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Cavity-field-assisted atomic relaxation and suppression of resonance Auorescence at high intensities
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Within the framework of the cavity QED model we consider a cavity-field-assisted dissipation process
via a Raman-type coupling of the atom-cavity system (under off-resonance conditions) to a reservoir.
We show that at higher applied field strength the Mollow triplet gets significantly suppressed due to this
cavity-field-dependent atomic relaxation.

PACS number(s): 32.80.Wr, 32.50.+d

I. INTRODUCTION

The interaction of a two-level atom with a damped
driven quantized cavity has been studied in detail both
theoretically and experimentally during the past few
years [1—9]. The significant physical aspect that has
emerged from these studies is that the light emitted by
the atom confined in a cavity can be reabsorbed by the
atom. The effect of this back reaction and the related as-
pects have been the subject of dynamical suppression of
spontaneous emission [6], population inversion in the
steady state [8], broadening of the Mollow sidebands in
resonance fiuorescence [9], vacuum field Rabi splitting
[2—5], and several other studies. In general, the effects
observed due to the presence of a cavity get enhanced
when the coupling between the atom and the field mode
exceeds the damping rate. The enhancement is due to the
multiple exchange of photons between the cavity mode
and the atom before the attainment of the stationary state
[I].

However, instead of coherent interaction processes, the
cavity may also assist the dissipation processes in a
different way. For example, if the atom and the cavity
mode are detuned from each other, then (in addition to
the linear interaction with the heat baths for the atom
and the field) a cavity-assisted Raman-type coupling with
the heat bath may be considered and described by an in-
teraction of the form cr+aI „+cr a I „,where o+ (o )

and a (a) are the creation (annihilation) operator for the
atom and the field mode, respectively. The reservoir
I „(I„)describes the loss of energy from the combined
atom-cavity system via the Raman-type process. The
purpose of the present paper is to study the cavity-field-
assisted dissipation process and the subsequent
modification of the resonance fiuorescence spectrum [10].
We show that the atomic relaxation may depend on the
strength of the cavity field and that, under off-resonance
conditions for the cavity and the field, the Mollow triplet
gets suppressed at higher intensities due to this cavity-
field-dependent damping. Also the quenching of peak in-
tensities is much stronger in the presence of this coupling
compared to that under simple off-resonance conditions.

To put the present nonlinear damping scheme in a
proper perspective, it is better to recall in this context
some of the earlier studies. Since the demonstration by

Machida and Yamamoto [11] that the intensity fiuctua-
tions in the output of a semiconductor laser can be re-
duced below the shot-noise limit by feedback, the possi-
bility of reducing intensity noise by introducing intracavi-
ty nonlinear damping has been explored by a number of
workers [12—14]. Very recently, Wiseman and Milburn
[14] have introduced a general class of nonlinear interac-
tions with a reservoir of the type (a ) a ~l „(and its Her-
mitian conjugate) where P, Q are the integers defined as
P =(N —M)/2 and Q =(N+M)12. For various values
of M and N, different loss mechanisms, such as linear loss
(M =N =1), two-photon loss (M =N =2), Raman loss
(M (N), etc. have been realized. The dissipation
through a cavity-assisted Raman-type interaction [H&
term in Eq. (1)], with the reservoir as considered in the
present paper, is a simple variant among these nonlinear
damping mechanisms. This dissipation term is expected
to be important when the cavity field is relatively high
and is detuned from the atomic resonance, the overall en-
ergy being conserved through the reservoir I,.

It is also pertinent to mention at this point the several
other treatments of the dissipative processes associated
with different kinds of reservoirs for different interac-
tions. For example, phase relaxation due to additional
nonlinear energy-conserving interaction with the heat
bath was considered by Schubert and Ponath [15]. Tan-
imura and Kubo [16] have considered the reservoirs with
colored noise. Ekert and Knight [17] have treated the
reservoirs with a phase-dependent distribution of noise.
Squeezed vacuum reservoirs [18] have also been found to
be important in modifying the resonance fIuorescence
spectrum. The effect of reservoir when the system is a
nonlinear oscillator [19] has also been treated very re-
cently. In the present paper, however, we consider a typ-
ical situation whereby the strength of the cavity field may
enhance the atomic relaxation and lead to subsequent
modification of the resonance fluorescence spectrum.

II. THE MODEL
AND THE CAVITY-FIELD-ASSISTED DAMPING

The dynamical model of a single two-level atom cou-
pled to a cavity can be described by the following model
Hamiltonian in the electric dipole and rotating-wave ap-
proximations:
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H= gH„,
p=O

Ho=(ficoo/2)o, +A'cga a,
H, =8k(ao++a o ),
H2 =A'[a E(t)+aE*(t)],

H, =r~ +r ~

H4=I, g~+I,a,
H5=I"„ao.++I „acr

a, a are the creation and annihilation operators describ-
ing the cavity mode at frequency co. o.+,o. , o., are the
pseudospin operators describing the two-level atom with
atomic resonance frequency coo such that the atom-cavity
detuning is given by A=coo —cu. We have allowed, in our
Hamiltonian, for the situation where the cavity mode is
resonantly driven by an external coherent input field E (t)
of frequency m. The atomic reservoir terms I and I de-
scribe the energy loss from the atom via spontaneous
emission and other processes. The loss of energy of the
cavity field mode due to dissipation through the mirrors
and otherwise is described by the field reservoir terms I,
and 1,. The H5 term in the Hamiltonian (1) denotes the
cavity-assisted damping via a Raman-type coupling. [For
a microscopic realization of this term, we discuss a con-
venient three-state (an effective two-state) model in the
Appendix. ] Since the cavity field is detuned from the
atomic resonance (6%0), this nonlinear coupling term
conserves the overall energy through the reservoir term
r, .

Projecting out the bosonic reservoir variables in the
usual way under Born and Markov approximations [20],
one can derive the appropriate master equation for the
atom-cavity field system as follows:

2y„from the combined atom-field system. This is given
by

L,/p=(1+N„) [2o' a per+a —cr+cr aa p p—cr+oa'at]
'Vr

+N„[2o+apo. a —o o+a "ap —po. o+a a],

where N, is the mean number of thermal quanta and is
given by N„=1/(e" " —1).

The nature of dissipation as expressed through the
Liouvillian (5) can be made more explicit if we write
down the mean-field dissipative dynamical equations in-
volving the polarization and the population inversion
variables for the atom as follows:

(o+ &
= —(y, /2)(o+ &

—(y„/2)(1+(a a & )(cr+ &,

( &= —(y. /2)(a &
—(y„/2)(1+(a'a &)(

(o, &
= —y. (1+( cr, & ) —y „(1+( a a & )(1+( cr, & ) .

It is immediately apparent that the relaxation of the
atomic system is dependent on the strength of the cavity
field. What follows next is to show that this cavity-
assisted dissipation leads to an interesting modification of
the resonance Auorescence spectrum.

III. THE MODIFICATION OF THE RESONANCE
FLUORESCENCE SPECTRUM

To study the master equation (2), we adopt the treat-
ment of operator ordering followed in Refs. [21—25]. To
summarize, we choose an ordering for atomic and field
operators by defining the characteristic function

X(g) = Tr(op),
where

dp l= ——[Ho+Hi +H2, p]+L,p+L&p+L, &p .
dt

Here

(2)

and

O(g) =e'& ' e'&'e '+ e ~' 'e ~

L/p=(1+n) [2apa —pa a —a ap]
7 f
2

+n [2a pa —aa p
—paa ],Xf

2

Xa
L,p=(1+N) [2o po+ —po+o. cr+o p—]2

7a+N [2cr+po —o o+p —per cr+]2
(4)

4=[AD* 0 4+ k. 0—]'.
We then define the generalized

representation [15]by

X(g')= J d a exp(ig' a)P(a),

positive P-

and a is the column vector composed of the c-numbers
a;; a=[a*,a, a+,a„a ], and establishes a correspon-
dence between the c-numbers and the operators as fol-
lows:

denote the damping operator for the cavity mode and the
atom, respectively, corresponding to the terms H3 and

H4 of the Hamiltonian (1). The cavity and the atom are
damped at the rate 2y& and 2y„respectively, due to cou-
pling at finite-temperature reservoirs, n and N being the
mean number of photons in the respective cases. L,& is
the Liouvillian corresponding to the Raman-type dissipa-
tive term H5, and describes the loss of energy at the rate

a~a, o +~o+,
a ~a*, a. ~a

Using the standard operator-disentanglement tech-
nique and the definition of P(a), a partial differential
equation is deduced for P(a). This has derivatives of all
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orders present for a, as exponentials of derivatives, but
can be approximated as a Fokker-Planck equation for
P(a) by keeping up to second derivatives. Having ob-
tained the Fokker-Planck equation, which is the c-
number equivalent of the master equation, one can im-
mediately write down the Langevin equations as follows:

a = —icosa —yf a —ika

+ (1+a, )a —iE(t) +G (t),
2

+ lka+

+ "(1+a,)a"+iE(t) +G .(t),
2 z a

op Ecof 4r pe' I co't ~ p 0

0a+=/3+e, a, =p, .
(10)

We also assume the driving field E(t)=Eoe '"' to be at
exact resonance with the cavity field mode. The c-
number stochastic differential equations for the slowly
varying amplitudes p's are obtained by substituting Eqs.
(10) in (9). The resulting equations are

tent of the present work. It is evident that the relaxation
of the atom is manifestly dependent on the intensity of
the cavity field, since both the polarization and popula-
tion inversion variables decay at rates that are functions
of the cavity field.

To eliminate the fast-time dependence, we now invoke
the slowly varying envelope approximation:

i'z~ = [icooa+ —ika" a, —(y, /2)a+
—(y„/2)(1+a*a)a+]+6 (&),

a = [ i cooa —+ ikau, —(y, /2)a
—(y„/2)(1+a "a)a ]+G (t),

a, = [ 2ik (aa—+ —a'a ) —y, (1+a, )

—y„(1+a*a)(1+a,)]+G. (t) .

Here the G 's are the independent Langevin forces witha,.

zero reservoir averages as follows: ( G )~ =0. The
l

nonzero noise correlation of the random forces are given
by

p = y fp— ik p——iEO+ ( 1+p, )p +6ii( t),

P'= yfP*+i—k/3++iEO+ (1+P, )P* +Gpss(&),4

p+ = imp+ ikp*—/3,
—(y, /2)p+

(1+p*p)p+ +Gp (t),

P = i b,P +ik/3—P, —(y, /2)P

(6 (&)6 (&'))g =2D &(& —&'),

where

D = ika'a—+, D =ikaa, D, =y„(1+a, ),

(1+/3*P)P +Gp (t),

P, =[—2ik(PP+ PP ) —y—.(1+P, )

D = 2ik(aa+ ——a*a )+y, (1+a, )
Z Z

—y„(1+/3'P)(1+P,)]+Gp (t),

+y„(1+a*a)(1+a,),

D = —y„(1+a,)a, D = —y„(1+a,)a*,

Vr
D~~ = a a, D a 0+

Yr

2
a+a* .

The terms involving y„in Eqs. (9) are the essential con-

l CO ~ E

where G (t)=6& (t)e ' and b, =coo—co.

The mean-field solutions are obtained from Eqs. (11)by
neglecting the quantum fiuctuations and making p, =0
(i =1,5). The result is a set of five algebraic equations
whose solutions give the average of the atomic and field
quantities in the steady state. Particularly, for the
steady-state cavity field p, we have the following equa-
tion of state:

r —,'[y. +y, (1+Ip'I')]'+~'+2k'lp'I'] [( y„+4yf)p'+4iEO—]+ r
i [y.+y, (1+Ip'I')]'+~'I

X y„+
is+ '+ "(1+Ip'I')

2 2

pe (12)
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Numerical solution of the
the slowly varying am lit d

e equation yields the vvalues of

Having obtained th
mpi u es "sin thestead

e mean-field solution
lem, we now go to the next order

ua ion around the me
P =P'+5P wh, , where 5p; are the Quctuations
mean values P'. The

uc uations around the
e result is the Ito-st

differential equation f th f' no e orm[20)
o-s ochastic

O. 10—

d5P(t)= A5—P(t)dt+B dW t 7 (13) U 0.05
CD

where 3 aand B are the drift and diffusion
1 p

d'presse in terms of the
Here dW define nes the vectorial Wiener

he steady-state values.
p

F d 1

en ec process that is anal ticall
'

s, we re er to Ref. [26].
Next we calculate the power s e

dlihi h 1

Ssp sp ( v cl)0) f exp [ i ( v ——
coo )t]

X (5P+(t)5P (0))ddt

=
I [ 3 +i (v coo)I )

'—BB'

X A i(v Mo)I] ]sp sp

Explicit calculation yields the s ecs e spectra that are given in
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with nonzero d te uning but for =0
e standard result
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0.01 that used in the Raman-coupled model) where the excited
state ~2) gets deexcited, by a detuned cavity mode with

frequency cu and one or more reservoir modes cu, to state

~1) via the state ~3), in a manner shown in Fig. 5. The
relevant Hamiltonian is given by

H =IIo+Hl

Hp EI CTI I+EQCT22+E3CT33+fiCOa a + g ACO I tI
J

(A 1)

0.00 I I I
[

t I I I

0
Frequ icy

I I I I I
I

'I 00

tra as a function of the detuning of the atom and the cavi-
ty field. It is evident that, at large detuning, the triplet
practically reduces to a doublet, with almost complete
suppression of the coherent peak.

IV. CONCLUSION

IG. 4. Power spectrum S ( v —~0)y, vs frequency
(v —coo)/y, is plotted, with yf /y, =8 0& k/pg 5 0& and

Eo/y&=10. 0, y, /y, =0.5, for three different values of atom-
cavity detuning 6/y, =30,40, 60, on the curves of solid lines,
dashed lines, and asterisks, respectively. (Both scales are arbi-

trary. )

HI fig/3(acT 3+a o )+A g g~, (r,'cT„+I,cT„)
J

r r'
where cT,; I =1,2, 3) are the level population operators
I J (I

~
) are the usual harmonic-oscillator heat bath

operators, and g; 's are the usual coupling constants.
The Heisenberg equations for transition operators o. ,3

and 0 p3 are

CT I 3 l ( CO p CO )CT 'I 3 +ig 2 3 a CT I z

—I' g g'„( „—„)I,,
J

CT23 lCO CTQ3+ l g g I3 I JCT2I lg23a ( CT33
—

CTz2), (A3)
J

where A~'=E —E .3 For simphcity, we may take g 's to
~ ~ ~

be real.
lj

Now introducing the slow variables with tildes

It is well known that, in cavity QED problems, the cav-
ity enhances significantly the effects due to the coherent
interaction processes because of the increased multiple
exchange of photons between the cavity and thn e atom.

e ave s own, however, that under off-resonance con-
ditions, the cavity may assist the dissipation processes via
a Raman-type nonlinear coupling to a reservoir. This re-
sults in damping of the atomic system, which is depen-
dent on the strength of the cavity field. We have also
shown that this intensity-dependent damping leads to an
interesting modification of the resonance fluorescence
spectrum, which is rejected in the suppression of the
Mollow triplet at the higher field strength with nonzero
detuning. It may also be noted that the intensity-
dependent relaxation process was also found to be impor-
tant in the recent past for two-level atoms interacting
with a superintense field [27]. We hope that the cavity-

presen paper mayassisted relaxation as considered in the prese t
also play a fundamental role in similar issues in other
cavity @ED problems.

le) t
~]3=a&3e ', O23 —o23e a =g e

l CO t
I =I e ', 0;, =0.;; for i =1,2, 3,

and also introducing

0
—l(~ —

CL) . )1 l(CO CO )t
23~3'j 23~3]e 21

and

coo —co'=6 and e)' —co=6',

we obtain

IT» = —I ( 5—co )IT»+ lg 23 a cT I z

(A4)

(A5)

(A6)
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APPENDIX

In this appendix, we show how the Hs term in Eq. (1)
can be realized in terms of a microscopic model interac-
tion scheme.

We consider a model three-state system [28] (similar to

FIG. 5. En ergy-level diagram of three-level system. The cav-
ity mode with frequency co is interacting with the dipole mo-
ment of transition 2~3. The quasistationary state ~3) is re-
laxed through reservoir modes.
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o23 t5 ~23+i Xg13~j~21
J

g23 (~33 ~22)

Now, if the state
~
3 ) is quasistationary, one can find

0 ] 3 o p3 adiabatically as

5=6 /2, where b, =coo—co, the atom-field detuning. Put-
ting

we obtain

o.i3=
5 g23a oi2+ ggi3 33 ii I j5 coJ J

(A8) Ht' =Rgb(aI, o+.+o a I )=I „ao++Itater =Hs
J

l J1
23 5 Xrg13 jo21 g23 (o33 o22)

J
(A9)

Now the terms diagonal in the atomic variables will
lead to Stark shifts, which we shall assume to be small.
By dropping these terms, we have

o13 (g23a F12)/(5 ~j )

tT23= Qgi31 .oui
J

Upon inserting these terms in Ht in Eq. (Al), we have the
effective interaction

6+5 ct)J.
='It Qg23gi3 5

', ( aI jcr++oaI. ), (All)
J (5—co )5'

J

where we have defined o.2&=o.+ and o. ,2=o. for the
effective two-level atom.

If one makes the choice 5=5', then we may write

Ho includes E33o.33 a constant shift term that does not
affect the dynamics and need not be considered further.
This H5 term, together with H, 2 3 4 for linear terms and
the Ho term [of Eq. (1)] for the effective two-level system
and single-mode field, comprise the full Hamiltonian in
Eq. (1).

It is thus immediately apparent that the order of mag-
nitude of the dissipative coupling constant A, in the H5
term is -O(g /5), while for the linear dissipative term
(H3/H4) it is -0 (g). Therefore the cavity field strength
should be of the order of -5/g for the nonlinear dissipa-
tive term H5 to be important. It should be emphasized
that nonzero detuning 5 (or 6) is an important quantity
in this context. Specializing the model for Rydberg
atoms, where the difference frequency 6-10' n sec
and the coupling constant g —(2srhco/V)' d/fi
—10 n' V ' sec ', where n is the principal quantum
number and V is the cavity volume, one can obtain a
reasonable range of cavity field strength for the experi-
mental realization of the scheme.
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