
PHYSICAL REVIEW A VOLUME 47, NUMBER 2 FEBRUARY 1993

Leading role of optical phase instabilities in the formation of certain laser transverse patterns
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The global dynamical behavior of a model describing the formation of one-dimensional transverse pat-
terns in a laser has been investigated. Solutions of the equation for the complex electric field are com-
pared to those of a reduced phase equation, the laser Kuramoto-Sivashinsky equation, which should be a
good approximation for small detuning. The numerical results show strong evidence of the leading role
of the dynamics of the phase of the field in the formation of transverse patterns in a laser with small de-
tuning.
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I. INTRODUCTION

The investigation of the dynamical behavior of non-
linear systems is one of the central tasks in modern sci-
ence and has spread to many fields, including physics,
chemistry, biology, hydrodynamics, engineering, and
economics. Among these, nonlinear optics is one of the
most active fields in which instability phenomena have
been studied, particularly since the appearance of the
laser and its many applications in the past 30 years. Al-
though developments in the studies of instabilities in non-
linear optical systems have parallelled developments in
other fields, there have been fewer studies (until quite re-
cently [1]) focused on the spatial patterns or spatiotem-
poral phenomena rather than on the temporal behavior
of optical systems, for example, the onset of spontaneous
oscillations and periodic, quasiperiodic, and chaotic pul-
sations in the output intensity (see, for example, [1—3]).
This interest in the temporal aspects has been due to the
successful use of a plane-wave approximation to describe
many laser phenomena which clearly use beams of finite
transverse extent, many of which are described simply by
Gaussian, Hermite-Gaussian, or Laguerre-Gaussian func-
tions. The plane-wave approximation drastically
simplifies the mathematical complexity of the models, but
it eliminates all the spatial effects in the transverse direc-
tions.

Only in recent years has extensive attention been
drawn to dynamical origins of transverse spatial phenom-
ena in nonlinear optical systems (see, for example,
[1,4—22]). An important subject is the spontaneous for-
mation of spatial patterns in an initially homogeneous op-
tical system [15—17,21,22]. The growth of this new
research topic in the area of nonlinear optical systems has
led to the discovery of interesting analogies and compar-
isons with other fields, especially chemistry and hydro-
dynamics, in which the emergence of spatiotemporal
structures (or dissipative structures) is also a major topic

From a mathematical viewpoint, the inclusion of the
spatial variable leads to partial differential equations

governing the dynamical behavior. The formation of spa-
tial patterns relies on different physical mechanisms for
the spatial partial derivatives: diffusion in chemical reac-
tions, convection in hydrodynamics, and diffraction in
optical systems. A common feature of these different sys-
tems is that their main dynamical behavior under certain
conditions may be described by a reduced phase diffusion
equation of the Kuramoto-Sivashinsky (KS) type, which
is deduced by adiabatically eliminating the modulus of a
complex amplitude variable [23—30]. In these cases, the
spatial dependence of the phase of the complex variable
contains the main information which dominates the for-
mation of spatiotemporal structures.

A laser can be modeled by a single equation for the
complex field amplitude when the dynamics of the ma-
terial variables can be adiabatically eliminated. The re-
sult is a complex Ginzburg-Landau equation for the field
amplitude [18]. The method of reducing the original
laser field equation to a Kuramoto-Sivashinsky type of
equation was presented in Refs [31] an. d [32], and the nu-
merical results reported there showed approximate agree-
ment with the claim that phase dynamics governs the
laser field.

As an extension of that analysis, in the present work
we consider the situation of small detuning. In this case,
the spatially homogeneous mode dominates the trans-
verse pattern, so the conditions for truncating the pertur-
bation expansion in the derivation of the laser KS equa-
tion are more accurately satisfied. Nevertheless, this con-
dition does not prevent emergence of complicated spa-
tiotemporal dynamical behavior. Indeed we find a
variety of the phenomena that have been reported previ-
ously [15—17,21,33], such as inhomogeneous stationary
patterns, spontaneous breaking and restoring of the pari-
ty symmetry, and time-dependent solutions, including
periodic, period-doubled, and chaotic spatiotemporal os-
cillations. The numerical results show global qualitative
agreement and almost perfect quantitative agreement be-
tween the original laser field equation and the reduced
KS equation for the phase of the laser field.
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II. THE EQUATION FOR THE LASER FIELD
WITH CUBIC NONLINEARITY

We consider a simple laser model discussed in Refs.
[15,31,32]. The cavity configuration is rectangular, so
Cartesian coordinates are used. The longitudinal direc-
tion of the laser is the z axis. In the approximations of a
slowly varying envelope and a single longitudinal mode,
the z coordinate is eliminated. The laser cavity has, in
addition to the usual mirrors orthogonal to the propaga-
tion direction z, two lateral mirrors, orthogonal to the
transverse direction x, which work as a planar conduct-
ing waveguide. On the other hand, the cavity is left open
in the y direction. Such a cavity configuration is ap-
propriate to capture the essential elements of the one-
dimensional patterns that result from slab or stripe semi-
conductor laser structures [34,35] and has also been ex-
plicitly used in waveguided far infrared lasers and mi-
crowave oscillators. One-dimensional transverse patterns
have recently been observed and studied with the
renewed interest in broad-area semiconductor lasers for
pumping solid-state lasers and because of the similarity of
lasers with one transverse dimension to one-dimensional
laser arrays [36].

The TM cavity modes are determined by the
waveguide configuration as discussed in Refs. [11,12,37]
and are independent of the variable y. We assume that
instabilities, which might give rise to a dependence of the
electric field on y, do not occur; a sufficient condition to
ensure this is that the size of the cavity in the y direction
is small enough. As a consequence of these assumptions,
the complex electric-field envelope E' depends only on
time and the transverse spatial variable x. Thus, in the
cubic approximation of the nonlinearity, the laser field
equation is

&E'(x,t'), . ~,
i

. d E'(x, t')
Bt' Bx

tion near threshold and generalized by Oppo et al. [38]
to an equation appropriate for the full phase space. The
correction (i.e., the real part in the coefficient of 8 /Bx )

is on the order of the ratio of the cavity linewidth to the
atomic linewidth, which is assumed small in the adiabatic
limit; it is, however, essential to ensure the stabilization
of vortices in the two-dimensional case [18].

We neglect this correction throughout this paper. We
are not able to justify this step on the basis of compar-
isons between results obtained with and without this
term. However, we believe that its inclusion does not
change the results in an important way for the following
reasons.

(a) In our investigations, which are performed in the
one-dimensional case neglecting this contribution, we do
not meet any sort of singular pathology such as appears
in the two-dimensional case.

(b) The inclusion of the real part in the coefficient of
9 /9x amounts to replacing 1, which appears in the first
term of the right-hand side of Eq. (7a), by 1+v,k, where
c. is a small number which tends to zero in the adiabatic
elimination limit. If, as our results indicate, it is true that
in our case the dynamics is governed by quite a limited
number of modal amplitudes fk, we assume that Ek «1
for all relevant modes, so that the correction should be
unimportant.

A complete study of this point is left, however, for fu-
ture investigation, because one cannot exclude a priori
that modes with arbitrarily large values of k enter into
play when the correction is included. As shown in Ref.
[15],above the threshold for laser action (r & 0), the num-
ber of independent parameters can be reduced, yielding a
simpler equation

2

E(1 id)( —~—E
~

—1)+ '

at Bx

using scaled quantities defined by

where t' and x denote the time and transverse coordinate
normalized by the inverse of the cavity linewidth v and
the transverse length of medium b, respectively. 6 is the
detuning parameter and r is the pump parameter. The
quantity a is defined as

and

t =rt',
I/2

a'=a/r .

(4a)

(4b)

(4c)
A,L

2mb T

where T is the transmissivity coefficient of the mirrors, A,

is the wavelength, and L is the longitudinal length of cav-
ity. Physically, however, the parameter a defines the fre-
quency spacing between transverse modes [15]. The nth
mode deviates from the fundamental mode n =0 by
co„—a@0=van m .

One notes that Eq. (1) has the form of a complex
Ginzburg-Landau equation, with the peculiar feature that
the coe%cient of the second derivative is purely imagi-
nary. An accurate adiabatic elimination of the rapidly
relaxing variables, based on the center manifold theorem,
reveals, however, that one obtains also a real contribution
to the coefficient of the second derivative. This result was
obtained by Coullet, Gil, and Rocca [18] for laser opera-

(5)

at the 1ateral mirrors located at x =0 and 1. With this
Neumann boundary condition, E(x, t) can be expanded in
transverse modes

E(x, t)= g f„(t)F„(x),
n=0

(6)

where [F„(x)] is the set of functions FD(x)=1 and
F„(x)=2'~ cos(nnx) for n&0. We call the complex

We assume that the field envelope E obeys the boundary
condition
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functions of time f„(t) the amplitudes of the field modes.
A set of equations for the amplitudes of the field modes
can be obtained by substituting Eq. (6) into Eq. (3),

fk=[1—i(b, +a'ir k )]fk —(1 ib—. ) g I ii~„fif f„'
1, m, n

The laser KS equation is obtained as a fourth-order par-
tial differential equation

ae, o'e, ae
'

., a'8 oe= —a'5 —a' +a
Bt BX2 Bx Bxi Bx

(k=0, 1,2, . . . ), (7a) 2 848——a
Bx

(12)

where the coupling coeKcients are given by

1

I kImn
= FIFmFn Fk dx

0
(7b)

a'ir n =a'(n) (2h .

There are both homogeneous and inhomogeneous sta-
tionary solutions to Eqs. (7) in which ~f&~ is time in-
dependent for all k. Stability analysis of the homogene-
ous stationary solution ( ~ fo~ =1,fk =0 for all k )0)
yields the instability condition [15] , B'e 1,, B'e Be

Bx 2 Bx

1 Be
Bx2

2

(13)

The analysis of Refs. [31] and [32] shows that the condi-
tion of validity for the adiabatic elimination of the ampli-
tude R is 6 &(1.

From the stationary solutions 6(x) of Eq. (12), in turn,
we can obtain the corresponding stationary amplitude
profile [31,32]

g a 'ir'n '/f „['
n=15= (9)

n=0

For the inhomogeneous stationary solutions (which in-
volve more than one nonzero modal amplitude), the
transverse modes cooperatively select a common operat-
ing frequency, which is an average of the transverse mode
frequencies a (n), weighted by the mode intensities

~ f„~,

Be =0 (at x =0, 1) .
Bx

(14)

Thus the phase profile can be also expanded in modes

In this way, the complex field envelope can be recovered
and compared with the exact solution of Eq. (3). If Eqs.
(12) and (13) reproduce well the results of Eq. (3), then
the phase 8 of field contains a11 the relevant information
for the evolution of the whole complex field envelope.

From the boundary conditions given by Eq. (5), we find
the same Neumann boundary conditions for the phase e,

III. LASER KURAMOTG-SIVASHINSKY EQUATION

E(x, t)=R(x, t)exp[ie(x, t)] . (10)

Substituting Eq. (10) into Eq. (3), we obtain a set of cou-
pled equations for the amplitude R and phase 8

BR
( 2), BR Be, Be

Bt 'ax ax
' ax2' (1 la)

2
2

R g
(1 lb)

The conventional procedure to eliminate the amplitude
starts from writing R in an appropriate perturbative ex-
pansion and then eliminating R adiabatically [31,32].

The laser KS equation is a phase diffusion equation,
corresponding to the laser field equation. The complex
field envelope E(x, t) can be written as

6(x, t ) = g g„(t)cosn vrx,
n=0

(15)

where g„ is the real amplitude of the "phase modes. "
Obviously, th'e laser KS equation has the trivial solu-

tion 6=0, which corresponds to the homogeneous solu-
tion of the field equation, Eq. (3), ~E(x)

~

= 1. Linear sta-
bility analysis of the trivial solution using Eq. (12)
confirms that it becomes unstable when Eq. (8) is
satisfied. This indicates that the instability described by
Eq. (8) is governed by the behavior of the phase variable.
In other words, the inhomogeneous transverse intensity
distribution of the field arises from the development of an
inhomogeneous transverse phase distribution. Note that
the instability arises when there is negative diffusion in
the laser KS equation, Eq. (12). (From the optical point
of view this condition is that the medium be saturated by
strong intensities in a way that causes self-focusing. )

By substituting Eq. (15) into Eq. (12) and truncating
after the Xth mode, we obtain a set of ordinary
differential equations for the amplitudes of the phase
modes g„, in which the phase e can be changed by an ar-
bitrary constant without any consequence to the solution
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N

go= —
—,'a'vr g g m (I+a'h~ m ),

m=1
N —1

g& =a'm (b, ——,'a'w )g&
—a'n g g g +,m(m+1)[1+ —,'a'bm. (2m +2m+1)],

N —k

gI, =a'~ k (b. ,'a'—w —k )gk a'rr —g g g +km(m+k)[1+ ,'a'67—r (2m +2mk+k2)] (16)

k —1

+ —,
'a'~' g g gj, m(k —m)[1+a'bvr (k —m) ] (2&k ~N —1),

m =1

N —1

g~=a'vr X (b, ,'a'~ —X—)g~+,'a'~ —gg gz m(X —m)[1+a'her (X m) ]—.
m =1

Some features of this set of equations are the following.
First, the amplitude of the homogeneous mode go never
appears in the right-hand side of Eqs. (16), but its deriva-
tive dgo/dt depends on the frequencies of the other
modes weighted by their "intensities" g . The reason is
that the value of the amplitude of the homogeneous phase
mode is only an arbitrary constant of integration without
any physical meaning. It corresponds to the usual arbi-
trariness of the phase for autonomous laser systems.
However, in the case of inhomogeneous stationary solu-
tions, the derivative of the amplitude of the homogeneous
part of the phase is just the cooperatively chosen operat-
ing frequency

5= —go= —,'a'~ g g m (I+a'bar m ) .
rn =1

(17)

IV. NUMERICAL RESULTS

As indicated in previous work [31,32], where a larger
value for the detuning, 6=0.5, was chosen, the numeri-

Equation (17) may be viewed as the pulling of the fre-
quency of the spatially inhomogeneous solutions away
from the frequency of the spatially homogeneous solution
as written in "phase language. " The pulling can be sub-
stantial. And, unlike the more complicated derivation of
Eq. (9) (see Ref. [15]), the pulling and locking of the
cooperatively chosen frequency can be seen directly from
the dynamical equations for the modes of the phase e.

Second, according to Eqs. (16), the equation for each
inhomogeneous phase-mode amplitude g„has a factor
(6—0.5a'vr m ) in its linear term, which is the
amplification for that mode. We can see that when a par-
ticular phase mode has positive gain, the homogeneous
stationary solution is unstable [see Eqs. (8) and (16)]. In
this sense, we may view amplification of the phase modes
as the inherent origin of the instability of the spatially
homogeneous solution.

These two features suggest a leading role of the dynam-
ics of the phase in the overall dynamics of the laser field,
and more evidence will be seen in the following numerical
results.

cal agreement between the laser field equation and the
laser KS equation is not absolute. In this paper we
choose a smaller detuning parameter, 6=0.1, in order to
improve the approximation because of two elan'ects [32]:
(a) the spatially inhomogeneous field, as a perturbation, is
weaker, in comparison with the spatially homogeneous
field; and (b) the relaxation time of the amplitude R is
much shorter than that of the phase e.

We integrate numerically the sets of Eqs. (7) and (16),
truncating each to 16 modes. The comparisons of their
solutions are as follows.

A. The global bifurcation behavior

As we adiabatically decrease and increase the parame-
ter a', the dynamical equations present almost identical
global bifurcation behavior, as shown in Fig. 1. Their bi-
furcation points coincide quite exactly, as shown in Table
I. Three branches, which overlap each other, present
rich and complicated bifurcation behaviors, depending
mainly on the parameter a', although, in this case, the
detuning is small and the homogeneous part of the field

6 )( 5

chaotic

periodic
stationary
asymmetric

stationary
symm et ri c

stationary
higher symmetric

a'7t 2

FIG. 1. Global bifurcation behavior for both the laser field
equation and the corresponding laser KS phase equation. The
detuning parameter 6=0. 1 is held constant throughout this
work. For a'm )0.2, only the homogeneous stationary solution
is stable. The numbers from 0 to 7 label the bifurcation points
for each of which Table I indicates the corresponding value of
the bifurcation parameter a 'm .
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TABLE I. Values of the parameter a'm in correspondence
with the bifurcation points from 0 to 7 shown in Fig. 1.

Bifurcation
points

0
1

2
3
4
5
6
7

By KS Eq. (16)

0.2
0.051
0.0151
0.0058
0.0088
0.0068
0.0057
0.0061

a 7T

By field Eq. (7)

0.2
0.051
0.0151
0.0058
0.009
0.007
0.0059
0.0061

dominates the inhomogeneous part of the profile
throughout the whole domain, as shown below.

B. Inhomogeneously stationary solutions

The lower branch in Fig. 1 denotes the inhomogeneous
stationary solution, which exists for a'~ (0.2, where the
homogeneous solution is unstable with respect to pertur-
bations of mode l [see Eq. (8)j. Figure 2 shows the inten- I E*(x)E(x)dx = g ~f ' (18)

sities of the field mode of this branch as a function of the
parameter a'm: the lines and the symbols correspond to
the solutions from the laser field equation and the laser
KS equation, respectively. The middle part of the lower
branch is a domain of transverse patterns, which are sym-
metric with respect to the parity transformation
x —+1—x because only even numbered modes contribute.

As a'vr is decreased from values near 0.2, the nonsym-
metr1c patterns bifurcate to the symmetric ones at
a'm =0.051, which is very close to the value, a'm =0.05,
at which mode 2 becomes unstable, according to Eq. (8).
This is not surprising since in this case the amplitudes of
the inhomogeneous modes are very small and the stability
of the inhomogeneous patterns is thus likely to be similar
to the stability of the homogeneous stationary solution
[see Fig. 3(a)]. However, the suppression of mode l when
mode 2 becomes unstable is a rather surprising evidence
of restoration of the parity symmetry.

Figure 3(a) shows the intensity of the homogeneous
mode and the average intensity of the transverse field,
which is the sum of the intensities for all the transverse
modes
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FIG. 2. Intensities of field modes as functions of parameter
2a ~ for the lower branch of Fig. 1. The lines (solid and dashed)

correspond to the solutions of the laser field equation (7); the
symbols (0 for mode 0, + for mode l, *for mode 2, o for
mode 3, X for mode 4, and A for mode 5}refer to the solutions
of the laser KS equations (12) and (13). Intensities are scaled
logarithmically. (b) shows an expanded region of (a) for smaller
values of a'H.

0.0000
0.00 0,02 0.04

I I I I I I I

0 06 0 08 0 10 0 12 0 14 0 16 0 18 0 20
a'7t 2

FIG. 3. (a) Intensities of the homogeneous mode (full line
and solid circles) and average intensity of the transverse field
(dashed line and open circles) and (b) cooperative operating fre-
quencies as functions of parameter a'~ . Lines for solutions of
the field equation (7), symbols for solutions of laser KS equation
(16).
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as functions of the parameter a'~ . On this scale, the
variation of the average intensity (indicated by the
dashed line and open circles) is almost indistinguishable
(less than 0.1% of the small changes of the intensity of
the homogeneous mode). The cooperatively selected
operating frequencies of the inhomogeneous stationary
solutions are plotted in Fig. 3(b), using Eqs. (9) and (17).

As examples, Figs. 4 and 5 show the profiles of the
transverse intensity and phase for symmetric and non-
symmetric patterns, respectively. The differences be-
tween solutions of the laser field equation and the laser
KS equation are indistinguishable on this scale.

In the middle branch, the right-hand part indicates
another kind of stationary solutions, which are also sym-
metric patterns, but which contain only the 4nth modes
(n =0, 1,2, . . .), (i.e., the fundamental mode, 4th mode,
8th mode, etc.) as shown in Fig. 6. It is a higher-order
symmetric pattern. Under the perturbation of odd-
numbered modes, the higher-order symmetric solution
becomes unstable at a'~ =—0.089, jumping to the non-
symmetric stationary solution; at the other end of its
range, at a'~ =0.069 the higher-order symmetric pattern
changes to a time-dependent solution.

These figures exhibit a quantitatively good agreement
between the results for the field equation, Eq. (3), and
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1.050—

1.Q25—
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0.975—

0.950—

0.925—

FIG. 5. Transverse pattern of the asymmetric solution for
a'm =0.01. Other features as in Fig. 4.

phase equations, Eqs. (12) and (13), for mode intensities,
amplitude profiles, phase profiles, and cooperatively
chosen operating frequencies. This not only unambigu-
ously demonstrates the leading role that the phase can
play in laser dynamics, but also manifests the fact that, in
some limits, the phase of the optical field may contain al-

0.900—
0.0

I

0.1

I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 O. B 0.9 1.0
1.0

O
E
~ 1O-1-
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a'172 = 0 03
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0
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,007
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X

FIG. 4. Transverse pattern of the symmetric solution for
a'ir =0.03. (a) Modulus profile, (b) phase profile. Solid lines for
the solutions of field equation, dashed lines for the laser KS
equation are indistinguishable from the solid line.

FIG. 6. Intensities of field modes as functions of parameter
a'ir for the inhomogeneous stationary solution of higher-order
symmetry in the middle branch of Fig. 1. Lines correspond to
the solution of the field equation (7); symbols ( for mode 0, X
for mode 4, and f for mode g) correspond to the solution of the
laser KS equation (16). In this case the bifurcation points of
two equations do not exactly coincide (see points 4 and 5 in
Table I).
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most the whole information about the field dynamics, as
indicated by the fact that the complete complex field am-
plitude can be accurately reconstructed from the phase
pattern.

C. Periodic solutions

0.012
a'z~ = 0.006S
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The left-hand part of the middle branch in Fig. 1 is a
domain of periodic solutions. To the left of point 5 in
Fig. l, the stationary symmetric solutions (which are
stable on the right part of this branch) become unstable

with respect to perturbations of the odd-numbered
modes.

Figure 7 shows the oscillations of the mode intensities
and amplitudes: Figs. 7(a) and 7(b) are obtained using the
field equations, Eq. (7), whereas Fig. 7(c) is obtained from
the phase equations, Eq. (16).

We see in Figs. 7(b) and 7(c) that all of the amplitudes
of the odd-numbered phase modes oscillate symmetrically
around zero. As the even-numbered modes complete a
full period, each odd-numbered mode completes only half
its period. In other words, the modulation frequency of
the even-numbered modes is twice that of the odd-
numbered modes. As a result, the evolution of the trans-
verse phase pattern in the first half period has a parity re-
versed counterpart in the second half period, with respect
to the pattern center (x =0.5). Correspondingly, we ex-
pect that the same phenomenon will appear in the evolu-
tion of the transverse intensity pattern (see Fig. 8). Fur-
thermore, as shown in Figs. 7(a) and 7(b), the modulation
of the intensity of individual modes always follows the
modulation of the absolute value of the amplitude of the
corresponding phase mode. And the modulation fre-
quencies of the intensities of both even- and odd-
numbered modes remain equal. The comparison between
Figs. 7(b) and 7(c) shows an overall agreement and some
quantitative di6'erences in the oscillation amplitudes, and
it demonstrates that the phase still governs the evolution,
because Fig. 7(c) is obtained from the phase equation.

Figure 8 presents the spatiotemporal oscillation of the
intensity profile. Unlike the time-dependent solution in
Ref. [33], here there is true spatiotemporal movement of
the location of the region of maximum intensity.

In addition to the intensity modulation frequency
which is manifest in Fig. 7, these periodic solutions also
have an average carrier frequency which is closely similar
to the frequency 6 that characterizes the inhomogeneous
stationary solutions. This carrier frequency, which in the
following will be denoted by 0, becomes manifest if one
considers the evolution of any modal variables f„(t ) in
the plane (Ref„,lmf„). As a matter of fact, the trajecto-
ry corresponds to a loop which does not close exactly
onto itself, but performs a slow rotation around the ori-
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FIG. 7. Time evolution of the periodic solution for
a'+=0. 0068: (a} intensities of field modes from solution of the
field equation (7); (b) amplitudes of phase modes from solution
of field equation (7); (c) amplitudes of phase modes from solu-
tion of KS equation (16).

0.900—
0.0

I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X

FIG. 8. Transverse intensity patterns at some particular
times for a'~ =0.0068. Labels: (1) t, =0; (2) t2 =2SO; (3)
t, =SSO; (4) t4=800.
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gin of the plane. Thus the carrier frequency is just the
slow rotation frequency. We can get rid of this common
carrier frequency in two ways: plotting the ratio of the
complex amplitudes of the field modes f„(t)jf0(t) in the
complex plane, or dividing each mode amplitude by
exp( t A—t). The trajectories obtained either of these
ways are closed loops. These two methods give almost
the same results (an example is shown in Fig. 9) because
the modulus of the homogeneous mode is near unity and,
its relative modulation is negligible. Figure 9(a) shows
the trajectories of the two strongest inhomogeneous
modes, mode 1 and mode 4, which are primarily ampli-
tude modulated. In Fig. 9(b) the phase modulation of
weaker modes is also evident. Moreover, as expected, the
trajectories of a11 the odd-numbered modes in the com-

0.1

0.05—

C4

0.0

-0.05—

plex plane of the complex amplitudes are symmetric with
respect to the time translation [f„(t +~/2) = f„—( t ),
where r is the period]. This ensures that the intensity
modulation frequency is twice the phase modulation fre-
quency. This situation also offers the possibility of
symmetry-breaking bifurcations which may be identified
as period-doubling bifurcations of the intensity pulsation.
As a matter of fact, at a'm. =-0.0061 of the middle
branch, period doubling of the intensity pulsations ap-
pears. At that bifurcation, from the phase portrait point
of view, the even-numbered modes double their period,
but the odd-numbered modes do not; instead, they begin
to oscillate asymmetrically around zero. However, the
intensities of all the field modes seem to show period dou-
bling. This bifurcation is more accurately described as
symmetry breaking of the attractor in phase space. (Of
course, this symmetry has nothing to do with the spatial
parity symmetry that was mentioned earlier. )

We have observed these kinds of phase space trajec-
tories of time-dependent solutions in other dynamical sys-
tems, where some complex variables possess the symme-
try under time translation, such as in the optical para-
metric oscillator [39] and in degenerate four-wave mixing
[40], respectively, but, which are described by models
without spatial variables. In contrast, in the present
model, the time translation symmetries for the odd-
numbered modes are implied in the dynamical partial
differential equation.

D. Chaotic solutions
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FIG. 9. Trajectories of the complex amplitudes of the inho-
mogeneous modes in the complex plane for the periodic solution
at a'm. =0.0068. The common carrier frequency Q is 2~/4979.
(a) Modes 1 and 4; (b) modes 2, 3, and 4.

When the parameter a' is decreased further, chaotic
solutions are observed. In this case we still can find a
common average carrier frequency despite chaotic pulsa-
tions of the moduli. Furthermore, the average intensity
remains almost unchanged in the evolution of the time-
dependent solutions. This suggests an energy conserva-
tion of the total transverse field, independent of the time
and the parameter a', as long as the pump is fixed. (Here
the field E has been normalized to the square root of the
pump parameter. )

In order to compare the laser field equation and laser
KS equation for the chaotic regime, we plot maps for the
moduli of individual field modes !f„!and for the ampli-
tude of the corresponding phase mode g„, for example,
g„(t) vs g„(t+T), where T is a delay time. Figs. 10—12
are the maps for the inhomogeneous modes 1, 2 and 3, re-
spectively; figures (a) refer to the moduli of the field
modes !f„!,whereas figures (b) and (c) refer to the ampli-
tudes of phase modes g„. Both (a) and (b) are obtained
from the solution of the field equation, whereas (c) is ob-
tained from the solution of the phase equation.

For each mode, the maps (a), (b), and (c) present aston-
ishingly similar structures, except in the case of mode 3,
for which the maps of the modulus and of the phase
mode amplitudes differ. The similar structure of the
maps for the modulus and phase amplitudes for a partic-
ular mode is caused by fact that the oscillation of the
modulus always follows the oscillation of the absolute
value of the corresponding phase-mode amplitude, as it
has been shown for the periodic solutions. Precisely, the
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FICi. 10. Time delay maps for mode 1, for a'+=0.006 and
delay time T=100. (a) Maps for modtsli of field modes If„I. (b)
Maps for amplitudes of phase modes g„. Both (a) and (b) from
the solution of the laser field Eq. (7). (c) Maps for amplitudes of
phase modes g„, but from solution of the laser KS equation (16). FICx. 11. Time delay maps as in Fig. 10, but for mode 2.
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increase in the absolute value of a phase-mode amplitude
is accompanied by the increase in the modulus of the cor-
responding field mode amplitude. When the phase-mode
amplitude reaches zero and changes its sign, the corre-
sponding modulus takes on its minimum value. When
the evolution of a particular phase-mode amplitude keeps
the same sign, the match of the oscillation of the phase-
mode amplitude with the corresponding modulus of the
field mode works well, such as for mode 1 and mode 2,
where we observe a similar portrait. In contrast, in the
evolution of the amplitude of a phase-mode amplitude
which changes sign, such as for mode 3, the match of
modulation is partially destroyed, so that the maps are
not similar.

The match of the modulation in evolution and the re-
sulting similarity of maps for the corresponding moduli
and phase components, which are taken from the same
field equation, shows clear evidence of the leading role of
the phase in the dynamics. Moreover, the similarity of
the maps for phase-mode amplitudes from different
dynamical equations demonstrates that this leading role
is expressed by the self-contained KS equation. Hence in
these limits the phase dynamics governs the laser dynam-
ics in the formation of the transverse patterns.

V. CDNCLUSIGN
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g3(t)

(c)

0.10

An extensive investigation of the global bifurcation be-
havior, stationary patterns and spatiotemporal dynamics
of solutions of the equation for the laser field in the cubic
approximation has been performed for small detuning.
We find a common operating frequency which appears
not only in the inhomogeneous stationary solutions but
also in the time-dependent solutions. We have shown
both analytica1 and numerical evidence which demon-
strate unambiguously that the phase of the electric field
leads the dynamical behavior in the formation of trans-
verse patterns.

Maps have been used to compare different dynamical
variables for the chaotic regime. We find similar struc-
tures of maps for different variables which do not have a
functional relation, and which are even from different
dynamical equations. The similarity of the maps in the
chaotic regime reveals the correlation and statistical con-
sistency of different physical variables and may suggest
some inherent properties of dynamical systems of this
type, such as low dimensions of their strange attractors.
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