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Theory of four-wave mixing using an amplitude approach
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A theory of four-wave mixing is developed using an amplitude approach in the Schrodinger picture.
It is shown that the four-wave mixing signal produced when three fields are incident on an ensemble of
two-level atoms can be viewed as arising from constructive interference of the signals emitted at the vari-
ous atomic sites. Fourteen distinct amplitudes contribute to the four-wave mixing signal. Some of these
amplitudes involve final states in which one or two atoms are excited, and some involve final states in
which photons are emitted into modes other than a phase-matched mode of interest. The amplitude ap-
proach has the advantage of clearly showing the atom-field correlations. It helps one to understand the
underlying physical mechanisms responsible for creation of the four-wave mixing signa1, as well as
features in the line shape resulting from collisions and effects relating to atomic recoil on the absorption
or emission of radiation. These so-called collision- and recoil-induced resonances are calculated explicit-
ly using the amplitude approach, and an interpretation of the results in terms of the interference between
different amplitudes is given. Our results, calculated for a finite interaction time between the atoms and
the fields, are compared with analogous calculations in which an effective ground-state decay time is as-
sumed. It is shown that the results differ if the atom-field interaction time is not the longest relevant
time parameter in the problem.

PACS number(s): 32.80.—t, 42.65.—k, 42.50.—p

I. INTRODUCTION

In solving a given problem involving the interaction of
radiation with matter, several approaches are generally
available. %'hen spontaneous emission plays a nonnegli-
gible role, a density-matrix approach is generally the
method of choice. The density-matrix approach may be
semiclassical (quantum-mechanical atoms and classical
fields) or fully quantized (quantum-mechanical atoms and
quantized fields).

In the case of a fully quantized approach, the Heisen-
berg representation proves to be particularly useful. In
the Heisenberg representation one can define separate
operators for the atoms and the field. For example, con-
sider a "two-level" atom having levels labeled by 1 and 2
interacting with one or more modes of the radiation field.
Atomic operators o.

,
"=

~i )(j ~
(ij =1,2) can be defined

which can be related to atomic-state populations and
coherences. A simplifying feature of the Heisenberg rep-
resentation is that these operators contain an implicit
trace over all field variables. If one is able to solve for the
o., -'s, then one has, in efFect, obtained the reduced density
matrix describing the atomic system. It should also be
noted that the o.; 's can satisfy simple operator equations.
For example, if the two-level system under investigation
is "closed" in the sense that there is no leakage to other
levels, then one finds ( o

& i +o 2z ) = 1.
The Heisenberg approach can be used to isolate field

variables as well as atomic variables. If one were interest-
ed in calculating the number of photons present in a
mode k, one need only calculate the operator nk =aka&,
whose expectation value gives the average number of
photons in mode k. This operator contains an implicit

sum over all atomic variables, enabling one to directly
calculate the reduced density matrix for the radiation
fields.

%'hen spontaneous emission is present or when one
wishes to calculate reduced density-matrix elements for
the atoms or the fields, it might seem foolhardy or even
impossible to use a state amplitude approach based on
the Schrodinger representation. For example, to calcu-
late a reduced density-matrix element p; for the atoms,
one must calculate g b, b *, where b. ; is a probability
amplitude and a refers to all states of the field. Similarly,
to calculate the number of photons in a mode k one must
calculate g;=, z. &k~b;k ~

. ln general, the evaluation of
all these probability amplitudes represents a horrendous
task.

As complicated as the Schrodinger representation ap-
pears to be, there are some very good reasons to apply it
to problems involving the interaction of radiation with
matter. In following the Schrodinger approach, any
atom-field correlations are clearly revealed in the proba-
bility amplitudes. Such correlations are hidden in the
Heisenberg approach since the atom and field operators
already correspond to reduced density matrices for the
atoms and the fields, respectively. Of course, this is pre-
cisely what makes the Heisenberg approach ideal for
computational purposes. Qn the other hand, if one
wishes to understand the underlying physical mecha-
nisms giving rise to the signal under investigation, the
Schrodinger amplitudes provide more information than
the Heisenberg operators. Given the difficulty and con-
troversy in explaining the physical origin of such line-
shape features as the pressure-induced extra resonances
in four-wave mixing [1], it may prove interesting to at-
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k, ,Q, k2, Q2

tack such problems using an amplitude approach.
This method has already been used to analyze the

collision-induced resonances in a three-wave mixing
scheme involving three-level atoms [2]. It was found that
the pressure-induced resonances could be uniquely
identified with amplitudes involving the emission of spon-
taneous photons. Moreover, the interference from
different atomic sites giving rise to the signal was clearly
evident in the Schrodinger approach. The situation be-
comes much more complex when one considers four-
wave mixing in an ensemble of two-level atoms. In this
case, one must properly account for the repopulation of
the atomic ground state resulting from spontaneous emis-
sion from the excited state.

A geometry for four-wave mixing is shown in Fig. 1.
Three fields having wave vectors k& =k, k2= —k, and k3
are incident on an atomic medium consisting of two-level
atoms. Fields 1 and 2 have frequency 0, while field 3 has
frequency (0+5). The four-wave mixing signal intensity
in the direction —k3 is measured as a function of 5. For
a closed atomic system there is no resonance in the line
shape centered at 5=0, provided that all effects arising
from atomic collisions and atomic recoil on the absorp-
tion or emission of photons are neglected. Collisions lead
to a resonance centered at 5=0 having width of order I
(excited-state decay rate) [1],while atomic recoil can lead
to a resonance centered at 5 =0 whose width is given by
some effective ground-state width [3].

The physical explanation of the absence of the 5=0
resonance in the absence of collisions and atomic recoil
has been the subject of some controversy. The absence of
the resonance has been explained as arising from the in-
terference of two chains in a density-matrix calculation
[4]. The disappearance has also been explained on the
basis of conservation of energy arguments [5].

A fundamental calculation of the four-wave mixing sig-
nal based on an amplitude approach might provide new
insight into the nature of the origin of the four-wave mix-
ing signal. It is the goal of this article to present such a
calculation. The interference of various quantum-
mechanical amplitudes giving rise to the disappearance of
the 5=0 resonance is clearly apparent in our approach.
In Sec. II, a discussion and evaluation of the various am-
plitudes contributing to the signal is given. The calcula-
tion is extended to include effects arising from atomic
recoil in Sec. III. This calculation reproduces the results
obtained from a density-matrix approach [3], and pro-
vides some new insight into the origin of the recoil-
induced resonances. Most of the calculations in the main

text are carried out in the so-called secular approxima-
tion {atom-field detunings large compared with atomic
decay rates). The Appendixes contain generalizations of
the results valid for arbitrary ratios of detuning to decay
rates. Moreover, the line shape corresponding to the
collision-induced resonances is derived in Appendix B.

II. STATIONARY ATOMS

A. Qualitative description

Consider the interaction of the three field modes hav-
ing frequencies A„Qz, 03, wave vectors k&, kz, k3, and ini-
tial photon occupation numbers n „n2, n 3, respectively,
with an ensemble of N stationary two-level atoms, each of
which is initially in its ground state 1 (see Fig. 2).
Coherent emission via four-wave mixing (4WM) can be
produced in a new field mode having wave vector

k=k, +k~ —k3

and frequency

O, i, =B)+02—B3,
provided the phase-matching condition

(la)

(lb)

(lc)

wllele b [ [ i ] n i n 3 n 3 lg n ] is the probability ampli-
tude for finding a photon in mode k, n,

' photons in field i,
n photons in initially unoccupied field modes other than
mode k, and the atoms in some configuration of internal
states [i J.

As an example of an amplitude contributing to emis-
sion at k=k&+k2 —k3, we consider the amplitude
represented schematically in Fig. 3. At each atomic site
j, an atom can "absorb" photon 1, "emit" photon 3, "ab-
sorb" photon 2, and emit a signal photon k. By summing
over all sites j, one arrives at the probability amplitude
for all atoms to be in state 1, with the absorption of a
photon from each of fields 1 and 2, and emission of a pho-
ton in fields 3 and k. The contribution to the sum in Fig.
3 from atom j, located at position r, contains a spatial

is satisfied.
Our goal in this paper is to calculate the 4WM signal

using an amplitude approach. We consider only the
4WM into the mode k given by Eqs. (1). The rate at
which photons are emitted into mode (k, Qi, ) can be writ-
ten

dI„,=n„,= g gb[[i ];n, , n2, n3;1„,n ]

FIG. 1. A geometry for four-wave mixing that can lead to
phase-matched emission into a field mode having wave vector
k =k&

—k3+ k2. For some of the illustrative examples in the
text, the parameters are chosen such that kl= —k2, 01=02,
Q3 Qf +6, and 0 &( 1.

FIG. 2. Energy-level diagram for the "two-level" atoms con-
sidered in this work.
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't 3 2 k + (1~2) 2 Q 1

+ (1~2}

1 3 + (1~2) FICJ. 5. Schematic representation of the joint probability am-
plitude for atom j to absorb a photon from each of fields 1 and 2
and emit a photon into field k, and for atom j' to absorb a pho-
ton from field 3.

FIG. 3. Schematic representation of the probability ampli-
tude for atom j to absorb a photon from each of fields 1 and 2,
and emit a photon into each of fields 3 and k.

phase factor which can be obtained by assigning a factor
exp(ik;. r ) to each upward arrow i and exp( ik; r ) to-
each downward one. The overall phase factor for Fig. 3
is exp(ik r ), where

k=k, —k3+kq —k .

As long as the momentum conservation condition k=0 is
satisfied, the contributions to the probability amplitude
from di6'erent atomic sites add in phase. Consequently,
the signal intensity, which is proportional to the square
of the probability amplitude, varies as the square of the
atomic density.

The interactions shown schematically in Fig. 3 are not
sufficient to completely characterize the 4WM signal [6].
One must also consider diagrams, such as these shown in
Fig. 4, in which some of the fields act at atomic site j and
others at site j'. Figure 4 represents an amplitude for all
atoms to be in state 1, with the absorption of a photon
from each of fields 2 and 3, and emission of a photon into
fields 1 and k. For a given pair of atoms (j,j') atom j ab-
sorbs photon 2 and emits photon k, and atom j' absorbs
photon 3 and emits photon 1. In summing over j and j'
and squaring this amplitude one finds terms which vary
as

$g exp[i(k~ —k)-r +i(k, —k, )-r,'

the 4WM signal, proportional to N .
It is also possible to get a nonvanishing contribution to

the 4WM signal (2) involving final states in which some of
the atoms are excited. One such amplitude is represented
in Fig. 5, corresponding to absorption of photon from
fields 1, 2, and 3, emission into field mode k, and atoms j
and j' in state ~2) with all remaining atoms in their
ground states. On summing over j and j' and squaring
this amplitude, one again arrives at a coherent contribu-
tion to the 4WM signal.

Finally one must consider processes involving the emis-
sion into modes other than 1, 2, 3, or k. In analogy with
three-wave mixing problems [2], one constructs diagrams
such as that shown Fig. 6, representing the probability
amplitude for all atoms to be in state ~1) with an absorp-
tion of photons from fields 1, 2, and 3 and emission into
modes k, q, and q'. On summing over j and j', and
squaring this amplitude, one arrives at probability which
has terms that are proportional to

+exp[i(k, —q+kz —k) ri+i(k3 —q') r., ]

Xg exp[ i(k, —q'+—kz —k) r&
—i(k3 —q) ri. ] .

1, 1'

For l =j' and I'=j, one again finds a coherent contribu-
tion to the 4%'M signal.

Normally, spontaneous processes need not be con-
sidered in describing multiwave mixing in the so-called
secular approximation [7], when the frequencies of the in-
cident fields are tuned far from resonance.

—i(k~ —k) r, i (k3 —k, ).ri ]— ~Q,. —co) &&I (i =1,2, 3), (4)

For l =j' and l'=j one arrives at a net phase factor
exp(ik r, , ) where r, , =r, —rl . Under phase-matching
conditions, this term results in a coherent contribution to

where co is the 1-2 transition frequency and I is decay
rate of level 2. We encounter here a new situation.

2

2 2 q 2 k 3 q

FIG. 4. Schematic representation of the joint probability am-
plitude for atom j to absorb a photon from field 2 and emit a
photon into field k and for atom j' to absorb a photon from field
3 and emit a photon into field 1.

+ [1~2}
FICJ. 6. Schematic representation of the joint probability am-

plitude for atom j to absorb a photon from each of fields 1 and 2
and emit a photon into each of fields q and k, and for atom j' to
absorb a photon from field 3 and emit a photon into field q'.
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Stimulated processes can give rise to signals at a frequen-
cy different from that specified in Eq. (lb). Such terms
are sensitive to the way in which the fields are turned on
and disappear if they are switched on in a time large
compared with [(0;—co) +I ]

' .If the fields are
turned on rapidly, these terms persist; however, it will be
seen below that they are exactly canceled by terms arising
from processes involving spontaneous emission. Thus,
for a consistent treatment of the problem, spontaneous-
emission terms must be included.

A method for systematically obtaining all the diagrams
corresponding to the relevant probability amplitude for
4WM is given in Appendix A. These diagrams are shown
in Fig. 7. By squaring the amplitudes and summing those
terms corresponding to phase-matched emission in the
direction k, one arrives at the 4WM line shape. It is
shown below that the final line shape takes on a rernark-
ably simple form. We note that all calculations are car-
ried out assuming that the number of atoms in a volume
equa1 to k is much less than unity. Thus the origin of
the 1V dependence of the signal can be traced to a pro-
cess similar to that encountered in emission by a phased
array of dipoles. There are no collective efFects associat-

ed with spontaneous emission, as one may encounter in

super radiance.

B. Calculation of signal

In this section, the 4WM signal is calculated for a
simplified atom-field configuration. The atoms are taken
to be stationary and the atom-field detunings 6;=0,;

—~
(i =1,2, 3,k) are sufficiently large to satisfy ~b,;{))I
(secular approximation). The calculation is generalized
to allow for moving atoms in the following section and
for arbitrary detunings in Appendix B.

%'e consider the interaction of % stationary atoms with
several modes of the radiation field. Initially three modes
of the field are occupied, with mode (0;,It, ) having occu-
pation number n, (i =. 1,2, 3). These fields lead to a signal
generated into the phase-matched mode (Qk, k) and may
also lead to radiation in other modes of the field (spon-
taneous emission). The rate at which photons are pro-
duced in the phase-matched mode is calculated to
lowest-order perturbation theory in the applied fields. In
efFect, we must calculate the amplitudes represented
schematically in Fig. 7.

a" k„)t" 3„ i (a,k)~(p, 3)

J J

a"

JJ J

/Akim

C,kqC3'

k
&z akp3 + p3ak

a" „k 3"„p
JJ J J

$ Ak $ C,kC3)i

a
"

„k i 3" „p, k" 3„v" k„ i (l,3) (v, k)

JJJ J J J

Re'Z„Z,Z„C.kCI) (Cu.k «.k). )
)

a" k„ "p, i 3'
(

k
'

3„ v" k„ i (k, 3) i-i (v, k) )
JJ J J J

2Re g„AQ $, C,„„,(,3,„,„„)
a" „k 3" i 3" „)t l" k„ "v

JJJ J J J

R«'ZkAZ Z, C.kC3(C3CIk. ',

a" k„" „+ ak~
JJ J J

k
pp q

/k), q QQk 3q

a" k„p" q„ i (a,k)~(p, q)
3" „2

J J

2Re gkAkg gk g (C,k)iq+ C(iq,k)CIqCsqC, k

6, + g,

iii j

k „k ' 3„+ (v, k)~(1,3)
j"

" '[~ "k~„,~„~ (C kpq+C)q. )C q(Cuk«. ku)
'

a" k, j
)t" q, ~ (ak)~()tq)

J

+3" „q k" k„"v
J

" ' ~k"k~„,~k„~ (C kgb+ Cj q k)C qC CIk '

FICx. 7. A schematic representation of all the probability amplitudes that can lead to phase-matched emission in the direction
k k ] k3 +k2 The indices p, o, v, A, can be equal to either 1 or 2, with pW o., vW k. For diagrams (c), (e), (f), and (h) —(j), it is the
cross terms in the expression for the probability which contribute. The expressions that result when the amplitudes are squared and

the phase-matched contribution retained are also shown in this figure.
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In an interaction representation, the Hamiltonian for
the atom-field system can be written as

to each "down" arrow p, (p=1,2, 3), one assigns the in-
tegral operator

H = g g iri[g„S, a„exp(ik„r i A—„t)
s

+g*S~a„exp( —ik„r +i b,„t)], (5)

where SJ = ~ 1 )(2~ ~, a; and a; are creation and destruc-
tion operators for mode i, g„ is a coupling coefficient, and

—ig„e " ' dt, exp i A„t,

The ket ~1) is shorthand notation for all atoms in their
ground states and ~2 ) is a shorthand notation for atom j
in state 2 and all the other atoms in state 1. Similarly
~2;J ) would signify that atoms i and j are in state 2 and
the remaining atoms in state 1.

Starting from an initial state in which mode i has n;
photons (i =1,2, 3), all other field modes are empty, and
all atoms are in their ground states, one must calculate
the probability amplitudes corresponding to Fig. 7. For
example, the amplitude needed for Fig. 7(a) is
b(n, —l, nz —l, n3+1, lk), implying a final state with all
atoms in the ground state, n, —1 photons in mode 1,
n2 —1 photons in mode 2, n 3+ 1 photons in mode 3, and
one photon in mode k. Similarly, the amplitude corre-
sponding to Fig. 7(d) is b (2, ; n, —1,n z

—1, n 3
—1, lk) and

that to Fig. 7(i) is b (n „nz —l, n3 —1, lk, 1 ) for A=cr =,1.
The other needed amplitudes can be obtained from the
remaining diagrams in Fig. 7. Evolution equations for
each of the amplitudes can be derived using the Hamil-
tonian (5), but it is easier to use the diagrams of Figs.
3—7, together with a few simple rules, to obtain the final
state amplitudes.

To each "up" arrow p (@=1,2, 3), one assigns an in-
tegral operator

ik r.
&X„e

X dt, exp[ i b,„t, y(t t, )]—, ——

(7a)

and to each down arrow k, one assigns the integral opera-
tor

ir

3

—ikr. 1

ig—ke ' dt, exP[ibkt, ],
0

(7c)

where

is a Rabi frequency. It is assumed that n„&&1. The
same operator (7c) applies for a down arrow q, with q re-
placing k. It should be noted that spontaneous decay is
treated exactly (to within the Weisskopf-Wigner approxi-
mation) in our calculations, regardless of whether or not
the secular approximation is employed. Repopulation of
the ground state is rigorously accounted for by terms of
type (7c).

By combining these factors, one can easily construct
each of the amplitudes in Figs. 3 —7. For example, the
amplitude corresponding to the first diagram in Fig. 3 is

ik r.
equal to gje 'C, 32k where

132k +I+3+zg k dt lexp('~kt1 ) dtzexp[ 1 ~ztz 7 ( t1 tz )]
0 0

X dt3exp(ib3t3) dt4exp[ —ib1t4 —y(t3 t4)],
0 0

and k k l k3 +k2 k. In this notation C,b«refers to a
diagram in which mode a is absorbed, b emitted, c ab-
sorbed, and d emitted. To get the total probability for
4WM in the direction k, one squares each of the ampli-
tudes in Fig. 7, sums these squares and retains only those
terms varying as

Ak = g g exp[i k (r; —rj )],
i=1 j=l

P = g Ak C'"+ C'~
k

(12a)

where

which lead to coherent, phase-matched emission in the
direction k =kl —k3+ kp.

By carrying out this procedure, one arrives at an emis-
sion probability given by
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2 2C"= g C"(p, o. ), C' = g C' (p, o),
p, fr=1

p,%0
p, a=1
P+Q'

C' (P, , u) = g (C„q k+ C k„q )C3q .

C"(P, cr ) =C 3~k + C~k„3 +C3 C~k„+C~k C3

and

(12b)

(12c)

(12d)

ground state width do not appear if the total population
(p»+p22) is conserved [8]. As we shall see, this result is
modified when effects related to atomic recoil are includ-
ed.

We first calculate the stimulated amplitude (12b) using
the rules (7). Each of the C parameters needed for the
evaluation of C" are calculated in the limit

The sum over k is over a small range in the phase-
matched direction. The two summands in the square
brackets of (12a) refiect the role of purely stimulated pro-
cesses and those accompanied by spontaneous emission.
We shall refer to [C"(p,o ) and C"] as "stimulated" am-
plitudes and [C' (p, o ) and C'1'] as "spontaneous" ampli-
tudes, respectively. The amplitudes C"(p,o ) and
C'~(p, o ) [(p, o =1,2; pro. ] can be viewed as arising
from the scattering of field o. from the spatial atomic
grating formed in the medium by fields 3 and p. Note
that the final expression for the 4WM line shape has
simplified considerably. It has been reduced to the
square of the sum of a few terms rather than the sum of
the squares of many terms.

It is a rather straightforward matter to calculate the
various C factors appearing in Eqs. (12) using the rules
(7). Before doing so, however, it is interesting to antici-
pate the qualitative form of the results. Consider the lim-
it in which b, , =b,2-—b, 3=6,k-—b, and ~h~ ))y. In look-
ing at a C factor such as C,32$ one might conclude that
the probability amplitude for 4WM varies as

X,X3X2g k ( t jb, ),
where each 5 ' factor arises from the detuning of the up
arrows from the 1-2 transition frequency and each t fac-
tor arises from the nearly resonant multiphoton interac-
tions terminating on the ground state (there are two such
processes in the C, 32k diagram). It is clear that this term
cannot be the leading term in the 4WM amplitude since it
will not give rise to a linear t dependence for the total
probability for 4WM. There must be a cancellation of
this term when all contributions to the signal are includ-
ed, such that the leading term will vary as (t lh ). This is
reminiscent of the result using a density-matrix approach,
in which any resonances characterized by an effective

t»y '»Ia;I '(1=1,2, 3,k) .

For example, one finds

C3 =(X3/b, 3)exp( id, 3t—),
C31 = i (—X3X1 /63 )[g(b, 13 ) —™1],
C,k2

= —iX,g1", X2(b. ,h2) 'exp( id 2t )g—(hk, ),

C132k X1X3X2g k ( ~1~2)

X [g(b,k2, b, 3, ) —i(b. , +52—b, 3)

(14a)

(14b)

(14c)

where

Xg(h) —ib, 3 'g(hk2)], (14d)

g(x)= f dt, exp(ixt, ),
0

g(b. , b, ')= f dt, e ' f dt e
0 0

(15a)

(ISb)

b =6k+63 —6,—A2 . (17)

g(h, b, ')+g(b, ', b, ) =g(b. )g(b, '),
one can obtain

(18)

In the expression for C i 32', time-independent terms,
which ultimately would not contribute to the 4WM sig-
nal, have been omitted.

Equations (14), with various permutations of the in-
dices, are sufficient for calculating the stimulated ampli-
tude. Combining these terms according to (12b) and us-
ing the fact that

C"(P,O ) —tX,X3X2gk (b, ,b2) '[g(h)[(b, , +52 —b3) +(b, , +62 hk) )+63 g(bk )+b—3~( klhl3) g(h3p)J (19)

The notation implicit in Eq. (19), and to be used unless
indicated otherwise, is that the indices p and o. appearing
in expressions for probability amplitudes take on the
values 1 or 2 with @%0.. The following points can be
noted with regard to the stimulated amplitude. (i) The
last term in the curly braces should be dropped since it is
of order ( ~b, ~t )

' && 1 times smaller than the other terms.
(ii) The g(b, ) function in the first term defines the frequen-
cy of emission as Qi, =Q&

—Q3+ Q2 to within a spread of
photon energies given by 5Ei, -k/t. This term corre-
sponds to 4WM under the phase-matching conditions

given in Eq. (1). As was noted above, all contribution of
order b, have canceled in the final result (19). (iii) The
second term corresponds to emission at frequency
Qk=Q and could, in principle, be phase-matched if
Q =kc. It is shown below, however, that this term is
canceled by the spontaneous amplitude. (iv) While hid-
den in the final result, the contribution to the stimulated
amplitude corresponding to C3 C~i„makes a non-
negligible contribution. Owing to a resonance condition
involving the up 2 and down k arrows in Figs. 7(d) —7(f) it
is possible to get a contribution from final states involving
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C (p, H ) = lXlX3X2gk ( 616263) g(kko ) (20)

assuming that ~b, ;~ ))y (i =1,2, 3,k). This term exactly
cancels the second term in the curly braces of (19). Con-
sequently, there is no coherent signal emitted having
Ok= Q„(p= 1,2). In our amplitude approach, the role of
spontaneous emission is clearly isolated, in contrast to
calculations carried out using either a semiclassical densi-
ty matrix [1]or Heisenberg operator approach [10].

It may seem surprising that the spontaneous terms play
a non-negligible role in the secular limit

~ 6; ~
))y

(i =1,2, 3,k). A complete analysis shows that the spon-
taneous term, as well as the second term in the curly
braces of Eq. (19), is an artifact of the rapid turn-on of
the fields. If the fields are turned on smoothly (in a time
less than ~h~ '), the contribution from both of these
terms becomes negligible.

Substituting expressions (19) and (20) into Eqs. (12b)
and (12a), one obtains a probability

2

I'= (1+6, /b, „) g A„~g ~
g'(E)~, (21)

1 2 3 k

where the fact that the ~g(b, )~ function restricts values of
Ak to the vicinity of b k

=6, —63+A2 has been used.
The rate of emission I =P can be obtained in a manner
similar to that used for three-wave mixing [2]. After car-

excited atoms that is still linear in time.
We now turn to the spontaneous amplitude,

C' (P, a)= g (C„q k+C k„q)C3q .
q

In principle, one can use the amplitudes (14), with an ap-
propriate change of indices to calculate the spontaneous
amplitude. There is one problem, however. Since there
is no restriction put on the detuning 6 one cannot as-
sume that ~b, q~ ))y. Expressions for the C parameters
derived in Appendix 8 without restriction on values for
the detunings can be used. The resulting expression for
C'~(p, o. ), obtained from Eq. (84), is [9]

rying out the sum over k, one obtains
2

I=ID 2 (1+63/bk)X1X2X3

1 2 3

where

27TAk

Ac
(23)

III. RECOIL-INDUCED RESONANCES

A. Basic theory

The results of the preceding section can be generalized
to a gas of classically moving atoms if the replacement

6 —+A. =A. —k p/m (24)

is made, where m and p are the atomic mass and momen-
tum, respectively. In this section, however, we wish to
use the amplitude approach to investigate a new class of
resonances, the so-called recoil-induced resonances (RIR)
[3]. To do so requires a quantization of the atoms'
center-of-mass motion. Our approach represents an en-
tirely quantum treatment, in which both the fields' and
atoms' degrees of freedom are quantized.

The Hamiltonian is conveniently expanded in a
momentum-state basis using the fact that
exp(+ik r )~p. ) = ~p. +A'k). In an interaction represen-
tation, the Hamiltonian for the system of X atoms can be
written as

u& is a unit polarization vector for the emitted field and S
is the cross-section area of the atom-field interaction
volume. This rate agrees with the rate calculated using
either a semiclassical [1] or quantized dressed-atom ap-
proach [10].

A generalization of this theory to allow for arbitrary
ratios of y to 6; is given in Appendix B. Modifications of
the line shape resulting from collisions is also analyzed in
Appendix B.

1V0= g g g gfi[g„S, +rk k „xp[ i(b,„+co „+rk )t]+—g„'S „k a„exp[i(b,„+~ zk )t]],
P J=& PI PN

where

co».=(c.
~
—

s~ )/A', s~=p /2m, (26)

I

pf and p;„are the momenta following and prior to an
atom-field interaction. Using the fact that pf =p;„+6k;
[where the —(+) sign corresponds to absorption (emis-
sion)], one finds

and

S k lp1. P, &k . . P1v~j 7

X 2 p(2'~pl~ . ~ ~ Pj~ . ~PN~ (27)

6,'=6, —k, p;„/m+coi,

where

cok=kk /2m

(29)

COP P (28)

where + ( —) corresponds to emission (absorption), and

By comparing the Hamiltonians (5) and (27), one is led to
modify the computational rules (7) by replacing 6, with

is a recoil frequency. The di6'erence between the right-
hand side of (29) and (24) is of order cok and can lead to
RIR [3]. It is important to note that, once recoil effects
are included, the law of conservation of probability for
each momentum subclass of atoms no longer strictly
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holds, i.e., p»(p)+p22(p)&const. As a result, resonances
characterized by the inverse of the eA'ective ground-state
lifetime can appear in the 4WM line shapes [8].

In calculating the probability of 4WM emission, one
must average over the initial state of the atomic ensem-
ble. This procedure leads to an average over the velocity
(or momentum) distribution of the particles. One might
expect that the final result takes the form a probability
integrated over a velocity distribution. It is seen below,
however, that the final result is of the form of the square
of a single-particle probability amplitude integrated over
velocity. This is analogous to the density-matrix ap-
proach where the 4WM signal is proportional to the
square of a velocity-integrated single-particle dipole
density-matrix element.

Consider, for example, that part of the emission proba-
bility 5P associated with

~ C»2k ~
. In working with

probability amplitudes in the momentum representa-
tion, one must calculate the probability amplitude
b(p„. . . , p, , . . . , p1v;n, —l, n2 —l, n3+ 1, lk, t) for all
atoms to be in state 1, having momenta
p„. . . , p, . . . , p&, and for one photon to be absorbed
from each of fields 1 and 2 and a photon emitted into
each of fields 3 and k. Using perturbation theory, it is
easy to see that, corresponding to the amplitude C,32k,
one finds

b(p„. . . , p , j. . . , p~;n1 —l, n2 —l, n3+1, lk, t)

X C132k(pj )

J

Xb(p„. . . , p —Qk, . . . , pN', nl, n2, n3, Pk', P),
where C, 32k(p) is the value of C, 32k appropriately
modified by the replacements (29) and k is defined by (3).
In forming probabilities, one arrives at a sum over j and
j' involving products of the form

25P= y Ak f dp w(p)C, 32k(p)
k

(31)

where W(p) is the reduced, single-particle atomic
momentum distribution and Ak is defined by (11) [11].
When the amplitudes corresponding to the other dia-
grams in Fig. 7 are added in, one arrives at a probability
for phase-matched emission given by

P= QAk g f dp W(p)C(p, o",p)
k cr(&p)

(32)

where

C(j2, 0.; p) =C"(j2,a",p)+ O'P(p, o.;p) (33)

B. Secular approximation

One can observe RIR by monitoring the 4WM signal
as a function of the detuning 6=63& between fields 1 and
3. The RIR width y„ is determined by the relaxation rate
of the field-induced ground-state atomic gratings. In this
subsection, we make a secular approximation and assume
that ~b. ;~ ))I, ku, y„(i =1,2, 3, k). The quantity
u =po/m is the most probable atomic speed while po is
the most probable atomic momentum.

Our goal is to calculate corrections to the 4WM ampli-
tude resulting from the inclusion of atomic recoil. The
exact cancellation of terms varying as 6 no longer
occurs when recoil is included. The signal consists of two
parts. First, there is a "background" term, calculated in
Sec. II, which varies as 6 and does not exhibit any res-
onance structure near 6=0. Second, there is the RIR
contribution which varies as 6 and does exhibit reso-
nance structure centered at 6=0. If

and C"(j4,o",p) and C' (p, o.;p) are the values of
C"(p,, o ) and C'p(p, o ) appropriately modified by the re-
placements (29).

C132k(Pj )C132k(Pj')
2)=COk~b. /(ku) (34)

Xb(P1, . . . , P —Ak, . . . , PN,'n l, n2, n3, 0k, p)

b*(p„.. . , p —
haik, . . . , pN; n „n2,n3, 0k, p) .

Assuming that the initial density matrix is diagonal in
momentum space, one can have an N contribution to the
line shape only if k=o, which is precisely the momentum
conservation condition (la) necessary for phase matching.
If k=o, the integration over center-of-mass momenta
and over a small range Ak centered at
k =k, —k3+ k2(k =0) is easily carried out. One arrives at
a phase-matched contribution oP associated with

~ C, 32k
given by

is much greater than unity, the RIR contribution to the
signal dominates the background term [3]. For the
present discussion, we shall assume this condition to be
satisfied. As has been pointed out previously, the in-
equality g))1 is generally satisfied for atoms cooled
below the Doppler limit of laser cooling.

We need keep only terms varying as 6 to find the
leading contribution to the RIR signal. Both the spon-
taneous amplitude and the third summand in the formula
(12c) do not contribute to this order. For the remaining
contributions to the stimulated amplitude one can use an
integral representation similar to (10) and, after the re-
placement (29), obtain

Cp3 k(P)=&1+3+2gk f dt, exp[&(+k+~p+~kp+~(k +k )t1]

X f dt2exp[ —i(b, —cop+@k +k 1p+~, , )t2 —1'(t1 t2)]
0

X dt3exp[i (b 3+COp+~ p+$k )t3]
0 JLt3' p

X dt4exp[ i(&„~p+—qk p)t4 1'(t3 t4)]
0 P'

(35)
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where

k, =k,- —k

Using the fact that k=0 [condition (la)], to order b.
one finds

2

R (t)= g f dp W(p)R„(p, t),
@=1

q(b, )= [g(b„t, t')g*(b„t, t")],=a—
(41b)

(41c)

C„3.k(p) = —B'g~ v(~3„» (37a)
and the equality g(b. , t, t)=0 was used. It follows from
the definition (41c) that q(h) can be expressed as

where

B=XfX&X2 /b, ,b,~,

y(co) = f dt, exp[i(bq —co)t, ]
0

X f dtzexp[i(b. 3„+co)t2],
0

(37d) S(t)=f dt'R*(t')
0

q( 6 ) =2n.5(b, )

for t ) t' and t ) t". Consequently,

I =I,~S(t)~',

(37c) whel e

(42)

(43a)

(43b)

and

CO;
—

COk (37e)

The remaining contribution to the stimulated amplitude,
C kC3„, is evaluated in a similar fashion. Making use of
the equality fDdt, fOdt2 = f odt& J o'dt2+ fOdt2 f0'dt„
one can obtain

C~~(p)C3 (p) =(6 /b3)[B g& g( co3p)
—Cggp3(p) ] .

and Io is given by (23). Using Eqs. (43b), (4lb) and (40b)
one can obtain

2

S(t)=B&m g(~k „u~)

X [I[(63„+co~„)/(~k3„iu),k3„ut)

I [(63„——co3„)/( ik3„iu), k3„ut) ]I,
(44)

(38) where

Combining Eqs. (37) and (38) and assuming that
~
b, 3„~ &&

~
b,3 ~, one finds the amplitude

I(z, a) =m '~ f dr f dp W(p)exp[i (z —p /po)r],

(45)
C (p, o, p) =C' (p, o', p) = Bgk [0'(m—3p)

—0'( m3p)]—.

(39)

It is convenient to change variables to t2 =t, t2 in (37c). —
After changing the order of integration over t, and tz
and substituting the result into (39), one finds

p =p a/a, and ~ is dimensionless. For a Maxwell dis-
tribution function

W(p) =(m' po) exp[ —(p/po) ],
I(z, a) is expressed through the plasma dispersion func-
tion [12]

C(p, , o,p)=g f, f dt'R„(p, t')g(b„t, t'),
0

where

R„(p, t) =2iB *exp( i b, 3„t)sin(co3pt)—

(40a)

(40b)

as

w (z) =exp( —z )[1+2i~ ' f dr exp(r )],

I(z,a)=w(z) —exp[iza —a /4]w(z+ia/2) .

(47)

(48)

and

g(h, t, t')=[exp(ibt) exp(ib—t')]/i& . (40c)

The two contributions to the line shape (44) are cen-
tered at the points b,3„=+co3„=+A/k3„~ /2m; in the ab-
sence of recoil these terms cancel one another. The width
associated with each term is of order

Equations (40) imply that the frequency of coherent emis-
sion is centered near the point 6=0 in accordance with
the law of energy conservation (lb). However, the proba-
bility distribution of the emitted photons is not deter-
mined by the function ~g(b, )~, as it was for stationary
atoms.

After substituting (40a) in (32) one finds

y„-maxI 1/t, ~k3„u ~ ] . (49)

Assuming that co& «y„, one can expand (44) around
co3„=0to obtain

S(t)=2B&m. g [co3„/(~k3 ~u) ]
@=1

I=P= f dt'f dt"R(t')R*(t")g A„~g„~'~(b,),
k

(41a)

where

XI'[h3„/( ~k3„~ u ), k3„ut ] (50)

where
I'(z, a)= I(z, a) .

az
(51)
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For the Maxwellian distribution (46),

I'(z, a) =2ivr ' [1 —exp(iza —a /4)] 2—zI(z, a) . (52)

If the background term is not negligible, one should add
a term

1.2

0.8

Sb,„= 2i—B[b, 3
'+ hq '] (53)

to Eq. (50) [13].
Let us consider a 4WM geometry in which fields 1 and

2 counterpropagate along the x axis and field 3 makes a
small angle 0 relative to field 1, i.e.,

0.4

k, =kx, kz= —kx, k3=k3(x+Oy)=k(x+Oy) . (54)
00 I I I I I

-1 0 -8 -6 -4 -2 0

X

2 4 6 8 10

c03 i
—cok02 (ssa)

All incident fields, as well as the signal field, are polarized
in the z direction. For this geometry, FIG. 8. Recoil-induced universal line-shape function F(x)

for short interaction times, t « ( ku ) . The abscissa is in di-
mensionless units x =5t.

c032 —4cok . (55b) intensities of the forward to backward amplitudes is

t «1/ku,
1/ku « t «1/ku 0 .

t »1/ku 0,

(56a)

(56b)

(56c)

An interpretation of the recoil-induced line in terms of
the Raman transitions between states differing in center-
of-mass energy has been given previously [3]. There are
essentially two types of resonances. The first involves the
formation of atomic gratings by fields 1 and 3. The width
of the corresponding RIR is max(ku8, t '). We refer to
this contribution as the "forward" Raman line. The
second term involves the formation of atomic gratings by
fields 2 and 3, leading to a RIR having width
max(2ku, t '). We refer to this contribution as a "back-
ward" Raman line. There are additional contributions to
the line shape from gratings formed by fields 2 and k and
fields 1 and k. Owing to the momentum conservation
condition (la), the 2-k grating corresponds to a forward
Raman contribution and the 1-k grating to a backward
Raman contribution.

For 0 «1, three different regimes should be con-
sidered:

ICO3 f /IC03$ 8 «12 (59)

enabling one to neglect the forward Raman component.
The 4WM signal is

I =I, i4Bco„i't'F(ot ),
where

F(x)= If (x) I'

and

(60a)

(60b)

f (x)=2[(1 ix)e'"—1]/x— (60c)

1.2

Thus both the amplitude and width are functions of t and
Fermi's golden rule is not strictly applicable in this limit.
On the other hand, it follows from Eqs. (43a), (23), and
(11) that one can write I as I= ~2+ ~gk& S( )t~ 3&6(b, ),
which has the form of Fermi's golden rule with a time-
dependent matrix element g&S(t). For kut «1, one can
deduce from Eq. (51) that S(t) ~cozt f (A»t). This ex-

when the time of interaction is short enough to broaden
both the forward and backward Raman lines, when it is
small enough to broaden only the forward Raman line,
and when it is sufficiently large so as not to affect the for-
ward or backward line width.

t « 1/(ku). In this limit all Doppler dephasing can be
neglected. In the expression

2

S(t)=2BV~ g [a) „/(~k „~u ) ]

~ 0.8
~~

~0.4

XI'[h3„/( ~k3„~u), k3„ut] (57)

00 I I I I I I I t I I I I I I

~ IJ
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

5/2ku
one can substitute

I(z, a) =7r '~ [exp(iza) —1]/iz . (58)

Both Raman lines have the same widths, but the relative

FIG. 9. Recoil-induced line shape I as a function of 6/2ku in
the limit (ku) '« t «(kuO) '. The parameters chosen for
this plot are 0=0.008 and kut =50. Both the forward and
backward Raman components are visible.
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plains the t dependence of the line shape.
The result (60) is universal. It describes the coherent

emission of the medium for short interaction times, in-
dependent of the atomic distribution function and the re-
laxation processes on the lower level. A plot of I'(x) is
shown in Fig. 8. For small and large x, one has

~3
CD

~~

2

(61)

(1/ku) &(t &( I/(ku 0). In this limit one can set
0:=~ for the backward Raman line and p =0 for the
forward line in Eq. (45) for I(z, o). Using this result in
Eq. (50), one finds

0 I I I I I I 1 I I

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

5/2ku

S (t) =Bcok[i B t f(b 3, r )

+4(ku) [i vr'—~ z2w(z2)]I,

where

z„=b,3„/(k3„u) .

(62a)

(62b)

FICx. 10. Recoil-induced line shape I as a function of 5/2ku
in the limit t ))(ku0), with 0=0.15. The forward and back-
ward Raman components have the same amplitudes in this lim-

it.

The ratio of the forward to backward amplitude is
(kut8) (&1, and the ratio of the forward to backward
resonance width is (kut) '((1. The forward Raman
contribution to S(r) is co3, t f(b,3,t) as it was for the
t &((ku) ' case, while the backward Raman contribu-
tion is proportional to co&/(ku) . In analogy with the for-
ward Raman line, the backward Raman contribution can
be interpreted as being proportional to co32r hf(53ir Q)

=4col, t„hf(b, »t„h), where the elfective coherence time
t„=h(2ku) in the large Doppler broadening limit.
The line shape is plotted in Fig. 9. Recall that 63i —5.

t ) ) 1/(ku 9). In this limit Doppler broadening dom-

inates both the forward and backward Raman lines and
one finds

S =4Bcoq(ku) [2i m''~ [z,c—o(z, )+z2w(z~)]], (63)

C. Arbitrary detunings

For arbitrary ratios of b, , /I, the 4WM line shape is
derived in Appendix B to lowest order in the parameter
(y t )

' « 1. From formula (824) one has

Expression (63) coincides with formula, derived in Ref.
[3], when that formula is evaluated in the secular approx-
imation. The line shape is plotted in Fig. 10. Note the
constructive interference between he forward and back-
ward contributions near 5=0.

(64a)

S(r)= g [S„(r)—S„' (r)],
0(&p)

(r)=g*, g,g2 f dp W(p) f dt' exp[i(b3„+c03„) r]

(64b)

X [y+i(b,„—coi )] y+i b, —
col + lt k3„

+exp[i(63„—co3„)t'][[y+i(E —co&)][y i(b3 Mj,)]I—
—I [ [y +i (b,„co„)][y—i (& —~—) ]]

X f dnqN exp i b3„+—q.k3„ t' y+i 6 cubi, lr —-(k„——q)
m 17'

(64c)

where S„' (r)=S„(r) (64e)

X,= ig, [' f dn, [g, )', (64d)
and n&=q/q. We have set m& =coi, in these equations.

l

To be specific we choose states 1 and 2 to be the m =0
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sublevels of angular momentum states J&=0 and J2=1,
respectively. In that case

co& «y„, (66)

N = ( 3/Bm )sin 8q,

where 0 is the angle between vectors q and z.
One finds a new RIR component centered at

63p Aq -k3„=0 in addition to those centered at
53p +c03p The origin of this new resonance can be
traced to terms involving spontaneous emission. It is
possible to resolve the resonances centered at
43p 0, +A@3~ if co& & y „; however, in most experimental
situations we encounter the opposite limit

y »ku, (67)

a limit valid for atoms cooled to or below the Doppler
limit of laser cooling.

When inequality (67) is satisfied, one can replace the 5;
in Eq. (64c) by 5; and carry out the momentum integra-
tion to obtain

which is adopted in this work. For the remainder of the
discussion, it is furthermore assumed that

S+ (t) +]+3+2 [1T /( lk3+lu)]
P

X I[(b3„+co3„)/(lk3„lu),k3„ut] [y+i(b,„—cog)] y+i 6 coq+— k k3„

+I [(b3 —co3„)/(lk3„lu ),k3„ut] [[y+i(b, —co„)][y—i(b, ,—co„)]]

—I'[[y+i(b, —co&)][y—i(b3 —co&)]]
' JdnqN I b, ,„+ q k,„ (lk3„lu), k3„ut

X y+i b, —to„— k (k„—q) (68)

ince co„ is smaller than all other relevant frequency parameters, one can expand the energy denominators and I func-
tions about co&=0. In that case the parameters

(69a)

~&=~3„/y, =~8 i)'5„i+45„»/y,

f33=coqc 3„o/y„=co&(0 5„,+45„2)/y„

(69b)

(69c)

determine the weights of the various contributions to the RIR line shape. For the backward Raman line (@=2),the pa-
rameter P2 dominates. For the forward Raman line (p, = 1) all contributions can be of the same order. Expanding Eq.
(68) to lowest order in P; and keeping only the term proportional to Pz for @=2, one finds

S„(t)= i2m' y—;y3y2co3„(lk3„lu) b.„[(y+ih )(y +6„)]
X [I'[5 „3(/lk3„l u ),k3„ut) —25„i(ku y/6, 8)[(y+i b 2) 'I [53„/( lk3„l u ),k3„ut)

+ ~i~„(ku)-'I"[~,„/(lk,„lu ],k,„ut)]], (70)

where the inequality lb, 3„l ((lb3l -y was used. Together with Eqs. (64a) and (64b), Eq. (70) determines the line shape
in the limit case y »ku. If the background term is not negligible compared with the RIR amplitude, one should add a
term

S k =X1X3x,'[r+i(a, +a, )][(y'+t „')(y+i~.)'] (71)

to Eq. (70) [13].
In the preceding section, it was assumed that 6& =A2. In order to spectrally separate the backward and forward Ra-

man lines, it is advantageous to choose di6'erent pump frequencies such that

l~»l »y, . (72)

Consequently, one can consider independently the forward and backward Raman components of the RIR in analogy
with other Raman-like responses [14]. The quantity S (t) takes on the limiting forms
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S(t)=4i~' y*, y3yz(ciqlkuO)[(y+ibz)(y +b ()]

X [ [y/(y+ihz)]I(63, /ku O, k3, ut ) —(b, , O/2ku)I'[(b, „/ku 8),k3, ut]

+ —,'i[yoni, /(ku) )I"[(b3,/kuO), k3,ut]],
S(t)= —2im'/ gfgiyzcok(ku) hz[(y+i b, )(y +bz)) 'I'[(h~z/2ku ),kizut]

(73a)

(73b)

S(t)=4iXfyA'zy[(3 +4, )(3 +ibz) ]

X cozt [ [exp(ih»t ) —1]/(id', t ) ] . (74)

Comparing this formula and Eq. (71) one concludes that,
for 0=0, the RIR contribution is greater than the back-
ground contribution provided

t&co 'I 1+[(b,, +b, )/I ] ]'/ (75)

Since co& is typically of order 10 s ', interaction times
t ~ 100 ps are needed to observe the RIR resonances with
8=0 [15].

It is interesting to note that if the background is com-
parable to the RIR signal, the 4WM line shape can differ
qualitatively for kuot &)1 and L9=0, for an appropriate
choice of 6, and bz [~h;~ &&y, ~bt+bz~ &&r, and

(6,+bz)(0, 6, &0, bz(0, or (b, , +bz)&0, b, , (0,
b,z&0]. The line shapes in these limits [with the back-

2.00

1.75

~1.50
M

~ 1.25

~ 1.00
L~ 0.75

0.50

0.25
(a)

0.00

(a) 5ikUe (b) 5t

FICx. 11. Plots of (a) the forward Raman line [square of Eq.
(73a) plus Eq. (71)] as a function of 8/ku 8 in the limit ku Ot && 1

and (b) the line shape for 8=0 [square of Eq. (74) plus Eq. (71)],
assuming the background contribution [Eq. (71) of the text] is

comparable to the recoil-induced signal. Detuning 6=6». The
parameters chosen for these plots are A =2co&6142/
[k u (Az, +zb )]=2—0.8 and B =2ycg„t/(6, +Az)=0. 4. Had
we taken A & 0 and B &0, the peak and dip would be reversed
The graphs are normalized to a background intensity of unity.

for the forward and backward Raman contributions, re-
spectively.

Finally, we consider 4&M for exactly parallel pump
and probe fields. If 0=0, all Doppler dephasings for the
forward Raman line vanish. There is still a forward Ra-
man resonance centered at 63& =0, although the physical
origin of the resonance differs from that for the 8%0 lim-

it [3]. From Eq. (73a), one finds the RIR amplitude

ground contribution (71) added to Eqs. (73a) and (74)] are
shown in Fig. 11. One sees that the RIR appears as a
peak (dip) on the background for the 8=0 ( ku Ot » 1 )

case. If 6, =62 the background and backward Raman
signals are superimposed on the forward signal. In this
limit both the kuOt )&1 and 0=0 signals appear as
peaks, in contrast to the situation in pump-probe spec-
troscopy where the sign of the dispersion shape differs for
8=0 and ku Ot »1 [3].

Finally, we point out that the line shape for 0=0 varies
as [sin(53it/2)/(hatt)] if the background term can be
neglected. The analogous line shape using a model in
which the finite interaction time t is simulated by impos-
ing an overall exponential decay for the atom at rate
y„=t ' leads to a Lorentzian line shape proportional to
[(63&t) +1] ' [3]. Thus the exponential decay model
does not exactly agree with the finite interaction time
model for 0=0. The two models give identical results in
the Doppler limit ku Ot ))1.

IV. DISCUSSION

The signal for nearly degenerate four-wave mixing
(4WM) has been calculated using an amplitude approach.
No fewer than 14 distinct amplitudes, each correspond-
ing to a different final state, contribute to the signal.
When these amplitudes are squared and summed, howev-
er, they can be regrouped into a form in which the signal
is expressed as the square of the sum of five terms. With
the final result expressed in this form, the calculation us-

ing the amplitude approach is not much more complicat-
ed, and may even be easier, than the corresponding calcu-
lation using a density-matrix approach. Moreover, one
gains additional insight into the origin of the signal using
an amplitude approach.

One is interested in studying the intensity of the 4%'M
line shape as a function of the detuning 6 between the
"probe" and "pump" fields (in this work fields 1 and 2 are
pump fields and field 3 is a probe field). With the neglect
of recoil and collisional effects, the 4WM line shape con-
tains no resonance structure centered at 5=0. In the sec-
ular approximation, it is tempting to try to explain the
4WM line shape as arising solely from the amplitude
shown in Fig. 7(a), in which two pump photons are ab-
sorbed and a probe and signal photon emitted. The ab-
sence of the 6=0 resonance is then explained as an in-
terference effect between the two "time orderings" (i.e,
field 1 absorbed, 3 emitted, 2 absorbed, k emitted or field
2 absorbed, k emitted, 1 absorbed, 3 emitted) that con-
tribute to this amplitude. In a large part, this interfer-
ence is responsible for the disappearance of the 5=0 reso-
nance but it is not the whole story. If one kept only the
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amplitude corresponding to Fig .7(a), the resulting 4WM
signal would contain terms that are manifestly incorrect.
It is necessary to include the contributions from all the
remaining diagrams to consistently explain the 4WM line
shape. Amplitudes involving final states in which some
of the atoms are excited as well as amplitudes involving
photons emitted into radiation field modes other than the
phase-matched mode k contribute.

When effects related to atomic recoil are included, a
resonance structure centered at 6=0 appears. In the sec-
ular approximation, the emergence of the 6 =0 resonance
can be linked to the fact that there is a phase-matched
contribution from the two components of Fig. 7(a) that
no longer cancel to order 6 when recoil is included. In
some sense, this explanation is consistent with the idea of
"the destruction of destructive interference" [4]. Two
additional features emerged from the calculation. First,
the way in which the line shape, which is the velocity
average of a squared amplitude, could be expressed as the
square of a velocity-averaged amplitude followed natural-
ly from this approach. Second, it was seen that the re-
sults, obtained for a finite atom-field interaction time, can
differ from the corresponding results obtained assuming
an effective ground-state lifetime. The results differ
whenever the interaction time is not the longest time
scale in the problem, as is the case for parallel pump and
probe fields (0=0) in which (ku0) ' —~ ) t For 8=. 0,
both stimulated and spontaneous terms contribute to the
recoil-induced resonance. The physical origin of this
term has been explained previously [3] and is related to
slight differences in the one- and three-photon resonance
denominators resulting from atomic recoil. It should be
noted that the amplitude calculation is actually simpler
than the corresponding density-matrix calculation in the
finite interaction time model.

The amplitude calculation of the collision-induced res-
onances given in Appendix 8 is undoubtedly much more
complicated than the corresponding calculation using a
density-matrix approach. However, it is evident using
the amplitude approach that the collision-induced reso-
nances can be linked to amplitudes involving the emission
of spontaneous photons into modes other than the
phase-matched mode k. In other words, the collision-
induced resonances cannot be interpreted as arising from
a process in which two pump photons are absorbed and a
probe and signal photon emitted. This result is similar to
that obtained in a model problem involving three-wave
mixing [2], but the situation is somewhat more compli-
cated here. In contrast to the three-wave mixing case,
there is considerable cancellation between the stimulated
and spontaneous amplitudes in the present calculation.

The calculation can be extended to "open" systems by
adding an additional level (state 3) to which state 2 can
decay, but which, itself, is not affected by the external
fields. One must then add contributions, similar to those
in Figs. 7(g) —7(j) involving spontaneous photons which
leave the atoms in state 3. There is an important
difference, however. Only diagrams in which the spon-
taneous photon is the last to enter contribute since any
decay to state 3 at an earlier stage would decouple the
atoms from the field. As a result there is no longer a des-

tructive interference effect between different "time-
ordered" diagrams. Consequently, a narrow resonance
centered at 5=0 appears [16] whose width is determined
by the inverse of the atom-field interaction time.

We have seen that the amplitude approach can provide
physical insight into the underlying physical mechanisms
involved in nonlinear spectroscopy. Recently, this ap-
proach has been used to analyze the probe absorption
spectrum in the presence of a pump field that is detuned
from the probe by an amount 6 [17]. It is found that the
resonance structure centered at 5=0 that appears to
second order in the pump intensity can be explained in
terms of amplitudes involving the emission of two spon-
taneous photons. A similar "field-induced resonance"
[18] would also appear in 4WM if our calculation is ex-
tended to the next order in the pump field intensity.
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APPENDIX A: AMPLITUDE DIAGRAMS

It turns out that 14 distinct amplitudes contribute to
the probability for 4WM in the phase-matched direction
k = k& k3+ k2. These amplitudes are represented
schematically in the ten components (a) —(j) of Fig. 7. In
Fig. 7, as well as in the entire discussion of this appendix,
the indices p, o, X, and v can take on the values 1 or 2,
with pro, AWv. As such each of Figs. 7(b), 7(c), 7(f)
(with p= l, o =2 and p=2, a= 1) and 7(i) (with
A, = l, v=2 and A, =2,v= 1) represents two distinct ampli-
tudes for a total 14 amplitudes. In this appendix, we out-
line a method for identifying these contributions.

Consider the first the stimulated amplitude. The num-
ber of photons in each incident field can increase by one,
decrease by one, or remain unchanged. Thus, in princi-
ple, there are 3 =27 possible contributions to the stimu-
lated amplitude. Since there is always a signal photon k
emitted, the situation in which the photon number in all
three fields remains unchanged must be ruled out. More-
over, since the phase-matched amplitude varies as
exp[i(k& —k3+k2 —k) r], and since each up (down) ar-
row j leads to a factor exp(ik r)[exp( . ik r)], one-
must always have an up p (or o ) immediately preceding a
down k arrow. The remaining arrows must be chosen in
a manner consistent with phase matching for the chosen
signal direction k.

The simplest diagram one can imagine satisfying these
conditions is shown in Fig. 7(a) and has been described in
the text. The p and o. arrows must be up and the 3 arrow
down to satisfy the phase-matching condition. To get the
remaining stimulated diagrams, one can "cut" the dia-
grams in Fig. 7(a) at any point other than between an up
arrow o. (or p) and the down arrow k. The cut section
containing the k arrow then serves as a building block for
the remaining diagrams.
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For example, if the first diagram of Fig. 7(a) is cut in
the center, one obtains a building block having an up 0.

arrow and down k arrow. One multiplies this partial am-
plitude acting at atomic site j by a partial amplitude con-
sisting of an up 3 arrow and down p arrow acting at
atomic site j [see Fig. 7(b)]. When this amplitude is
summed over j and j' and squared, one arrives at a
phase-matched contribution to the signal, varying as N .
It is also possible to let this cut partial amplitude stand
alone, corresponding to a probability amplitude for the
absorption of a o. photon and emission of a k photon,
with all atoms in their ground states. This partial ampli-
tude alone does not lead to phase-matched emission;
however, when one adds to it the second set of diagrams
in Fig. 7(c) representing the same final state and squares
the total amplitude, the cross terms correspond to phase-
matched emission in the desired direction. The remain-
ing stimulated amplitude diagrams are obtained by cut-
ting the diagrams of Fig. 7(a) such that the "building
block" contains an up cr arrow, a down k arrow, and an
up p arrow, and following a procedure similar to that
outlined above.

The spontaneous terms can be calculated in the same
manner. At most two spontaneous photons q and q' can
be emitted to this order in perturbation theory. Thus it is
possible to have a photon absorbed from each of fields 1,
2, and 3, with the emission of photons q, q', and k with
all atoms in their ground states. It is impossible to have
all photons absorbed at the same atomic site since this
would lead to the incorrect phase factor exp[i(k}+k2
+k3 —lt —q —q'). r] One must have the fields absorbed at
different atomic sites as shown in Fig. 7(g). The square of
this amplitude will lead to phase-matched emission in the
direction k=k& —k3+kz. By cutting this diagram as de-
scribed above, one arrives at the remaining diagrams in
Fig. 7.

Table I lists the various probability amplitudes
represented schematically in Fig. 7. The letters (a) —(j)
correspond to the corresponding letters in Fig. 7. A "+"
indicates emission into a field mode, a "—" indicates ab-
sorption, and a "0" indicates no change in photon num-
ber. Note that lines (b), (c), (fl, and (i) actually corre-
spond to two amplitudes each since (}}2,o ) can take on
two sets of values, (1,2) and (2,1). The remaining lines are
unchanged under the exchange p~o. , and correspond to
a single amplitude, giving a total of 14 distinct ampli-
tudes that contribute to the signal. The last column, la-
beled 3, indicates the number of atoms excited in each
process.

APPENDIX B:
BEYOND THK SECULAR APPROXIMATION

WITH THK INCI.USION OF COLLISIONAL EFFECTS

In this appendix we extend the results of the text to al-
low for arbitrary ratios of detunings 6; to upper state de-

I

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)
(i)

(j)

+
0

0
0
0
0
0
0
+
+
+
+

0
0
0
0
0
0
+
0
0
0

cay rate I =2y. It is assumed that

(yt) '«1 (81)

and all results are calculated to lowest nonvanishing or-
der in this parameter. In subsection 1, the results of Sec.
II for the background term are generalized. Collisional
efrects are included in subsection 2, in which the
coHision-induced resonances are discussed. In subsection
3, the results of Sec. III for the recoil-induced resonances
are generalized.

1. Case of purely radiative broadening

The calculation of the various C parameters needed in
Eqs. (12) are easily performed using the rules (7). Equa-
tions (14) for the amplitudes are replaced by

C3 = i [y3/(—y —i 63) ]exp( i 53t), — (82a)

C1k2 }+}gk X2[(r —»i )(y —»2) ]

X exP( i b, 2t )g( b.k}), —

C}32k X}+3X2gk [(y ~})(y ~2)]

(82c)

X {g( b,k2, b, 3})—[y i( b. }+ b, 2 b, 3)]—'g( b,)—
—(y —i63) 'g(b, k2)] . (82d)

Other members in the expression for the stimulated am-
plitude can be found from Eqs. (82) using permutations
of the indices. From Eqs. (12c) and (82), one can obtain

TABLE I. The letters (a) —(j) correspond to the diagrams of
Fig. 7. A "+"corresponds to emission, a "—"to absorption,
and a "0"to no change in photon number. The last column in-
dicates the number of atoms excited in the process.

q'

C"(}M,o ) =y,y,*y g* [(y iA, )(y —ib, )(y+i—b., )]

x{rg(a,„)g(a„.) —g(E)(y+it},, )[(y —i(h, +b,,—b, , )) '+(y —}(a,+a,—a, )) ']
—g(bk )[1 +( y+ib3) (/y—ib3)+(y ib,„)/(y+idl„)] g(i}}3„—)(r+ib—3„)/(y —ihk)] . (83)
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To calculate the spontaneous amplitude (12d) one can use Eqs. (82) with appropriate indices to arrive at

C' (p, cr)= —X X*X g*[()' —iA )()' ib—, )(y+ib, )]

lgql [g(&3q) (y+& &'q) J(g(&i, g'(&~) g(&i, +b~)[[y i(b +6 q)] +[y i(b +b i, )] }
q

—(y —ibi, ) 'g(b~) —(y —
iraq) 'g(bk )) . (84)

The function ~gq ~
is a slowly varying function and can be evaluated at b,q=0. The summation over q can be converted

to an integral and evaluated by contour integration using a representation of the g function [19]

g(x)=i lim(x+io )o~0
(85)

[the parameter cr satisfies I ))o ))t ]. Each term in the integrand contains a g function, except for one term which
varies as

g( b i, )/(y'+ &q) .

Although this term is smaller than the others by a factor (I t ) ', its contribution to the integral is of the same order
since its spectral width is I r times larger than the width of other terms. After carrying out the summation in (84), one
finds

C'"(p, o ) = —XiX3Xzgi* I [(y id—i )(y i be)( Y+—i&3) ]

X(g(b3 )g(bi, )
—g(b, )[[y i(h, +—Aq b3)] '+[@—i—(b, , +62—bk)]

+g(bi, )[I ' —(y ib3)—' —(y+ibp) ']—g(b3„)(y ibk) ')— (86)

where

and the fact I =2@ was used.
Substituting Eqs. (83) and (86) in the formulas (12b)

and (12a), one obtains the probability for 4WM emission
given by

2X,X3Xz [I —i ( 63+b& ) ]

(y —i 5i )(y —i b ~)(y+ id ~)(y —i Ai, )

I

the limit l~;l))y may be taken in the final result. Qn
the other hand, the stimulated contribution is not sensi-
tive to collisions in the secular approximation.

The situation is not exactly the same for the PIER4
line shape. As in PIER3, one can link the extra reso-
nance to diagrams involving spontaneous emission; how-
ever, the diagrams involving spontaneous emission give
rise to additional terms. These terms are canceled by cor-
responding terms in the stimulated amplitude, calculated
beyond the secular approximation.

Dephasing collisions [20] can be introduced by adding
a random function 5'(t) to the frequency of the atomic
transition. The previous formulas are modified as

where the ~g(h)~ function has allowed us to set b, =0 in
the frequency denominators. This leads to a correspond-
ing emission rate

(89)

2. Collision-induced extra resonance

The amplitude technique can be also used to establish
the origin of so-called pressure-induced extra resonances
in 4WM (PIER4) [1]. In considering the pressure-
induced extra resonance in three-wave mixing (PIER3),
Grynberg and Berman [2] showed that the extra reso-
nance can be linked to processes involving spontaneous
emission. As such, this contribution must be calculated
"exactly" (beyond the secular approximation), although

exp(+i b, , t )~exp [+i [6,t +p( t) ]I, (810)

(expj+i[y(t) —q)(t')][ )„„=exp[—y'(t —t')], (811)

where t &t'. To illustrate the procedure, we consider
contribution (d) in Fig. 7, given by

where y(t) = —fodt'5'(t') is the collision-induced phase
shift of the atomic dipole. The function 5'(t) consists of
a random series of frequency spikes whose duration ~, is
shorter than all other relevant time scales in the problem.
The average time between spikes is the inverse collision
rate 1/y'. Our model is equivalent to that used to derive
the corresponding density-matrix equations in the impact
limit. All eAects related to the velocity-changing aspects
of collisions are neglected (the atoms are considered to be
stationary).

The expression for the emission probability must be
averaged over collision histories using the formula
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(5P)„a=(ggexpjij)r. (r —r, )]jCrx|(j)Ct(j)C&(j )Ctx|(j )) e .
k jj'

As the averaging for each site j and j' can be carried out independently, one finds

& ~»,.]]—X~ k l & C,k,
k

Rules (7) and replacements (810) enable one to write the product of amplitudes in (812) as

1 '2
C3C~k„= —X]X3X2gk f dt, f dt2 f dt3 f dr C)(t„t~, t3rr )

0 0 0 0

C)(ti, t2, t3, r) =exP[ —i(b&t] + jp(t] ))—y(t —t, )]exP{i[bkt2+y(t2)] I

Xexp{ i [b—, t3+jIj(t3)]—y(t2 —t3)Iexp{i [b3r+y(r)] —y(t —r)] .

(812)

(813a)

(813b)

To carry out the collisional average one cannot apply formula (811) since time variables in Eqs. (813) are not properly
time ordered. To overcome this obstacle, the integral equality

f dt, f dt2 f dt„f d =sf deaf dt, f dt's. f dt„

+ f'dt, f dt2 f dt2 . . f dt„+. + f dti f dt2. f dt„ f dr

should be used. It enables one to rewrite (813a) as time-ordered integrals

tl 7 2

C,*C.,„=—X,X,*X,g„* f'deaf'dt] f 'dt, f 'dt, + f'dt, f 'deaf'dt, f 'dt,

+ f dt, f dt, f deaf dt3+ f dt, f dtzf dt3f dr 4(t], t2, t3, 7)

Using formula (Bl 1) to carry out the collisional average, one finds

& C3 Cakp )co]1 XiX3X2gk [(y ijj l)(y —i~2)(y+ i~3)] [1+2y /(I + i)]3p)]exp(t 63pt )P 6k~)

where y =y+ y' is the homogeneous, pressure-broadened width of the transition.
Similar transformations for the other contributions allow one to obtain final expressions for the collisionally aver-

aged, stimulated and spontaneous amplitudes given by

C"(],~)=X]X3X~gk [(y —t~])(y —t~»(y+t~3)] '

X(2yg(bk )g(b3„)—g(h){(y+i63)[(y ibk) —'+(y —ib3) ']

2y'(I +id, ) (—y —ib„)[(y—iijjk) +(y+t'5„) '] j

—g(hk~)[1+(y+ih3)/(y ib3)+(y —iA„)/—(y+ih )+exp(ih3„t)2y /(I +i b3„)]

—$( b 3„)(2y+i A3„)/( y i 6k ) ), — (814a)

c"(v,, ~)= —x,x,*x,g,*r[(y—'A, )(y —'5 )(y+'& )]

X [g(bk )g(63„)[l+2y'/(r+ih3„)]

—g(b, )((y i 6k) '+(y— i b3) '+—2(y'/I ) {(I+ ib3„) '+(y ib3)—
+2y'/[(y —i hk)(r+ i 63„)] )

—(y —t ~„)/[(y+t ~„)(r+t~,.)]I

+g(ak. ) {r ' (y i -a,—) ' —(y+ t -a„—)-' 2(y'/r ) [—(r+ t a„)-'

+(y —ih, ) '+(@+i',„) ']]—g(h, „)(y—ihk) '[1+2y'/(I +id, ,„)]]. (814b)
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Evaluating these formulas in the secular approxima-
tion, i.e. , assuming that 6, =b, (i =1,2, 3) and lb, l ))I,
but 5 =631 ~32 I one obtains

C"(t ~)=tv)X3X2gk~ '

X [2yg(bk g'(|))+2/(b, )

+g(b k )[1 exp—(i 6t )2y'(I +i 6) '] I,
(B15a)

C"(p,o')= —
X)X3X2gk ~

x [rga„.)g(S)[1+2r (r+m)-']
—g(h)4y'(I +i5)

3. Doppler-broadened recoil-induced line

We showed in Sec. II that, to obtain the RIR, it is
sufficient to calculate the amplitudes to order 6, . The
corresponding calculation for arbitrary ratios of 6, to I
is zeroth order in the parameter (yt) '. This
simplification actually makes the amplitude technique
even easier than the density-matrix approach used previ-
ously [3].

Consider, for example, the four-photon amplitude (35).
One can set the lower limits of integration over t2 and t4
equal —~ and obtain the formula

C)i3ok(P ) X)X3X2gk P ~ko ~3)i& ~3)i+~3)i)

I ['r i ( o ~p+A'k, p+iii(k —k ) ) j

+g(6„)[l—2y'(I +i5) ']I . (B15b)
X[y —i(h ~ +ikk„, )]I (B16)

Equation (B15) leads to the rate of emission
where the momentum conservation law (la) was used and
the function g(b„b, ') is defined by Eq. (15b). Similar cal-
culations lead to the two-quantum amplitude

2

I =Io 4
X1X3X2 2f

0 ~3
C p(P)= —y~pg(5p +ri)t3 )

X[y —t(bo ~ +rk )j (B17)

which is the well known result [1] for the pressure in-
duced resonance.

Substituting these results in (12c) one arrives at the
stimulated amplitude

C"(p, o",p)=y)y3y, gk f dt'g(Z, t, t')(exp[ )'(63p+—~3p)t']

X I [y l(k &opRk++pfi(k —,k ))][y l(6)i &p+fik, p)]}

+exp[ i(t),„co,„)t—'][[y——i(b, —a) +„k )]

X [r+t(~3 ~ +A'k, , ) j]

+exPI: —i(~k +~3„)t'j[r—i(~ —~,+rik

+[r+t(~3 ~p+rk, , p) j (B18)

where Eqs. (18), (40c), and the relation g(h, b, ')= f odt'g(i) +6', t, t')exp( —iA't') were used. The third summand in

(12c) was omitted, since it does not contribute to this order.
To calculate the spontaneous amplitude

C"(V ~ p)=&IC„, k(p)+C k (p)]C3 (p)
q

(B19)

one cannot use the previous formula since qWk+k —k„. To calculate C'p(p, o. , p) one returns to the integral form (35)
and carries out the summation over q to obtain

C' (p, o;p)= —y)y3g2. gk I f dt'g(Z, t, t')(exp[ ibk +~3@)t]—
0

X I [y+i(b3 —
p+„k3 p)][y i(Ao —

mp+&k p)]—
~p+rk, , p+ek, „)j]

+ I [y —i(~„—~,+rik, , ) j[r+i(~3 ~ +5k, , ) j]

X f dn N exp[ i (63„+cok —
q
—ci)k q)t']

)M 3

X [y l(6 p+iii(k +k q) p+~(k q) ]
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where n„=q/q and

N, =lg, l' f dn, lg, l'.
After some algebraic manipulations, one can combine (818) and (820) to reach the total amphtude (33)

C(p, o",p)=g„*f dr((b„t, r)[R„(r)+r„(r)],
0

where

R„(r)=y,y3y2(exp[ i (6—3p+co3p)r] [ [y —i(~ —
co~+qq ~+@k z ) )]I.'Y —t'(((„co~+~~,p)]]

+exp[ —i(~3„—co3,)r) [I y+ ( 3
—

cop+rk, , p)][y —'( ~p+~k, p)]]

[ [y t(~ co +A'k, ))[y+ t(~3 ~„+Rk,

Xr f dn N exp[ i(b, 3—„+co„q—co„q)r][y—i(& —co,+@& +„q„+,(q ql] '),

(821)

(822a)

(822b)

and

r„(r)=ig&y3 Jp[+ (+k~+co3p)]exp[ i(~k~+co3p)r]

&& [[y+&((l(3 t+qk, t, ))[y ( r+rk, t ]l.y '
( t+rk, ,r+rv, (822c)

(824)

Following the same path that took us from Eq. (40a) to Eqs. (43), we arrive at Eqs. (64) of the text.

The exponential in (822c) restricts leak +co3 l
5 I/r- I/t. Since the g function in (822a) restricts b, ~ 1/t, one esti-

mates that r„(t)-(yt) 'R„(t). It also follows that the classical limit of Eq. (822b)

R„(7)= R„(r)lg p=iy/y3/263 exp( —ib3„7.)[(y —ib, )(y —ib,„)(y+iEE3] (823)

is (yt ) times smaller than R„(r), implying that only quantum corrections to the amplitudes play an essential role in
4WM to zeroth order in (I t) . Omitting the remainder r„(r) in (822a), but for convenience, subtracting off a (negli-
gible) contribution R „(r)from (822b), one can write

C(p, o", p)=g kf dr((h, t, r)[R„(r) R„( )r] .—
0
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