iu. ear.CUZ.WTIOXS

Calculations were carried out for the Li, C, 0, F, and
Na atoms and their ions. The sequence of the open-shell
CC calculations for the diA'erent systems is

M+(0, 0)~M(0, 1)~M (0,2) for M=Li, Na,
M+ (0,0)~M+(0, 1)—+M(0, 2) for M=C,
M (0,0)~M (1,0)—+M(2, 0) for M=O,
M (0,0)~M(1,0)~M+(2, 0) for M=F .

(10)

(12)

(13)

In all cases, the Dirac-Fock equation was first solved in a
basis of Gaussian-type functions (GTF) for the appropri-
ate reference state in the (0,0) sector. Consecutive sets of
CC equations were then iterated to convergence in the se-
quences indicated in (10)—(13). The Gaussian spinors
were carefully chosen to avoid "variational collapse" [29]
in the DF procedure. To this purpose, basis spinors were
made to satisfy the condition of kinetic balance [30] and
relativistic boundary conditions associated with a finite

nucleus, described here as a sphere of uniform proton
charge [31]. The atomic masses used for Li, C, 0, F, and
Na were 6.939, 12.011 15, 15.994, 18.9984, and 22.9898,
respectively. The speed of light c was taken to be 137.037
a. U.

The well-tempered ( 1 ls6p) GTF basis set of Matsouka
and Huzinaga [32] was selected for the Li atom because
of its compactness and special optimization for DF calcu-
lations. It was augmented by two sets of diA'use s and p
functions with exponents 0.02949 and 0.008 12, and two
sets of polarization d functions with exponents 0.38246
and 0.10712. The uncontracted (13sgp2d) basis of Van
Duijnveldt [33] was used for C, 0, and F, and for Na the
(12s9p) uncontracted basis of McLean and Chandler [34]
was augmented by two sets of diffuse s functions (ex-
ponents obtained by geometric extrapolation) and a d po-
larization function (exponent 0.4). Atomic functions with
the same l but different k quantum number (e.g., p &&2 and
p 3/p ) were expanded in terms of the same set of basis
functions.

The DF equations were solved using the REAToM pro-

TABLE III. Fine structure of the 2p levels in Li (a.u.). Energies relative to Li

DF

CCSD

CCSD+ Breit (PT)

Experiment

'Present work.
Reference [12].

'Reference [37].

2pir2

—0.128 415 98'
—0.128 638 49
—0.129 758 34'
—0.130242 80
—0.130240 65

2p3n

—0.128 413 46'
—0.128 635 94"

—0.129 755 45'
—0.130239 73
—0.130239 07

2p3y2 2p

0.000 002 52'
0.000 002 55

0.000 002 89'
0.000 003 07
0.000 001 56

0.000 001 53'
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C+2

0 2

0

0

2s 'So

2p P
1 /2

2p P3/2

2p2 2P

2p2 2P

2p2 2P

2p6 'S

2p P
2p P3/2

2p P
42p
42p

Relativistic

—36.543 785 9

—37.435 168 5
—37.434 833 3

—37.842 405 0
—37.842 323 7
—37.842 162 4
—74.732 350 5

—75.054 1984
—75.053 230 8

—74.999 714 1
—74.998 859 8
—74.998 443 0

Nonrelativistic

—36.527 194 7

—37.418 478 2

—37.825 905 6

—74.676 750 0

—74.998 1169

—74.943 349 9

F

F+

2 "S
2p P1 /2

2p P3/2

43p
43p
43p

—99.855 1103

—99.748 026 2
—99.745 972 5

—99.102 154 6
—99.100 507 5
—99.099 7120

—99.763 154 3

—99.655 008 9

—99.008 583 8

TABLE IV. CCSD energies of C, 0, and F (a.u.). See
schemes (11)—(13).

gram from the MOTECC scientific package [35]. Special
codes were written for the calculation of integrals that do
not appear in DF calculations (and are therefore not in-
cluded in MOTECC), and for performing integral transfor-
mations from basis spinors to atomic ones. Our nonrela-
tivistic coupled-cluster programs [36] were modified to
allow for the use of Dirac four-vectors. As a test of this
program, it was used in nonrelativistic spin-orbital corre-
lation calculations of open-shell atomic systems, giving
full agreement with corresponding orbital nonrelativistic
CC calculations.

IV. RESULTS AND DISCUSSION

The results of relativistic and nonrelativistic coupled-
cluster calculations for the atomic systems studied are
shown and compared with experiment [37,38] in Tables
I—V. Tables I and II show the results for alkali-metal
atoms Li and Na and their ions. The accuracy of the to-
tal relativistic energies is comparable to that of the nonre-
lativistic energies computed in the same Hilbert space
(Table I). Transition energies (Table II) are close to ex-
perimental values. The considerable relative error in the
fine-structure splitting of the 2p P states of Li is probably
due to neglecting the Breit interaction, which strongly
affects this splitting [12,17]. Evidence to that is presented

TABLE V. Transition energies of C, 0, and F (cm ').

Relativistic Nonrelativistic Expt. '
C+

IP

EE

2p P

2p P3/2

195 637

74
195 615

196659

64
&64

IP

EE

EE

2p2 3P

2p2 3P

2p 'P

89 379

18

53

&18

&35
89 420

90 878.3

16.4

43.5

& 16.4

& 27. 1

0
EA

EE

EE

2p PQ

2p4 3P

2p4 3P

11 958

188

279

& 188

&91
12 020

11 818.7

158.5

226.5

& 158.5

& 68.0

EE
F+

IP

EE

EE

2p P1/2

2p' P3/

2p4 3P

2p4'P,

2p4 3P

23 502

451

141 753

362

536

& 451

& 362

& 174

23 735

141 875

27 555

404

140 554

342

491

& 404

& 324

& 149

'References [37,38j.
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in Table III, which shows that our values are similar to
those of Blundell et al. [12] without the Breit term, and
it is the latter that brings their results close to experi-
ment. CCSD correlated energies and transition energies
of the C, 0, and F atoms are collected in Tables IV and
V. As expected, relativistic effects increase rapidly with
the atomic number, from 1 mhartree for lithium to 0.2
hartree for sodium. This is the first presentation of rela-
tivistic open-shell coupled-cluster results for atoms with
more than one valence electron. The results should not be
regarded as definitive, since the basis sets used are too
small (especially in high-l channels) to approach conver-
gence for these systems [3,25]. Still, agreement with ex-
perimental transition energies and (more important for
relativistic calculations) fine-structure splittings is quite
good. Our computational procedures and programs are
now being improved, so that bigger and better bases may
be used in the future.

V. SUMMARY AND CONCLUSION

A relativistic open-shell coupled-cluster scheme applic-
able to many-electron atomic and molecular systems has

been presented. Test calculations of the ground and low-
lying excited states on some first- and second-row atoms
and ions were performed. The relativistic CC program is
limited at present to its CCSD form. The Breit interac-
tion has been neglected, and the two-electron interaction
is treated "nonrelativistically" as the instantaneous
Coulomb repulsion. Work is now in progress on the in-
clusion of the Breit interaction in the scheme. Extensions
to higher orders of the excitations and to further sectors
of the Fock space are also planned.
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