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A theory of radiation pressure and its effects on the gross motion of an aggregrate of charges is estab-
lished within a canonical framework. The theory indicates the existence of radiation-pressure effects
arising from an additional interaction—the ROntgen interaction—whose origin is the classical Rontgen
current. A careful development of the formalism reveals the importance of distinguishing between the
canonical and mechanical momenta of the gross motion of the aggregate and of incorporating the
Rontgen-type interaction terms when calculating the gross-motion dynamics. A form of the Réntgen in-
teraction is present even in the dipole approximation: an effect which has previously been ignored but
which is necessary to ensure gauge invariance of the radiation-induced mechanical force. Explicit calcu-
lations of the rates of change of canonical and mechanical momenta are presented for a general atomic
dipole, with specializations to a two-level atom, revealing the presence of velocity-dependent terms in a
natural way. The formalism is consistent with the Minkowski form of the classical momentum density

of an electromagnetic field.

PACS number(s): 42.50.Vk, 32.80.Pj

I. INTRODUCTION

The present strong interest in the mechanical effects of
radiation dates from the first observation [1] of the ac-
celeration of microsized particles by laser light in 1970,
prompting the suggestion [2] later in the same year that
similar effects might be observed at the atomic level using
laser light tuned to a particular optical transition. The
subsequent fast pace of the experimental work undertak-
en in the areas of laser cooling and trapping is reflected in
the frequent reviews [3].

The object of the present paper is to construct a canon-
ical formalism in which to describe the mechanical effects
of radiation, laying the foundation for a rigorous descrip-
tion of the changes in atomic gross motion caused by an
interaction with a quantized radiation field. A specific
feature of the canonical formalism, which, in the past,
has either been ignored or overlooked, is shown to be im-
portant in the determinations of radiation-induced forces;
this not only allows the preservation of gauge invariance
and the conservation of momentum, but also enables
velocity-dependent effects to arise naturally from the for-
malism. It is well known that velocity-dependent terms
contribute significantly to laser cooling [4].

The standard approach to describing the effects of radi-
ation pressure concentrates on the study of radiation-
induced forces as a means of evaluating the momentum
transferred during the interaction. This approach, albeit
methodically standard, could lead to misleading interpre-
tations of the formalism if the necessity for a consistent
division of the motion into internal and translational
components were not recognized. Such a division must
be subject to the constraint that the center of mass should
not introduce any additional degrees of freedom. An im-
portant consequence of the division is that the conven-
tional dipole-approximation interaction is insufficient to
describe the effects of the motion of the atomic center of
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mass, located at R. This interaction, which is propor-
tional to the atomic dipole moment d, is loosely written
as —d-E (R), although the transverse component II, of
the canonical momentum conjugate to the vector poten-
tial A, in the gauge that generates the interaction, is
correctly identified [S] as being proportional to the trans-
verse component D, of the displacement, rather than the
similar electric-field component E,. The transverse com-
ponent of the momentum is identified as E, only in the
gauge corresponding to an interaction proportional to
PA,.

The adoption of the canonical procedure of quantiza-
tion and the redefinition of the Hamiltonian as the
quantum-mechanical time-evolution operator demand
that the dynamics be evaluated within the Heisenberg
formalism, consistent with the Dirac prescription of
quantization. Thus, the rates of changes of the total
atomic conjugate and mechanical momenta are defined,
respectively, as P=i#"'[H,P] and MR
=—#"2[H,[H,MR]], where M is the total mass of the
atom.

A canonical treatment of radiation pressure reveals the
presence of an interaction between the canonical, gross
atomic momentum P and a term proportional to
fd3r P 4 X B, involving the magnetic field B and the to-
tal atomic polarization 7, where the subscript /1 indi-
cates that the full multipolar expansion of the polariza-
tion has been made. This interaction is conveniently re-
ferred to as the Rontgen interaction, since its presence is
ultimately dictated by the Rontgen current, which, in
turn, is a feature of the overall translational motion of
any aggregate of charges [6]. The Rontgen interaction is
a natural product of the formalism, and the term is need-
ed in order to ensure energy-momentum conservation
and gauge invariance of radiation-induced mechanical
forces. It is important to appreciate that the Rontgen in-
teraction is present even in the dipole-approximation re-
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gime, where it assumes a form proportional to d XB(R).
The absence of the Rontgen term in most previously
determined interactions comes about through the imposi-
tion of an incorrect form of the dipole approximation:
one which is consistent only with a prematurely truncat-
ed version of the Lorentz force formula, and implies that
the dipole only sees a parallel, spatially uniform electric
field.

The role of a classical Rontgen-type interaction has re-
cently been noted in the establishment of quasi-ionized
Rydberg electronic states in crossed static E and B fields
[7]. However, the term has been largely missed in previ-
ous calculations of the dynamical effects of radiation
pressure, where the radiation-induced force F has been
identified as the rate of change P of the canonical
momentum and obtained from an application of
Ehrenfest’s theorem in the form (F)=(V{d-E,;} ). The
present authors know of only one previous gross-motion
calculation [8] involving the RoOntgen interaction, in
which a perturbative determination of the changes in
momentum experienced by an atom, interacting with a
single mode of laser light, indicated that the Rontgen
term was responsible for momentum changes not only in
the direction of the mode’s wave vector k, but also in a
direction transverse to k.

Problems of gauge and the importance of distinguish-
ing between canonical and mechanical momenta lie at the
heart of the canonical treatment of radiation-induced
forces. The gauge which allows a complete separation of
the internal and gross motions introduces a discrepancy
between the canonical momentum P and the correspond-
ing mechanical momentum MR. For an overall electri-
cally neutral atom, this discrepancy is conveniently called
the Rontgen momentum, since it is proportional to the
Rontgen interaction, and reflects the gauge-variant na-
ture of canonical momenta. However, the mechanical
force MR is gauge invariant—a feature ensured by the
presence of the Rontgen interaction. Since the force F is
an observable, it must be identified with the gauge-
invariant quantity MR. In contrast, P is gauge depen-
dent. The relationship MR =P is valid only in the spe-
cial case of an electrically neutral atom, when its dipole
sees only a parallel, spatially uniform electric field, and
only in the gauge corresponding to an interaction propor-
tional to p- A,|. Problems of gauge may also arise in per-
turbation calculations if the internal and center-of-mass
components of the interaction correspond to different
gauges. A sometimes-seen example of inconsistent
choices occurs when the internal atom is modeled as a
two-level system described by the Jaynes-Cummings
Hamiltonian [9], while the atomic gross motion is de-
scribed by the Hamiltonian P 2/2M.

The layout of this paper is as follows: The Hamiltoni-
an, which is separable into zero-order components to-
gether with internal and center-of-mass interactions, for
an arbitrary number of point charges interacting with a
radiation field, is canonically determined in Sec. II. The
forms of the Hamiltonian and canonical momenta are
further discussed in Sec. III, where, too, the electric di-
pole approximation is imposed. The restriction to the di-
pole approximation after the establishment of the zero-
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order Hamiltonians ensures the continuing presence of
the Rontgen interaction, which is now proportional to a
coupling between P and the dipole-approximation form
dXB(R) of the Rontgen momentum. Conservation of
total canonical momentum is confirmed in Sec. IV, after
the specialization is made to a single mode. Also in this
section, the canonical gross-motion dynamics are deter-
mined from Heisenberg’s equation, with the presentation
of an explicit form of P. A demonstration of the gauge
invariance of MR follows, by expressing the mechanical
force solely in terms of total electric and magnetic fields.
This enables the form of the classical momentum density
of an electromagnetic field to be determined, consistent
with the canonical formalism. Section IV ends with some
discussion of the problem of the exact form of this
momentum density. The mechanical gross-motion dy-
namics are determined in Sec. V from Heisenberg’s equa-
tion, with a calculation of MR given in terms of a single-
mode field, and later specialized to the case of a two-level
atom. There is a final concluding section.

II. THE MULTIPOLAR HAMILTONIAN

A single atom is here defined as an aggregate of an ar-
bitrary number n of particles of charge ¢” and mass m"
(v=1,2,...,n), identified in the laboratory frame by the
sets of canonical coordinates

Vlv=1,2,...,n},
Vlv=1,2,...,n} .

q={q
P={p

It is assumed that all of the particles are spinless and
move at nonrelativistic speeds, consistent with the classi-
cal charge p(r)=e"8(r—q") and current
J(r)=e"q*8(r—q") densities. The atom may possess a
possibly nonzero net charge e; =3 ,e". It should be not-
ed that throughout this paper, an Einstein summation
convention is used over repeated indices, with Greek su-
perscripts denoting a particular particle variable and La-
tin subscripts denoting a particular Cartesian component.
It is emphasized that the summed indices are those which
are found repeated on one side only of an equation, in ac-
cordance with accepted practice.

It is important to appreciate that the total atomic force
fd r{pE+JXB} formed from summmg the Lorentz
forces experienced by each charge e is not particularly
useful in determining those radiation forces responsible
for the translational motion of the atomic center of mass
relative to the laboratory observer. This is because the
Lorentz force is written in terms of the total electric E
and magnetic B fields, which include the intercharge
Coulombic as well as the transverse radiation fields. It is
much more productive to devise a formalism where the
atomic dynamics are correctly separated into internal and
translational components. This requires the use of the
canonical procedure to obtain a Hamiltonian which is
resolvable into gross and internal interactions, which, in
turn, entails a canonical transformation of the minimal-
coupling form of the Hamiltonian to one that expresses
the atomic component of the interaction in terms of mul-
tipolar fields and the total atomic momentum P. Some 30
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years ago, Fiutak [10] obtained a completely quantum-
mechanical, time-dependent unitary transformation gen-
erated by r- A(R',t), where R’ was an arbitrary coordi-
nate origin. He did not succeed, however, in simplifying
that portion of the Hamiltonian containing the magnetic
field, nor, since R’ was not the atomic center of mass R,
did he eliminate the coupling between P and internal
atomic momenta. Fiutak’s derivation is quite general.
Other derivations [11-14], with some specializing to the
nonrelativistic Pauli Hamiltonian [11], have expressed
the transformed Hamiltonian in terms of a complete elec-
tromagnetic expansion effected by a unitary transforma-
tion of the laboratory-frame momenta using a generating
function of f d’r Py A, where P, is the total atomic
polarization operator measured with respect to the center
of mass R.

The starting point for the development of our formal-
ism is the Lagrangian

m’V

2
+fd3rJ-A-—fd3rp<p

for the above-defined atom minimally coupled to an arbi-
trary (a) gauge electromagnetic field. The degeneracy of
(2.1) with respect to the scalar potential ¢ is circumvent-
ed by adopting the generalized coordinates q, A as the
sole independent dynamical variables [15], leading, by the
usual canonical procedure, to the Hamiltonian

1
2m

+1 [d’r{eg M r)+pg 'BAD)Y

L(a)z

€, .
4"q"+ [dr 2 [(A+Ve)P—cAVX AP]

2.1

H(a):

{pv_evA(qV)}Z

(2.2)
with the momenta conjugate to q* and A identified as

(2.3a)
(2.3b)

p'=m"q "+e"A(q"),
II(r)= —¢,E(r) ,

respectively. There is an implicit summation over v in
(2.2) but not in (2.3a), consistent with the adopted sum-
mation convention mentioned at the beginning of this
section. The conjugate coordinates obey the canonical
equal-time commutators

(q7.p% 1=i#8,:8,, , (2.42)

[A;(0),I1;(r")]=i%5,,8(r—1") . (2.4b)
Equations (2.2) and (2.4) are consistent within the Heisen-
berg formalism O =(i/#A)[H,0] with Maxwell’s equa-
tions, the Lorentz force formula, and the equation of con-
tinuity.

To decouple the external, atomic gross motion from
the internal dynamics, the phase space q,p is resolved
into the component spaces R, P, and

q={q*lv=12,...
p={p'Iv=12,...
such that
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mV

R= Y
M q (253)

P=3p", (2.5b)
v

qd'=q”"—R, (2.5¢)

mV
p'=p'— P. .
P =P M (2.5d)

Note that there is no summation over v implicit in (2.5¢)
and (2.5d). The gross-motion dynamical variables, con-
sisting of the center of mass (2.5a) and the total atomic
conjugate momentum (2.5b), form a conjugate phase
space separate from the internal phase space @, p; there-
fore,

[R;,P.1=i#8, , (2.6a)
[g”,P:]1=[R;,p’]1=0, (2.6b)

for all v. The internal phase-space components (2.5c) and
(2.5d) define a nonconjugate and overcomplete space
from which the commutator

—p o=V s m”

(gt p;1=i#5, [SW— M ] (2.7)
and equations of constraint

> pt=0, (2.8a)

"

mtgqt=0 (2.8b)

may be constructed. A canonical commutator
g7 =g/ .p; 1=i#b;

may be formed involving the position [§*—q" ] of any
particular particle v relative to a different particle v'.
This is a generalization of the well-known result [16] for
two particles, where (2.8a) is used to eliminate one of the
internal momenta. It will be seen later that the non-
canonical nature of (2.7) is harmless [17] and that the spa-
tial overcompleteness, characterized by the equations of
constraint (2.8), contributes to the elimination of unwant-
ed interaction couplings.

In order to rewrite the Hamiltonian (2.2) in terms of
the center-of-mass dynamical variables (2.5a) and (2.5b), a
canonical transformation must be induced, generated by

x(q”)=—17fd3r7>m(r;q)-A(r), (2.9)
e

where
?Mu;q):foldxeﬂ(qﬂ—R)&(r—R—mqﬂ—R)) (2.10)

is the total atomic polarization written in closed form
and measured with respect to the center of mass R
defined in (2.5a). The polarization (2.10) is summed over
all the charges and is therefore a function of the set q. It
is well known that the generator (2.9), with (2.10), results
in the usual Power-Zienau-Woolley multipolar Hamil-
tonian [13,18]. The present objective, however, is to ex-
tend the formalism so as to take account of the gross
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motion of the charge aggregate—where R is a dynamical H. = P? 2.11¢)
variable. The final result of the canonical transformation R oHpm -L1e
is to produce a Hamiltonian which, after the selection of
a Coulomb (c) gauge V- A =0, may be written as
(¢) =1 3 —1yy2 —1Rn 2
H;C)ZHq—FHR*}‘HLC)+H,-(C)+7AC) ’ (2.11a) H 2fd r{e, Mi(r)+u, Br)} (2.11d)
where
v w,v are the zero-order components associated with the inter-
H = P pv + e—e —, (2.11b) nal atom, the center of mass, and the transverse radiation
2m 8meolgh—q”| field, respectively, and
J
eV
H9= - Jd’c{$¥©¥(r,g")XB(r)+O *(r,g ") XB(r)-p )
m
2
1 1 1
+— [Py () +—— [d*r Py +—— | [d’re"®¥(r,g*) X , :
fof rPy(r;q)-I (1) 260f rPu.L om” f Te (r,q@%)XB(r) (2.11e)
2
HO=— TP AR+~ AAR)+ = [ d3r(P-Py(x;q) X B(r)+Py(r;q) X B(r)-P}
i M 2M 2M M M
2
e
— Al(R)~fd3r?m(r;q)XB(r)+ﬁ lfd3r‘Pm(r;q)><B(r) ] 2.119)

are the internal and center-of-mass interactions, respec-
tively. The subscript L in (2.11d), (2.11e), and (2.11f) indi-
cates the transverse portion of the relevant vector, while
er in (2.11f) denotes the total charge of the aggregrate.
The interactions (2.11e) and (2.11f) are written using the
definitions

P (59 = foldxe#qﬂa(r—k—xqﬂ) : (2.12a)

eV(r,qV)=fo‘duq-VS(r—R—qu) , (2.12b)

where (2.12a) is the polarization (2.10) expressed explicit-
ly in terms of the internal variables q.

The derivation of (2.11) is algebraically nontrivial, and
the following details are important: The canonical trans-
formation generated from (2.9), which must either be a
unitary transformation of (2.2) or a gauge transformation
of the potentials of (2.1), changes the momenta
identifications (2.3) to those of

p'=m¥'q"+eA(q¥)—e*Vx(q"), (2.13a)
I(r)= —E(r)—P,(r;q) , (2.13b)
where the individual-particle gradient operator
V Y=d/d8q". By means of the identities
Vi) =8, , (2.14a)

J @' [ an A){q"—R}-V8(r—R~A(q"~R)

=AR)—A(q"), (2.14b)

[
V"8(r—R—A(q¥—R))

= [—’"—V—xavv,ﬂ% ]V&(r-R—A(q“—R)) ,

M
(2.14¢)
J @ [ dAr{4i(r)Xa*~R)-V—(q*~R)- ANV}
X8(r—R—A(q*—R))
=fd%fo‘dxx{(qV—R)xn(r)},-
x8(r—R—A(q"—R)), (2.14d)

where V=49/0r, the relationship

% V. VY — v v mv
e"V'(q")=e"A(q )*VeTA(R)

']"’l €Ok (1,q")

+ fd3r [e"e (r,q")—

m

+ v, Pu(r;q)

XB(r) (2.15)

may be obtained after some algebra. It should be noted
that (2.15) is summed over u but not over v, and that © "
and ©# are written expressly in terms of the laboratory
particle coordinates q and q*, implying a reexpression
of (2.12b) in terms of (2.5¢). The choice of a Coulomb
gauge allows the resolution of zero-order atomic and ra-
diation Hamiltonian components, with the nondynamical
longitudinal field providing the Coulomb energy of the
charges according to the relationship

(ep/2) [ d’r B} =ete”/8meolq*—q"|
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with summations over v and u. The Hamiltonian (2.11) is
then obtained after some algebraic manipulation and use

of (2.5) and (2.8a), together with the momenta

identifications

pY=m"q"— [d’re"®(r,g*)XB(r)
+%fd3re“e“(r,q“)XB(r) , (2.16a)

P=MR+e; A(R)— [d’rPy(r;q)XB(r) (2.16b)

II|(r)=—¢€,E (r)—Py,(r;q) . (2.16¢)

The transverse photon fields obey the usual equal-time
commutator

[A,(0), () ]=i#" (r—r1') (2.17)

involving the transverse & function [19]. The details of
the calculation of (2.11) reveal that all interaction terms
between the polarization 2, the function ©, the total
canonical momentum P, and the internal momenta p
vanish. This is because of the equation of constraint
(2.8a) and the fact that the polarization is written with
respect to the center of mass R, as opposed to an arbi-
trary coordinate origin R’ mentioned at the beginning of
this section.

The internal particle momenta (2.16a) are linear com-
binations of the corresponding mechanical momenta
m*q”, the function ©%, and the sum 3,06 over all the
charges. They reduce to the standard Power-Zienau-
Woolley [13,18] forms in the limit M - o, becoming
canonically conjugate to q@*. The summation of (2.16a)
over v is consistent with the equations of constraint (2.8).
The gross-motion canonical momentum (2.16b) differs
from the corresponding mechanical momentum MR by
two terms: the term proportional to the total charge e,
is consistent with the minimal coupling of that charge to
the field A (R), while the RoOntgen momentum
[ d’t P, XB is independent of e;. The momenta (2.16)
confirm that the Hamiltonian (2.11a) may be written in
the manifestly gauge-invariant form of

Ve » . €
HE ="grg+ 2R+ 2 [ (B +e2B ]
(2.18)
after use of the equation of constraint (2.8a). Finally,

(2.16¢) confirms the identification of the momentum —IT,
with its usual form of the transverse component D of the
displacement, consistent with the Power-Zienau-Woolley
gauge [15].

The earlier statement that the noncanonical nature of
(2.7) is harmless may be illustrated by a confirmation of
(2.16a) from a determination of

m'q =>(/#[H,mq"],

involving the following nonzero components:

i —
P P’ (2.19a)
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[ e v = v =V Ve v
| oP e A m

mh
=e"0¥(r,q")— Ve“e Mr,@*) .  (2.19b)
These equations follow after the use of Eq. (2.7). It is evi-
dent from (2.19a) that the usual result of
pr=>im V/ﬁ)[Hq,qV], where H _ is the atomic zero-order
Hamiltonian (2.11b), is obtained even though q and P are
not canonical coordinates.

The zero-order component (2.11b), involving summa-
tions over v and u, assumes a more familiar form in the
specialization to two charges e!= —e¢, e?=+e¢. Equation
(2.8a) allows the internal momenta to be expressed in
terms of p'=p = —p ? and gives
g =PP e

T 2u 4meylq’|

2

+infinite self-energies (2.20)

as the Hamiltonian, where u=m'm?/M is the reduced
mass and q'=q ! —?> The variables q',p’ are canonical:
[‘]iI’P;]ziﬁaij-

III. DISCUSSION OF THE HAMILTONIAN:
THE DIPOLE APPROXIMATION

The transformed Hamiltonian (2.11) for an aggregrate
of charges interacting with a radiation field exhibits the
required explicit dependence on the conjugate variables
(2.5a) and (2.5b) associated with the center of mass, to-
gether with a complete separation into internal (2.11e)
and translational (2.11f) interactions. Equation (2.11e)
corresponds to a general Power-Zienau-Woolley interac-
tion [15], written in terms of internal momenta p, while
(2.11f) reveals coupling between P and the Rontgen
momentum fd3r7-’m><B, and a minimal coupling be-
tween P and A (R) governed by the total charge e;. In
the case of a neutral atom e;=0, the center of mass in-
teracts with the radiation field solely through a coupling
between P and the Rontgen momentum, with an associat-
ed second-order self-energy given by the square of the
Rontgen interaction. It will be seen that a variant of this
center-of-mass coupling is present even in the dipole ap-
proximation.

The Rontgen interaction is fundamentally a charac-
teristic of the convection current density Jz, which re-
sults from a charge aggregate’s gross motion [6]; this
current is extra to the aggregrate’s internal (bound)
currents and to any free currents present due to a
nonzero overall charge. The total current density is the
sum of these effects, and it assumes the most general form
of

J(r)=e7T{R8(r—R)+6(r——R)R}+J’(r) EENCRY

where the current density

V(0)=Jg(r)+P,u(r;@)+V XM(r;q) (3.2a)

for a neutral charge aggregrate e;=0 is the sum of the
Rontgen current
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JR(D)=1VX{Py(r;@) XR—RXPy(1;3)} (3.2b)
and the usual electric polarization and magnetization
currents, with

M(r;c‘l)Z%foldk AeP{qHX G —gH X qH}8(r—R—AGH)
(3.2¢)

as the magnetization operator. Equation (3.1) is an iden-
tity, following from the Dirac 8-function properties of the
closed forms of 2, and M [20] independently of any
canonical formalism. However, a verification of (3.1)
from a determination within the Heisenberg formalism
requires the inclusion of all the terms in the Hamiltonian
(2.11); in particular, J, would not appear if the Rontgen
interaction were absent from (2.11f).

The adoption of the dipole approximation has the
effect of truncating the expansions (2.10) and (2.12) to
their leading terms of

?@Zdﬁ(r—R) N
©}=13"5(r—R) ,

(3.3a)
(3.3b)

where d=e#q*" is the dipole moment. This, in turn,
rewrites the interactions (2.11e) and (2.11f) as

) 1
H{9=¢; ld-IIL(R)—i—z—e;fd%??m(r) , (3.4a)

ﬂgﬂzﬁ[ {P—e; A (R)}-dXB(R)

+dXB(R)-{P—e; A (R)}]

e
—ﬁ[P-Al(RH A, (R)-P}
(3.4b)

respectively. It should be noted that the magnetic dipole
and diamagnetic interactions, formed from (3.3b), have
been omitted from (3.4a). This is justified on the grounds
that the former interaction is smaller than the first term
of (3.4a) by the order of the fine-structure constant, and
the latter is second order in photon destruction and
creation operators [21]. The last term of (3.4a) and the
last two terms of (3.4b) are also of second order and are
similarly ignorable. The last term of (3.4a) contains the
transverse component of (3.3a), such that

?ﬂli(r):dirsi,i(r‘—R) s

and is important in the calculations of the Lamb shift and
van der Waals’ forces. Finally, the canonical momenta
are identified as

pr=m'q", (3.5a)
P=MR+e; A (R)—dXB(R), (3.5b)
Hi(r)=—€oEl(r)—?@l(r;(i) (3.5¢)

in the dipole-approximation regime.

It may be seen that the internal momenta (3.5a) are
solely mechanical in the dipole approximation. On the
other hand, the gross-motion particle momentum P re-
tains a nonmechanical component, even in the case of a
neutral atom, and the RoOntgen momentum remains
present in the form of d XB(R). This is contrary to the
naive approach of introducing the dipole approximation,
before applying the canonical transformation, by rewrit-
ing the vector potential in (2.2) as A(R) and the genera-
tor (2.9) as (1/e¥)d- A(R); this results in the loss of the
Rontgen interaction from the Hamiltonian and the loss of
the differentiation between the canonical and mechanical
gross-motion momenta.

If one were to write naively A ,(q”) as A, (R), con-
sistent with @"-k <<O for all v and k, then the Hamiltoni-
an (2.2), in the absence of any canonical transformation
and in conjunction with (2.5) and (2.8a), might, formally,
be reexpressed in a Coulomb gauge as

H'Y=H_+Hg+H?+H{ , (3.6)
where the first three terms of (3.6) remain as
(2.11b)-(2.11d) but where the total interaction is ex-
pressed in the p- A | gauge as

v v,V e
HO=2"5"A R+ AAR)—-LP-A[(R) .
mY 2m” M
(3.7)
The momenta of (3.6) may be identified as
) erm
pPr=m’q¥+ je'— v, A (R), (3.8a)
P=MR+e; A (R), (3.8b)
II(r)=—¢€E\(r) . (3.8¢)

As mentioned in Sec. I, the canonical and mechanical
gross momenta are now equivalent in the case of a neu-
tral atom. However, the form of the electromagnetic
force experienced by each charge e consistent with (3.6)
is not given by the Lorentz force formula, since the spa-
tial dependence of the force on the positions of e has
been lost in the degeneration to a uniform R dependence.
Thus the dipole d sits in a spatially uniform field, which,
in the case of a Coulomb gauge, implies that the direction
of d is parallel to the electric field E,. Such an orienta-
tion is often assumed, as in, for example, the Einstein-
Hopf model [22] for thermodynamical equilibrium be-
tween a dipole and an electromagnetic field, and corre-
sponds to modeling the atom as an infinitely massive os-
cillator. A proper description of radiation-induced atom-
ic gross motion, however, where Doppler terms are
present in the formalism and with no implicit assump-
tions about the orientation of d, must be determined by
making the dipole approximation in its correct form of
(3.3) after the application of the canonical transformation
generated by (2.9).
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IV. CANONICAL GROSS-MOTION DYNAMICS

Now that the canonical framework in the form of the
Hamiltonian (2.11) and its electric dipole approximation
interaction (3.4) has been established, the present and fol-
lowing sections are devoted to its use in determining the
atomic gross-motion dynamics. The rate of change of the
total canonical momentum is calculated in Sec. IV, allow-
ing that of the mechanical momentum to be expressed in
a manifestly gauge-invariant form involving the total
electric and magnetic fields. In Sec. V, the mechanical
force MR is reexpressed in terms of a transverse radia-
tion mode, where, too, the specialization to an atomic
two-level system is considered. In both sections, calcula-
tions are made on the bases of the dipole approximation
and a single-mode k=(w/c )k and the notation of a tilde
is adopted to denote some particular quantities measured
with respect to the single mode.

The dipole-approximation, single-mode Hamiltonian
H (X”) may be constructed from the zero-order components
(2.11b)—(2.11d) and the interaction (3.4) by replacing the
radiation fields with the single-mode quantities
172

~ 7 “~ . + .
=3 . + — . s
A |(r) 2oV tu{a exp(ik-r)+a'exp(—ik-r)}
(4.1a)
~ heyo 1/2A .
I (r)=—i tf{a exp(ik-r)—a'exp(—ik'r)} ,
2V
(4.1b)
with B(r)=VX A|(r). Equations (4.1) are written in

terms of the usual single-mode Bosonic operators a,aT;
and the polarization vector 1 is assumed to be real. The
cavity quantization volume ¥ normally cancels out in the
calculations of observables, and may be allowed therefore
to tend to infinity. It should perhaps be mentioned that
the commutators formed from the single-mode fields by
the use of [a aT]=1 are not equivalent to their usual
multimode forms—for example, the commutator

[A4,(0), 1) ]=(i#/ V)i, td;cos[k-(r—1')]

should be compared with (2.17).

The determination of P=(i/#)[H,P] follows
straightforwardly—albeit tediously—using the commu-
tators (2.6a) and [a,aT]Z 1. The result is

P=—okd- Kl(R)+%{R-dX[kX A,(R)]

+dX[kX A (R)]‘R}

e . ~ .
Lk {R-TI(R)+T,(R)-R} .
2m€,

(4.2)

The first term of (4.2) arises from the first term in the
single-mode form of the internal interaction (3.4a), while
the second term of (4.2) is due to the presence of the
Rontgen interaction term in the single-mode form of the
center-of-mass interaction (3.4b). The final term of (4.2)
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obviously vanishes in the case of a neutral atom. The
rate of change of canonical momentum is in the direction
k of the mode vector, and it is consistent with the conser-
vation of momentum in the form

d 3G | =

° [P+ fd rG] 4.3)
where

G=1{B(r)X I (r)—1M (r)XB(r)} 4.4)

is the single-mode momentum-density component of the
energy-momentum tensor parallel to k. Substitutions of
single-mode forms of (3.5b) and (3.5¢) into (4.3) allow the
mechanical force operator for a single mode to be written
in terms of single-mode electric E, and magnetic B fields
as

. ~ € d ~ o~
MR=cE(R)—— Et-fd%{Ei(r)XB(r)

—B(r)XE,(r)] . (4.5)
Equation (4.5) is in a manifestly gauge-invariant form: a
generalization to multimode E; and B fields is trivial. A
similar result would be obtained had (4.3) been deter-
mined in the absence of the dipole approximation. In-
herent in the canonical formalism is the assumption that
all fields vanish at infinity, and this, in conjunction with
the fact that spatial integration is here taken throughout
all space, means that no surface term is present in (4.5).
It is important to appreciate that the ability to express
MR in terms of gauge-invariant fields comes about be-
cause of the presence of the Rontgen momentum term in
the identification of P. This term, which is proportional
to the transverse component of the polarization, is re-
moved by a similar term, but of opposite sign, brought to
the energy-momentum tensor through the identification
of I, as the transverse component —D, of the displace-
ment.

This latter identification is also responsible for the mul-
timode generalization of (4.4) being consistent with the
Minkowski [23] form D; XB of the classical momentum
density in a Coulomb gauge electromagnetic field in a
dielectric medium. It may seem possible that a claim of
consistency with the Abraham [24] form €,E, X B of this
density would come about by adopting the p- A, gauge
identification (3.8c) of the conjugate momentum in terms
of the electric field. However, as was seen at the end of
Sec. III, this assumes that d lies exactly parallel to the
direction of an electric field which is uniform across the
dipole [25]. Even here, the formalism involves subtleties
which are not readily apparent. A canonical transforma-
tion of the Hamiltonian (2.2) induced by the generaliza-
tion Y'=¢Cx of (2.9), where { is an arbitrary parameter,
produces a {-dependent total interaction and {-dependent
conjugate momenta [26]. This interaction is formally se-
parable into internal and center-of-mass components ei-
ther in the gauge corresponding to {=1, resulting in
(2.11e) and (2.11f), or, for general &, if it assumed that
every charge sees the vector potential as A (R).
Momentum is still conserved in the latter case, which, as



47 CANONICAL APPROACH TO PHOTON PRESSURE

was seen in Sec. III, corresponds to d being exactly paral-
lel to E,;, and the gauge-invariant form (4.5) of the
mechanical force may be obtained for a single mode, but
all at the expense of a {-dependent energy-momentum
tensor. Consequently, the introduction of a prematurely
truncated form of the dipole approximation, in replacing
A |(q") by A (R), implies a gauge-dependent classical
momentum density—which assumes the Abraham form
with the choice of {=0 and the Minkowski form when
£=1. Thus, self-consistency is only maintained if the in-
teraction is separated by putting {=1 and introducing
the dipole approximation in the correct manner.

It should be noted that the formalism’s support for the
Minkowski momentum density comes from a rigorous,
canonical argument independent of any particular physi-
cal model. In general, as can be seen from (4.5), the total
mechanical momentum of the atom and electromagnetic
field is not conserved. Only in the special case of e, =0 is
it possible to claim that €,E, X B represents the mechani-
cal momentum density of a multimode classical elec-
tromagnetic field. Equation (4.3) is the sole expression of
momentum conservation, remaining valid for all e;. This
is in keeping with Noether’s principle expressed in terms
of the invariance of the Lagrangian (2.1) under
infinitesimal transformations of the generalized coordi-
nates q* and A(q").

In no way is it claimed that the arguments presented in
this section represent the resolution of the Minkowski-
Abraham controversy [27] on the correct form of the
electromagnetic momentum density in a material medi-
um. However, a first attempt has been made to examine
the issue from a quantized canonical perspective, in
which the matter and fields enter the formalism on an
equal footing, and, as such, the treatment is consistent
with the microscopic physics of particles. In contrast to
previous investigations, which have all depended upon
classical, continuum determinations of the pressure on an
imaginary surface drawn within a region of an elec-
tromagnetic field, the present authors have given a more
fundamental study involving calculations, from a quan-
tum electrodynamical Hamiltonian, of the rates of
change of the canonical and mechanical momenta opera-
tors for an aggregate of an arbitrary number of micro-
scopic charges interacting with the field.

So far, there has been no mention of pseudomomentum
or crystal momentum. Translational invariance of the
whole dynamical system, which is composed of charge
particles and the electromagnetic field, gives rise to the
conservation of total momentum, and, ultimately, to Eq.
(4.3). However, translation invariance of the charge ag-
gregate alone, in the absence of the electromagnetic field,
gives rise to what has been defined [28] as the pseu-
domomentum density K. There is no direct equivalence
to K in this paper, since, as has been shown, changes in
gross motion stem from a coupling between the charges
and the field, and the subsystems should not be con-
sidered in isolation. However, for an overall electrically
neutral charge aggregate, the pseudomomentum may be
thought of as —P&(r—R), if the Rontgen momentum
dXB(R) is ignored. In this form K is approximately
equal to G, as shown elsewhere [29] and, of course, the
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distinction between canonical and mechanical momenta
has been lost. It is interesting to note that the conditions
under which it is generally believed that conservation of
pseudomomentum holds are compatible with ignoring the
Rontgen term.

Finally, it is confirmed that the formalism developed in
this paper, as represented by Egs. (3.5b), (4.3), and (4.5),
is consistent with a linear electric susceptibility for a
charge aggregate of general e, given by its relative per-
mittivity minus 1.

V. MECHANICAL GROSS-MOTION DYNAMICS

To be able to perform quantum-mechanical calcula-
tions of gross-motion mechanical forces, it is more useful
to express (4.5) in terms of the radiation mode, and,
therefore, in terms of photon annihilation and creation
operators. This involves a direct determination of

MR=—#[HY,[HY ,MR]] .

After some algebra, making use of (4.2) and the relation-
ships

A (R)=¢; 'M(R)— 2610(0 [R-kIT(R)+T1,(R)k-R],
(5.1a)
B(R)=¢; 'V XTT,(R)—1[R-k{k X & ,(R)}
+{kX A (R)}k-R], (5.1b)
as well as the identity
X XB=—k(X-I))+(X-k)II, (5.2)

for any vector X, it is found that
MR=—w(dk) A (R)—LHdk)[RX[kX A,(R)}
—{kX A (R)}XR]

o« er
+dxBR)— —11,(R)
€

er . ~ .
+—21[R><B(R)—B(R)><R]. (5.3)
The operator (5.3), which is exact to within the electric-
dipole approximation, forms one of the main results of
the present paper. It expresses the quantum-mechanical
force, induced by radiation pressure from a single mode,
on an aggregate of charges modeled as a composite
comprising a point charge e; and a dipole d. The opera-
tor R in (5.3) may be replaced by P/M from a single-
mode variant of (3.5b) if second-order terms in photon
creation and annihilation operators are ignored. Thus,
the velocity-dependent terms occur as a natural result of
the formalism and do not have to be added ‘“by hand.”

The single-mode force operator (5.3) may be compared
with a multimode classical force

[MR] =(d-V)E+(d-V)RXB+dXB ,

classical —

(5.4)

obtained elsewhere [30], for a neutral atom. A rearrange-
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ment of (5.4) from Maxwell’s equation B=—V XE gives
[Mii]mm:vg<E+R><B)~d}+§;<de). (5.5)

If the total temporal derivative in (5.5) is ignored as hav-
ing no net effect on atomic gross-motion dynamics over a
long time period and if terms in R are ignored as being of
the order of ¢ ~ 1, then the remaining force of (5.5) may be
identified as that obtained by the application of
Ehrenfest’s theorem to the d-E interaction.

A useful specialization of (5.3) involves modeling the
atom as a neutral e;=0 two-level system, with the
eigenenergy of the ground state |g) taken as zero and
that of the excited state |e) as #wy such that
Hﬁ=ﬁcoo|e Y{e| is its zero-order Hamiltonian. The di-
pole moment and its rate of change may be written in
terms of the usual two-level raising 7' =|e){(g| and
lowering 7= g ) (e| dyadics, viz.,

d=—e(r+r){g|Dle) ,
c'1=iecoo(7r—7TT)(g|.fD]e> .

(5.6a)
(5.6b)

The vector D=3 {q_,—q +,} is the sum over all a
electrons of the differences between their positions g
and the position § 4, of the nucleus, measured with
respect to R. It is assumed that the wave functions corre-
sponding to the atomic ground and excited states are real
[31] and, therefore, {(g|Dl|e)=(e|D|g). With e;=0, a
substitution of (5.6) into (5.3) reveals that the force

MR=F k+F,i (5.7a)

experienced by a two-level atom is composed of a com-
ponent

— @ Do
F,=#k|lg W {w—w"] ~in
£ # P
+k2g®iw+wr — (5.7b)
[k|%g % }wm Y;

in the direction k of the wave vector and a component

~ (0] [«
F=aklg®iw|1—=|+w [1+—= | (02
2
w w
: . # Pk
_|k|2g(k){ W+w } w]/z i
kg R+ (5.7¢)
g 2&)1/2M :

in the direction @ of the polarization. In (5.7), the so-
called rotating terms, that is, those ladder operators’
products which are not discarded by an application of the
rotating-wave approximation [32], are grouped with their
corresponding spatial dependence as the operator

W =exp(—ik-R)a'm+m'a exp(ik-R) , (5.82)
while the counterrotating terms are similarly grouped as
W' =exp(—ik-R)a 7' +ma exp(ik-R) . (5.8b)

The parameters
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R ) 12
®)— X
g e eV (glDkle) , (5.9a)
) 12
(@) — ~
g e 2efiV (g|D-tle) (5.9b)

express the orientation of the dipole.

The first and third terms of (5.3) give rise to the first
terms of (5.7b) and (5.7c¢). The dominant resonance effect
of the first term of (5.7b), ignoring the counterrotating
terms (5.8b), is provided by the component of d X B(R) in
the k direction, that is, by

—(|k| /we)d XTI (R) .

This is consistent with a determination of the radiation-
induced force from an application of Ehrenfest’s
theorem, providing the dipole is driven in the manner of
a forced harmonic oscillator by a local electric field indis-
tinguishable from —e; 'II,, consistent with the Einstein-
Hopf model [22]. However, the orientation of the dipole
cannot be taken necessarily as being along 1 for a full
description of the atomic gross motion to be made. In
particular, such an orientation destroys the velocity-
dependent terms of (5.7), which have arisen naturally
from the formalism. The final component of (5.7¢c)
represents a recoil effect and arises directly from the ac-
tion of P, in the form of a differentiation with respect to
R, on the Réntgen momentum d X B(R).

One might naively suppose that the component F,4 of
(5.7a) in the direction of the photon polarization § would
cycle-average to zero. However, it must be remembered
that (4.12) is not a classical force, but a dynamical opera-
tor. Thus, a determination of the expectation value
(MR) over a time interval 7 requires that the operators
at time ¢ of (4.12) be rewritten in terms of corresponding
operators at time zero. If this is done and the steady-
state 7— oo solution sought, then the transverse physical
momentum change is nonzero and acts in a direction dic-
tated by the orientation of the dipole moment [33].

VI. CONCLUSIONS

The canonical approach to the calculations of atomic
gross motion due to radiation pressure has been present-
ed in this paper. A canonical transformation generated
by (2.9) enables the minimal-coupling Hamiltonian (2.2)
to be expressed in a form (2.11), which resolves the inter-
nal and gross motions of an aggregrate composed of an
arbitrary number of charges. Such a resolution makes
possible a rigorous treatment of the gross motion within
the Heisenberg formalism, revealing, through the pres-
ence in the interaction (2.11f) of the Rontgen momentum
J d° P4 XB, the nonequivalence (2.16b) of the canonical
P and mechanical MR momenta, even in the case of an
electrically neutral aggregate.

The specialization in Sec. III to the correct form of the
dipole approximation truncates the R6ntgen momentum
term to d X B(R), with P now identified by (3.5d). This is
in contrast to the usually seen approach of imposing a
prematurely truncated form of the dipole approximation
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by writing A,(q") as A (R) for all v, resulting in the ab-
sence of any RoOntgen-type interaction. The total
momentum of the atom and the radiation field, special-
ized to a single mode, is shown in Sec. IV to be a constant
of motion (4.3), through the definition (4.4) of the elec-
tromagnetic momentum density parallel to k. This en-
ables an explicit demonstration of gauge invariance of the
mechanical force to be made (4.5), and a demonstration
of consistency of the canonical formulation of photon
pressure with the Minkowski form of momentum density.

The determination of the single-mode physical force
operator (5.3) is exact to within the dipole approxima-
tion; it reveals in a manner consistent with the formalism
the forms of the velocity-dependent effects and the pres-
ence of components along the directions of the wave and
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the polarization vectors. Work is in progress, stemming
from the specialization (5.7) of the force operator to the
case of a two-level atom, on a canonical examination of
the trapping forces generated by counterpropagating
beams—currently, an area of great interest. In particu-
lar, the time evolution of the expectation value of (5.7¢) is
shown to be significant in certain special cases involving
one-dimensional optical molasses, as, for example, when
the direction of the atomic beam is almost at right angles
to the radiation beams [33].
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