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Frequency shifts in spontaneous emission from two interacting atoms
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A model radiating system consisting of two atoms in close proximity is analyzed. This system demon-
strates the influence of spatial coherence on the spectrum of the radiation field. Explicit expressions for
the degree of coherence, the source spectrum, and the spectrum of the radiation field are derived. The
results are discussed in terms of Wolf s work [Phys. Rev. Lett. 56, 1370 (1986)] on this effect, which can
be considered in terms of a multiple-atom analog of the eft'ects of radiation reaction on a single atom, i.e.,
spontaneous decay and the Lamb shift.

PACS number(s): 42.50.Fx, 32.70.Jz

I. INTRODUCTION

In the past few years there has been a good deal of
research into the effect of the spatial coherence properties
of sources of radiation on the spectra of the field that the
sources emit. It was first demonstrated theoretically [1]
that unless the spectral degree of coherence of a planar
secondary quasihomogeneous source obeys a certain scal-
ing law, the normalized radiation spectrum of the field
produced by such a source will differ from the normalized
source spectrum [2]. This prediction has been subse-
quently verified experimentally by several groups [3—7].
Similar effects have been considered for radiation from
primary sources [8—10], from illuminated pinholes
(Young's interference experiment) [11—14], and for
scattering, both from static [15,16] and from dynamic
random media [17—19].

To get a better insight into the physics underlying this
effect, it is desirable to examine the various processes by
which radiation sources can become spatially correlated.
In the investigations carried out so far, three possible
mechanism have been considered: direct electronic ma-
nipulation of the coherence between the signals driving a
pair of sources (e.g. , acoustic transducers, radio antennae)
[20—22]; control of spatial coherence of a secondary
source by propagating incoherent light through specially
designed optical systems [3—7, 12—14]; and scattering of
light from spatially correlated random media [15—19].
Primary sources of radiation have not received as much
attention as other types of source, because of the inherent

difhculty in controlling the spatial coherence of spatial
distributions of optical radiators. The notable exception
is the experiment of Bocko, Douglass, and Knox, who
used acoustical rather than optical waves [21]. In this ex-
periment the correlation of two random acoustical
sources (transducers, driven by the filtered outputs of two
noise generators) was controlled electronically.

It is generally assumed that when atomic vapor radi-
ates, the fluorescence spectrum is proportional to the
spectrum of the Auctuations of the dipole moments of the
individual atoms. This assumption underlies all of atom-
ic spectroscopy. However, because of the effect of spatial
coherence of a source on the spectrum of the emitted ra-

diation, it is clear that this assumption cannot be true in
general. In fact, under certain circumstances the Auores-
cence spectrum may significantly differ from the spec-
trum of the atomic fluctuations. It is, therefore, impor-
tant to identify the mechanisms which can give rise to
statistical correlations between the fluctuations of two
spatially separated atoms.

One such mechanism has recently been discussed by
Varada and Agarwal [23]. When two atoms are in close
proximity of each other, they will interact via their radia-
tion fields. As we shall see, this interaction gives rise to
three distinct effects: shifting of energy levels, changing
of the lifetimes, and introducing correlatjons between the
fluctuations of the polarizations of the atoms Varada an. d
Agarwal considered effects of correlations between two
two-level atoms irradiated by a thermal field. They ana-
lyzed this system by numerically solving the master equa-
tion which describes the Auctuations of the two atoms.
However, this model has the drawback that it is inherent-
ly anisotropic. The strength of the coupling between the
two atoms is strongly dependent on the directional orien-
tation of the Auctuations of the dipole moment. There-
fore the vector nature of the dipole moment must be care-
fully considered.

In this paper we present an analysis of a two-atom sys-
tem. We introduce an isotropic atomic model, thereby
avoiding the problems associated with a two-level model.
We perform the calculation in the Heisenberg picture and
obtain explicit formulas for the correlation functions and
the spectra of the atoms and of the field.

II. AN ISOTROPIC MODEL FOR THE ATOM

We will label the individual atoms of the atomic system
under consideration by the subscripts a, P, etc.
(a,13=1,2, . . . , 1V); thus r is the position vector of the
ath atom. Its dipole moment operator will be denoted by
p [24]. Boldface characters denote vectors and boldface
characters with overbars denote dyadics. The lowercase
italic letters i, j, k, etc. will enumerate the three Cartesian
components of vectors and dyadics. Greek letters A, , p, v,
etc. will label different plane-wave modes of the elec-
tromagnetic field. Each of the atoms will be described by

47 1336 1993 The American Physical Society



47 FREQUENCY SHIP' I'S IN SPONTANEOUS EMISSION FROM. . . 1337

&1 =o, m =ol P Il =l, m =0& =pe3, (2)

&1 =o,m =Ol p, Il=1,m = —1& = —p —(e, —iez) .1

Here e1, e2, and e3 are unit vectors along the three axes of
quantization and p is a real-valued constant, dependent
on the integral of the radial parts of the wave functions of
the levels in question, e.g.,

p =v'3e f R„'o(r)R„,(r)r dr,
0

(3)

a simple four-state model: three degenerate upper levels
(a P state) and a singlet ground state (S state). The effects
of electron spin are ignored. This model has the advan-
tage over the more well-known two-level atom model in
that there is no breaking of spherical symmetry. We will
label the four states by their angular momentum quan-
tum numbers 1 and m (see Fig. 1).

The dipole moment operator of the ath atom is given
by the formula

m=1
p.= y &l=o, m =ol.p. Ii =1,m&. ll =o, rn =o&.

rn = —1

X&1 =l, ml. +H. a. ,

where the ket Il, m & denotes the state of the ath atom
labeled by quantum numbers I and m, and H.a. stands for
the Hermitian adjoint of the expression which precedes
it. The transition dipole matrix elements
&1 =o, m =ol p Il = l, m & can be calculated easily us-

ing the spherical harmonic representation of the angular
momentum eigenstates. They are tabulated in many
books (see, for example, Ref. [25]), and are

&1 =o, m =Ol p ll =l, m =1& = —p (e, +iez),1

lo&—:Ii =0,m =0&

1—(Il=l, m =1& +Ii =1,m = —1& ),

—(ll = l, m =1&.—Il = l, m = —1&.),
(4)

with i =1, 2, and 3 enumerating the three Cartesian
directions x, y, and z, respectively. These operators have
the following commutation properties:

[b,bp] =0,
[b,bp] =0 (a&P)

3

[b,b ]= g e;e~li& & jl —Ilo&.&ol
i j =1

Here I denotes the unit dyadic.
Using this notation, it is not difticult to show that the

Hamiltonian operator for the ¹ tom system interacting
with the electromagnetic field is given by

B=ficoogb b + gAco~&qaq
a

+i@ig g g [a &(b +b ) exp( —ik& r ) —H. a. ]
a

We then have the simpler expression for the dipole mo-
ment operator:

p =p(eqlo& &ll +e210& &2I +e3lo& &3I )+H. a. (5)

Let us introduce the non-Hermitian vector transition
operator for the ath atom,

3

b = y e;Io& &il

ll = I,m =1) l = 1,m = 0) ll = 1,m = -1)

hE = hcoo

ii=0, m=O)

FICi. 1. A schematic diagram of the four-level atomic model
introduced in Sec. II.

where e is the charge of the electron and R„&(r) is the ra-
dial part of the wave function [labeled by the principal
quantum numbers n (lower level) or n' (upper level), and
the angular momentum quantum numbers 1 =0 and 1].

The notation may be simplified in the following way:
Instead of using the eigenstates of the z component of the
angular Inomentum operator /3 to describe the degen-
erate upper level, we use a set of linear combinations of
them, chosen so that the transition dipole matrix ele-
ments are real and aligned along the three axes of quanti-
zation. We will use the following notation:

where ~0 is the resonance frequency of the atom transi-
tion in question, &z is the annihilation operator for the
A,th mode of the electromagnetic field, with wave vector
kz, frequency co& (lkzl =co&/c, c being the speed of light),
and polarization given by the unit vector e [26]. The
dagger denotes the Hermitian adjoint operator. The sym-
bol A is Planck's constant divided by 2~. The vector I is
given by the expression

1/2
COg

2e0 V4
(9)

where V is the quantization volume for the electromag-
netic field, p is given by Eq. (3), and eo is the vacuum per-
mittivity.

It is possible to define a vector operator analogous to
b for a more general electric dipole transition, from a
(21+1)-fold degenerate 1 state to a (21+3)-fold degen-
erate I+1 state. The Hamiltonian for such an atomic
model may be shown to be formally the same as that
given by Eq. (8). However, the commutation relations are
considerably more complicated than those given in Eq.
(7).
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III. DERIVATION OF THE EQUATIONS OF MOTION

The Heisenberg equation of motion for the mode an-
nihilation operator of the electromagnetic field is

a~(t) =aq(0) exp( i—co&t)

i—g g {b (t)g*(coq —coo)+b (t)g*(coq+coo)]

X exp( —ikq r ), (13)
[a~,H] . (10)

Substituting the Hamiltonian given by Eq. (8) and using
the well-known commutation relations for the mode
operators, viz.

[a~,d„]=0,
T

g(co)—: i l—im exp(i~t)dt =P— i ~—5(co),
T—+oo O CO

(14)

where g is the zeta function of Heitler (Ref. [28], p. 69),

u"a~ = —i cozttz+ g g .(b +b ) exp( —ik& r ) .
dt

(12)

This equation may be solved in the Markov approxima-
tion (see Ref. [27], Sec. 7.4), to give

we obtain the following equation of motion for the field
mode annihilation operator:

the symbol P denoting the fact that the Cauchy principal
part of the integral is taken.

Let us now consider the equation of motion for some
general atomic variable described by the operator Q. Us-
ing the Heisenberg equation again, with the same Hamil-
tonian, and substituting the expression for the mode
operator (14) (using normal ordering of the operators), we
obtain, after some calculation and dropping rapidly oscil-
lating terms, the equation [29]

i(coo+—6)g [Q,b b ] i g [—Q, b .Q(r &) b&]
a ap

asap

g —,
' {b .I (r &) [Q,b&]+[b,Q] I (r &) b&]+ g g IEO '(r, t).[Q,b ]+[Q,b ] Eo '(r, t)] .

ap a I

(15)

1/2
~( )

%cog
Eo '(r, t)= —gi e az(0)

(16)

X exp( ikg r +itoqt—) .

On taking the continuum limit ( V~ ~ ), we obtain, after
some calculation, the following expressions for the
coefficients in Eq. (15):

yi(kyar. g)
Q(r p)= 'I yo(korufI)4 kor p

+ y2(kor p) —2m A I5' '(kor p),
rap

A(kor. p)I (r &)= . I jo(kor &)—
2 o rap

rprp+ j2(kor p)
rap

k (k —2ko)—P dk .
ko ~ o k —ko

In Eq. (15) r &=r —
r& and the operators Eo+' and Eo

represent the positive and the negative frequency parts of
the vacuum field, respectively [Ref. [30], Eq. (3.40)], i.e.,

1/2

e &z(0) exp(ikz r —icozt),

Here j„and y„are the nth-order spherical Bessel func-
tions of the first and of the second kind, respectively (Ref.
[31], Chap. 10), ko=coo/c and 2 is the natural life time
of the transition, given by the expression

ko
p

eo
(18)

In Eq. (17) the integral expression for the frequency
shift b, due to the self-interaction (i.e., the Lamb shift) is
divergent. This was to be expected since, as is well
known, the Lamb shift cannot be calculated in a nonrela-
tivistic model such as the one which we are using here.
Therefore we will ignore this divergence, and we will as-
sume from now on that the Lamb-shifted resonance fre-
quency of the transition, Bo=cuo+6, is a finite quantity

Equation (16) as it stands can be used to obtain the
equations of motion governing the behavior of the atomic
operators b by employing the commutation relations (7).
The result is a rather complicated nonlinear equation
which cannot be solved exactly. A great simplification
can be made by introducing the harmonic-oscillator ap-
proximation. The resulting model is then a quantum ana-
log of Lorentz's model for the atom. In essence this ap-
proximation implies that, in place of the complicated
commutation relation for the atomic operators 1 given

by Eq. (7), we use the approximation

[b,b ]=—I . (19)
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0
exp ((1,

K~T
(20)

K~ being Boltzrnann's constant. For optical frequencies
this condition is satisfied if T (&3000 K. By making this

approximation we are also ignoring a ternperature-
dependent change of the widths the resonances which ap-
pear in the spectra. This effect is analogous to power
broadening in laser-atom interactions. At the tempera-
tures for which the inequality (20) is satisfied this effect is
small.

Using the equation of motion, Eq. (15), the simplified
commutation relation (19) and the fact that, for each
atom, I (r ) = A I, the equation of motion for the vector
atomic operator b is

db
+(icoo ,' A)b—+—g[iQ(r &)

—
—,'I (r &)] bp

~a

This approximation is valid in the case when the proba-
bility of occupation of the upper-level states of the atoms
is always much smaller than the probability of occupa-
tion of the lower-level states. In the case of thermal equi-
libriurn that we will be considering, this requirement
places the following condition on the temperature T:

oo

S(rn, ro) = I ' ' '(rn, rn, w) exp(i cow)d r .
2K

On substituting from Eq. (24) into Eq. (26) we see that

Ip p . COS(rn, e)= $ Tr (I—nn) W (co) exp i—n r &r ~ p C

(26)

(27)

where the atomic cross-spectral tensor W (co) is defined
in terms of the atomic correlation tensor as

a) pW ~(co)= f g P(r) exp(ivor)dr .
277

(28)

where Io = 3 A Atvo/16neoc, Tr stands for the trace opera-
tor of a dyadic, and we have assumed that the field and
polarizations of the atoms are all stationary random pro-
cesses. The atomic correlation dyadic which appears in
Eq. (24) is given by

g (r) = (b (t)bp(t +r) ), (25)

where the atomic polarizations have also been assumed to
be statistically stationary.

As is well known, the power spectrum of the field is re-
lated to the autocorrelation function by the Wiener-
Khintchine theorem (Ref. [34], p. 133)

E'+'(r t) .0 a&

IV. THE RADIATED FIELD

(21) The power spectrum of the fluctuations of the polariza-
tion of the ath atom may be defined in terms of the atom-
ic correlation tensor by the formula

The far-zone field generated by a collection of atoms in
a direction along some unit vector n may be shown to be
given by the expression [33]

pavo nX[nXb (t —R /c)]E'„'(rn, t) =
41TCpC A

(22)

where R =
~
rn —r

~
(see Fig. 2). We will make the fol-

lowing approximation, appropriate to the far zone:

R =r —n.ra a ' (23)

Ip g Tl ' (I 1111)'g 1
r ~ p

n rap

(24)

Atom
cloud

Field
oint

The autocorrelation function of the far-zone field is then
given by

I '' (rn, rn, r) —= (E'„(r tn). E„+'(r tn+w) )

In this case the power spectrum of the field in the far
zone may be found using Eqs. (27) and (30) to be

2 I0N
S(rn, co) =— S'"~(ai),

r
(31)

where N is the total number of atoms and we have as-
sumed that the spectrum S'"'(cv) is the same for every
atom. Thus in the incoherent limit the field spectrum in
the far zone depends only on the power spectrum of the
polarization Auctuations of the individual atoms. How-
ever, in general, there will exist a correlation between
different atoms, i.e., W ~(co)WO for a&@, and it is clear,
on comparing Eqs. (27) and (29), that there is no simple
relationship between the field spectrum and the spectrum
of the fiuctuations of the polarization of the various atoms.

We can also determine the power spectrum of the far-
zone field, averaged over all directions of propagation. It
is evidently given by the formula

S'"'(co)=—TrIW (co)],

where trace operation is being performed over the dyadic
and there is no summation over atoms. In the incoherent
limit, the cross-spectral dyadic of the fluctuations of the
atomic polarizations is given by the formula

W ~(co)= —'5 IS "'(co) .aP a

S'"'(a~) = 1 S(rn, co)d II„,4~ (32)

FIG. 2. Illustrating the notation used in Eq. (22). where d 0„ is the element of solid angle about the direc-
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tion n. Using Eqs. (27) and (17) it is not difficult to show
that

db)„ + l 6)p+ b )y + l Qg+ b2

2IS'"'(co)= g TrtW ~(co) I (r &)I .
a, P

(33) V g(+)(r r)y

(34)

V. SOLUTION OF THE EQUATIONS OF MOTION
FOR A PAIR OF ATOMS IN A THERMAL FIELD

db2, + i&op+ b2 + i Q~+ b)

In this section we will solve the equations of motion for
the case of a system consisting of two atoms. Two atoms
interacting via the quantized radiation field is a system
which has been a subject of a great deal of study (see, for
example, Refs. [35—38]). Usually some initial condition
is imposed; for example, one or both of the atoms are as-
sumed to be initially completely excited, and the subse-
quent evolution of the system is studied. Here we take a
di8'erent approach. %"e assume that the atoms have been
illuminated by a thermal field for a period of time that is
su%ciently long for any e6'ect due to the initial conditions
to have completely decayed. The nature of the atomic
Auctuations is then related to the coherence properties of
the thermal light.

%'e assume that the atoms are located on the z axis of a
Cartesian coordinate system, separated by a distance d,
with the origin of the coordinates midway between the
two (see Fig. 3). The radiation field emitted by the atoms
is observed in the far zone in some direction specified by
the unit vector n, whose spherical polar angles are (8,P).

Starting with the equation of motion (21), we obtain
the following six coupled equations of motion:

db) g I ~

dt
+ l~p+ b) + lQ~+ b2

2 2
4

E'+ '(r r)—x 1&

J+ i Bp+ b2„+ i Qj+ b)„
dt ' 2 2

=~F"."+'(r t)x 2&

db lz

dt
+ i cop+ b „+ iO))+ b2,

2 2

=~X'+'(r r)z

r

db2,

dt
+ lcoP+ b2 + lQIi+ bi

2 2

=~a'+'(r r) .z 2&

The coefficients Qj, Q~~, and I j, and I
~~

which appear in
these equations are functions of the atomic separation
distance d. Their functional form can be found by apply-
ing the general expressions (17) given above. The explicit
expressions for these coeScients then are

yi(kod)
QJ yp(kpd)—

4
)

k d

»(kod)
y, (k,d) — +y, (k,d )

3A . ji(kod)
jo(kod)—

2 0

3A j,(kod)
jo(kod ) — +j2(kpd)

The variations of these coefFicients with the atomic sepa-
ration distance are shown in Figs. 4 and 5.

z
)(

atom 1

Q((
A

atom 2

FIG. 3. The geometrical arrangement for the two-atom prob-
lem.

-2
0

I

10
kod

FIG. 4. The variation of the coeKcients Qj and Qt~ with the
atomic separation d.
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defined by the formulas

W~"'(co) = f (u (t)u(t +r) ) exp(ico~)dr,
217

0.5-

0.0-

W"(co)= f (v (t)v(t+r)) exp(icor)dr,
2~ oo

W'"'(co)= f (u (t)v(t+r)) exp(icor)dr .
277 oo

(39)

-0.5
0

kod

I

10

To determine these cross-spectral dyadics we need to find
the cross-spectral dyadics for the inhomogeneous terms F
and G. They are given by the formulas

W' '(co)= f (F (t)F(t+r)) exp(icor)dr,
27K

FIG. 5. The variation of the coeKcients I, and I
~~

with the
atomic separation d.

W '(co)= f (G (t)G(t+r)) exp(icor)d2. ,
2%

W' '(co)= f {F(t)G(t+r)) exp(ico~)dv .
27T

(40)

Methods for solving coupled equations such as Eqs.
(34) are well known. We introduce the normal modes of
oscillations, defined by the formulas

Using Eq. (38) these quantities can be expressed in terms
of the cross-spectral tensor of the incident radiation field
Eo(r, t). For thermal radiation this tensor is known [39].
It is given by the formula

u(t) = —[b,(t)+b, (t)],
2

v(t)= —[ —b, (t)+b2(t)] .
2

(36) W (11 12 co) f {Eo (r1 t)EQ '(12 t +t) )
277

X exp( t cow)dr

On substituting for b, and 12 from Eqs. (36) into Eqs.
(34), it can shown that the normal modes u and v are
governed by the six uncoupled equations

d+x
+[i (co +0 )+—,'(A +I )]u =P

dt

So(co) j,(kr, 2 )
I jo(k"&2)—

2 kr)2

r&9&2 .+ j2( kr12 ) (41)

dQy +[i( c+ooQ~)+ —,'(A+I j)]u =F
dt

where k =co/c, r, 2
=r, —r2, and r, 2

=
~ r, 2~. The spec-

trum of the thermal field is given by the expression

dQ
+['("o+nii)+-'(~+rii)]" =F

dt
(37)

So(co)=—Tr[W"(r, r, co)]

%co 1

4~2eoc 3 exp(A'co/Kz T )
—1

(42)

+[i(coo—Q~)+-,'( A —I ~)]u, =G, ,

„'+[i(m, n, ) +'—(a —r, )]U, =G, ,dt

+['( —II„)+—,'(A —I „)],=C, .

The driving terms in these equations are given by a linear
combination of the incident blackbody field at the loca-
tions of the two atoms, specifically

F(t) = ~ [Eo+'(r„t)+Eo '(r„t)],
(38)

G(t)= [ —Eo '(r), t)+Eo (r2, t)] .

Since W"(r„r2,co) is a slowly varying function of fre-
quency co, and since the resonances of the normal modes
are very sharp, we can, to a good approximation, replace
the frequency argument of W ' (r„r2, co) by the resonance{e)

frequency coo. Using Eqs. (35), (38), and (41) we then ob-
tain the following expressions for the components of the
cross-spectral dyadics of F and G:

w„'F'(~)=II,', '(~)= " (~+r, ),

~,', '( )= (A +r~~),

8" '(co)=W' '(co)= (9 —I i),
(43)

The solution of a set of first-order linear differential equa-
tions such as those appearing in Eq. (37) is not difficult to
obtain (see the Appendix). For our purposes, the results
are best expressed in terms of the cross-spectral dyadics,

II ' '(co)=W' '(co)=0 (iWj),
'(co)=0 (for all i,j) .
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1

exp(%coo/E~ T) l— (44)

From Eq. 43) we see that the different driving terms a-
pearing in different equations in the set of equations (37)
are uncorrelated. Because we are dealing with a situation
where there is no dependence on the initial conditions,
this implies that the different components of the normal
models u and v are all uncorrelated. Hence we can solve
a the equations (37) to obtain the components of the
cross-spectral dyadics of u and v. This may be done by a
method outlined in the Appendix, and the result is

W„'„"'(co)= W'"'(co) =nS, (co),

W,',"'(co)=nS, (co),

W„'„'(co)= Wyy'(co) =nS~(~),

W„'(co)=nS4(co),

W,'"'(co) = W,'"'(m) =0 (iWj),
W,I""'(co)=0 (for all i,j ),

(45)

where

In these equations the symbol n stands for the photon oc-
cupation number at resonance, viz.

W„(co)= W y (co)= W (co) = Wy (cu)11 11

n=—[S2(co)+S3(co)],
W„'(co)= W„(co)=—[S,(co)+S4(co)],
W„'„(cu)= W' (co)= W '(co)= W' '(co)

(48)

n=—[S3(co)—S2(co)],

W,', (co) = W„'(co)=—[S,(co) —S~(co)] .

Si(co) S~(~)
+S2(co ) +S3 (co ) +

2

All other components of these tensors are zero. It is irn-
portant to remember that all the components are func-

e wo atoms ecauseions of the separation d between the t
t e coefficients Q~, A~~, I ~, and I

~~,
which appear in the

efinitions of S&(co), S2(co), S3(co), and S4(co), are all
functions of the separation.

We canan a!so express the various quantities derived in
Sec. IV in terms of the spectra S&(co), Sz(co), S3(co, and

& ~). In particular, the power spectrum of the atomic
uctuations, given by Eq. (29), may be expressed as

s',"'(~)=s'"'(~)

(~ +r„)/2'
Si 67

(~—~,—II„)'+(W+r )'/4 '

( A I ~)/2~—
S~ co

(~ —a, +n, )'+(W —r, )'/4 '

( 2 + I ~) /27r
S3 co

(co 80 Oj) —+(2—+I i) /4

(2 —I „)/2
S4 co

(~ ~o+ alii)'+( a —r )'/4

(46)

The change of the atomic spectrum as the two atoms are
brought close together is illustrated in Fi . 6.

The see spectral degree of coherence between the two
e in ig.

atoms is defined by the formula

(50)

Usmg Eq. (48) we see that the nonzero components of
this dyadic are given by the formulas

Equation (45) shows that the six components of the nor-
mal modes are all mutually uncorrelated. This suggests
that there may be some relation between the normal
modes and the coherent mode representation introduced
by Wolf in connection with the spectral representation of
statistically stationary random sources [40].

It is now possible to calculate the components of the
cross-spectral dyadic of the atomic fluctuations. The
atomic operators are related to the normal modes by the
equations 1.0

b, (t) = —[u(t) —v(t)],
(47)

b, (&)= 1—[u(t)+v(t)] .

Equations (46) and (47) imply that the components of the
atomic cross-spectral tensor are given by the formulas

FIG. 6. The variation of the atomic spectrUm S'&"'(co) with
the atomic separation d.
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S(av)( )
2Ion r,

2S, (co) 1+ +S~(co) 1+
3y2

I~+2S (co) 1—

+S(co) 1— II

4 (53)

In Fig. 8 the following power spectra are shown: the
spectrum of the atomic fluctuations; the spectrum of ra-
diation field at an angle 8=90' (i.e., in the azimuthal
plane); the spectrum of the radiation field at an angle
8=0 (i.e., in the polar direction); and the spectrum of the
field averaged over all directions of propagation. The
spectra are shown for three different values of the atomic
separation, namely d = l.0/ko, 1.5/ko, and 2.0/ko.
These curves are normalized so that, for values of the
atomic separation much larger than the wavelength, the
atomic spectrum and the field spectrum averaged over all
directions are both Lorentzian curves of unit height.

VI. DISCUSSION AND CONCLUSION

We have shown that the Auctuations of a two-atom
system can be considered in terms of six normal modes,
two for each of three mutually orthogonal directions. Be-
cause of the rotational symmetry of our model in the x,y
plane, the four normal modes corresponding to directions
of osci1lation in this plane form two pairs of modes, each
pair having a different resonance frequency and a
different decay parameter. Thus there are four
identifiable features which appear in the spectra that we
have calculated; they are the four Lorentzian spectral res-
onances S)(co), Si(co), S~(co), and S4(co). The peaks cor-
responding to these four terms are indicated by (1), (2),
(3), and (4) in the top left-hand graph of Fig. 8. The
terms S)(co) and S4(co) are associated with the fluctua-
tions in the z direction, while S2(co) and S3 (co) are associ-
ated with the Auctuations in the x,y plane. These four
features also appear in the spectra of the radiated field,
with various strengths, depending on the direction of ob-
servation.

The separation distance d between the atoms affects
the central frequencies and the widths of these four reso-
nances. As can be seen from the figures, half of the reso-
nances become broader and half become narrower. The
broadening, which is equivalent to the reduction of the
decay time of the appropriate normal mode, is associated
with cooperative emission by the pair of atoms. This
effect is analogous to superradiance in systems of contain-
ing many atoms. The narrower resonance corresponds to
a longer lifetime mode. These modes can be considered as
a photon being swapped back and forth repeatedly be-
tween the two atoms, resulting in a quasistable state of
the system.

Instead of considering the system in terms of the un-
correlated Auctuations of a set of normal modes, one can
also consider it as a pair of atoms whose polarization
Auctuations are partially correlated. The atomic Auctua-
tion spectrum, which is the same for both atoms, is given

by Eq. (49) and is illustrated in Figs. 6 and 8. The spec-
trum of the radiation field, given by Eqs. (52) and (53) and
illustrated in Fig. 8, is significantly different from the
atom Auctuation spectrum. This difference illustrates the
effect of spatial coherence of sources on the spectra of ra-
diation fields, as discussed in the Introduction. In this
case, the spatial coherence of the source is induced be-
tween the two atoms due to their interaction. The corre-
sponding spectral degree of coherence can be calculated
[see Eq. (51) and Fig. 7]. It is found that it does not obey
Wolfs scaling law [41]. Of particular significance is the
difference between the atomic spectrum and the radiation
spectrum averaged over all angles. This difference shows
that partial coherence does more than just redistribute
light of different frequencies in different directions.

Our analysis has elucidated the effect of the radiation
interaction between two atoms. As mentioned above, this
interaction gives rise to a change in the lifetimes and in
the resonance frequencies of the atomic transitions in-
volved. Further, the interaction gives rise to a correlation
between the fluctuations of the atomic polarizatt'ons, which
causes the spectra of the emitted radiation to change, as
predicted by Wolf [1]. Moreover, the effects of the radia-
tion reaction of an atom upon itself are well known. The
atom self-interaction via the radiation field gives rise to
the natural decay lifetime and to the Lamb shift in the
resonance frequency. Thus the spectral effects we have
discussed in this paper could be considered as the analog
in multiple-atom systems to the spectral effects seen in
one atom systems, as both arise from the interaction with
the electromagnetic field generated by the atomic system.
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APPENDIX: SOLUTION OF A FIRST-ORDER
LINEAR DIFFERENTIAL EQUATION

FOR A RANDOM VARIABLE

dx (t) + iso+ x(t)=F(t) .
dt 2

(A 1)

The formal solution of this equation is

x(t) = f dt'F(t')e(t —t') exp —iso+ ~ (t —t')
oo 2

(A2)

Let us consider an operator x(t) which is related to
some stationary random process F(t) by the differential
equation
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where the effect of the initial value x( —~ } has complete-
ly decayed. In Eq. (A2), 6(t) is the Heaviside step func-
tion defined as

stationary. Hence its autocorrelation function depends on
t

&
and t2 only through the difference tz —t &.

1 if t&0
0 ift&0. (A3}

(A4)

We assume that the random process F(t) is statistically
Using Eq. (A2) we can determine the autocorrelation

function of x (t). One finds that

(x (T r/—2)x(T+r/2) &
= f dr' f dT'6(T —r/2 —T'+ r'/ 2)6(T+ r/2 —T' ~'/—2)

X I' '(r') exp[ icoo(r—r')+—y(T' —T)] . (A5)

This expression can be simplified if we recall that a prod-
uct of Heaviside step functions can be expressed as

where min [ a, b ] is equal to the numerically smaller of the
quantities a or b. Applying this result to Eq. (A5), and
using the fact that

=—f dr'I' '(r')
oo

X exp[ i co(r—r'}——y lr —r'I /2] .

(A9)

minI(T —r/2+v'/2), (T+r/2 —r'/2)] = T —~r r'~ /2, —

(A7)

we obtain the fo11owing expression for the autocorrela-
tion function of x(t):

(x (T —7/2)x(T+r/2) &

We see that I '"'(r) is independent of the variable T,
thereby implying that x ( t ) is stationary, at least in the
wide sense.

The power spectrum S"(co) of x(t) is given by the
Fourier transform of the autocorrelation function (A9),
i.e.)

=f" «' f" dT'6(T —lr —r'I/2 —T')I'"(r') S'"'( co ) = d r I '"'(~) exp(i cor ) .
277

(A10)

X exp[ icoo(r —r')+y(—T' —T)] .

(AS)

The integration with respect to T' can now be performed
and yields an expression for the autocorrelation function
of x(t),

On substituting the expression for I ' '(r) given by Eq.
(A9), and applying the convolution theorem, we readily
find that the spectrum is given by the expression

S(F) ~S"(co)= (A 1 1)
(co —coo) +y /4
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