
PHYSICAL REVIEW A VOLUME 47, NUMBER 2 FEBRUARY 1993

Signal-pump entanglement in quantum k-photon down-conversion
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We study the quantum dynamics of the k-photon down-conversion process. We concentrate our atten-
tion on the entanglement between the pump and the signal modes. We show that the degree of the en-
tanglement between the pump and the signal depends on the initial statistics of the light field in both
modes. Moreover, the higher the nonlinear process the stronger the entanglernent is. The entanglement
between the modes is related to the marginal entropy in the pump (signal) mode; i.e., the larger the en-
tanglement, the larger the entropy is. In the quantum k-photon down-conversion the signal mode at
t & 0 is not generally in a pure state which restricts applicability of the parametric approximation.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

There has recently been considerable interest in the
production of nonclassical states of light in various non-
linear processes. In particular, it has been shown that
squeezed states of light (i.e. , the states of light with re-
duced fluctuations in one quadrature below the level asso-
ciated with the vacuum state [1])can be generated using a
degenerate parametric amplifier [2]. The degenerate
parametric amplifier is a device which provides a non-
linear coupling between two modes of the radiation field.
The first, the pump mode, has a frequency 2', while the
second, the signai mode, has a frequency co. It was
Takahashi [3] who realized that the degenerate paramet-
ric amplifier decreases quantum-mechanical fluctuations
in the signal mode due to phase correlations of emitted
photons. Kimble and co-workers [4], using the paramet-
ric amplifier, have experimentally generated squeezed
light exhibiting high degree of noise reduction.

If both the pump and the signal modes are quantized,
then the Hamiltonian describing the dynamics of the de-
generate parametric amplifier in the rotating-wave ap-
proximation has the form (in what follows we assume
A'= 1)

H2=coa &+2cob b A+[(2a ) b+tl b ],
where &,& (b, b ) are the annihilation and the creation
operators of the signal (pump) mode, respectively, and A, 2

is a coupling constant which is proportional to the
second-order nonlinear polarizability coefficient of the
medium. Here exact two-photon resonance between
modes is assumed. Generally it is supposed that if the
pump mode is initially in a highly excited coherent state
then the parametric approximation can be adopted and
the pump mode can be treated as a classical field, so that
the operator b in Eq. (1.1) is replaced by the classical c
number f3e

' ', where P is the amplitude of the pump
mode (for simplicity we can assume P to be real). In the
parametric approximation the Hamiltonian (1.1) reads

H(+) —coat'Q+gg[(gt)2e —2icut+t12e2icut] (I 2a)

and in the interaction picture it takes the following form:

H,""=Xg[(a')2+a2] . (1.2b)

The Hamiltonian (1.2) has served recently as a descrip-
tion of the dynamics of the parametric amplifier and sta-
tistical properties of the signal mode (see, for instance,
Ref. [5]). An evolution operator U2 ' ' —= exp( —iH2 ' 't )

in the interaction picture is equivalent to the "squeeze"
operator S(g) [6],

S(g) = exp[/(a )
—g*& ], (1.3)

where A, k is a coupling constant that is proportional to
the kth-order nonlinear polarizability coefficient of the
crystal. We should note here that, depending on initial

describing the Bogoliubov transformation by which the
initial vacuum state or a coherent state [i.e., the
minimum uncertainty states (MUS's)] are transformed
into the squeezed state, which is a MUS with reduced
quadrature fiuctuations [1].

It is generally stressed that the parametric approxima-
tion is accompanied by the neglect of two effects. First, it
neglects quantum

fluctuations

in the pump mode.
Second, by treating the mode as a classical mode the de-
pletion of the pump is ignored. The inhuence of quantum
Auctuations of the pump mode on the reduction of the
degree of squeezing in the process of parametric
amplification has recently been studied extensively by
many authors [7]. It has been shown that the parametric
approximation described above can be adopted only in
the case of sufficiently large pump powers and only for in-
teraction times smaller than —I/(t(, 2p), where p is the
amplitude of the pump field. In this case the effect of the
pump quantization on the degree of squeezing in the sig-
nal mode is negligible.

The degenerate parametric amplifier described by the
Hamiltonian (1.1) represents a particular case of a more
general nonlinear device, a k-photon down-convertor.
The dynamics of the k-photon down-convertor is
governed by the Hamiltonian

Hk =coa a + k cob b +A k [(& ) b +d b ], (1.4a)
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conditions, the Hamiltonian (1.4a) describes two process-
es. First, the k-photon down-conversion, and second, the
kth harmonic generation. If mode b is initially excited
and mode a is in the vacuum state, the Hamiltonian (1.4a)
describes the k-photon down-conversion. On the con-
trary, if mode a is initially excited and mode b is in the
vacuum state, (1.4a) describes the kth harmonic genera-
tion. In the simplest case with k =1 the Hamiltonian
(1.4a) corresponds to a linear directional coupler [8] in
which two modes are linearly coupled.

In the parametric approximation using the interaction
picture we find the Hamiltonian (1.4a) in the form

II„""=x„p[(a')"+ a "], (1.4b)

where we assume the amplitude /3 of the pump field to be~(I P)real. The evolution operator Uk
' ' corresponding to

(1.4b) is given by the relation

Ok ' '= exp( iHk ' —'t)= exp[/(8 )"—g*&"], (1.5)

the Hamiltonian (1.4a) is well defined for any t &0 (see
also recent papers by Tanas and co-workers [13]).

The purpose of this paper is to study quantum correla-
tions between the pump and the signal mode in the quan-
tum k-photon down-conversion. The quantum dynamics
described by the Hamiltonian (1.4a) leads to a strong en-
tanglement between the pump and the signal modes. We
show that the degree of this entanglement depends on the
initial state of the signal-pump system and on the order of
the nonlinear process under consideration. The entangle-
ment between the modes leads to the increase of marginal
entropies of the pump and the signal modes, respectively
(even though that the total entropy is constant and equal
to zero, if we assume the system to be initially prepared
in a pure state and if we neglect losses in the system).
The quantum-mechanical entropy S, (&) (as defined by von
Neumann) in mode a (b) [14] (we assume the Boltzmann
constant k~ to be equal to unity),

Sa($) Tla(g)(pa(g) lnpa(g)) (1.6)
where g= i l,kPt —The ab. ove operator is well defined for
k =1 and k =2. For k =1 the evolution operator 0I '

is equal to the Glauber-Sudarshan displacement operator
[9],while Uz ' ' in the case k =2 is equal to the "squeeze"
operator [6]. The existence of the time-development
transformation for k & 2 was first discussed by Fisher,
Nieto, and Sandberg [10]. These authors have found that
the vacuum-to-vacuum matrix element of the evolution
operator (1.5), i.e., (Oi U&

' 'i0), has for k ) 2 divergent
Taylor-series expansion in time for any t )0. From this
Fisher and co-workers have concluded that it is impossi-
ble to define states which result from applying the opera-
tor (1.5) for k ) 2 on the vacuum. Braunstein and
McLachlan [11]have shown that from the fact that the
vacuum state i0) is not an analytical vector of the opera-
tor iHk ' ' it does not follow directly that the evolution
operator Uk

' ' does not exist. These authors have used
the Pade approximants to show that the Q function (see
below) for the states Uk

' 'i0) for k =3,4 exists for a lim-
ited range of time. Recently Hillery [12] has explicitly
shown that in the parametric approximation the number
of photons in the process described by the evolution
operator (1.5) becomes infinite in a finite period of time.
This unphysical result follows from the fact that in the
parametric approximation the pump depletion is neglect-
ed. This directly restricts the applicability of the para-
metric approximation. Namely, the parametric approxi-
mation is valid only for a hmited range of time for which
the number of photons in the signal mode is finite. We
should note here that even in the case of the linear
coupler (k = 1) and the parametric amplifier (k =2) the
number of photons is diverging in the parametric approx-
imation. Nevertheless in these two cases the divergence
occurs only in the limit t~~ and therefore does not
represent a real problem. Higher-order (k )2) processes
are much more divergent than the process of the para-
metric amplification [12] and therefore the Hamiltonian
(1.4b) can be utilized only for a limited range of time. On
the other hand, Hillery has shown [12] that the quantum
theory of the k-photon down-conversion with a quantized
pump in the rotating-wave approximation described by

is defined through the reduced density operator of the
signal (pump) mode

s. i, ,=s„i, ,=0 . (1.8)

From the Araki-Lieb theorem [15], which can be ex-
pressed in the form

is. —s, i
&s~s.+s, , (1.9)

it follows that the total entropy S of the signal-pump sys-
tem is equal to zero at t =0. Due to the fact that we do
not take into account losses in our model the total entro-
py is an integral of motion, i.e., S=0 for any t & 0. Con-
sequently, from (1.9) it follows that

S, =Sb for t)0. (1.10)

One way to quantify the degree of the entanglement be-
tween two modes is to evaluate the index of correlation
Ic defined by Barnett and Phoenix [15]:

Ic=S,—Sb —S .

From the above it follows that in our case the index of
correlation is equal to twice the entropy of the signal
(pump) mode:

Ic=2S, . (l. 12)

The stronger the entanglement, the higher the value of
the index of correlation and the larger the entropy of the
signal (pump) mode.

The increase of the entropy of the signal mode in the
k-photon down-conversion reAects the fact that the ini-
tially pure state of the signal mode is transformed into a
statistical-mixture state. On the other hand, in the para-
metric approximation described by the Hamiltonian
(1.4b) no quantum entanglement between the pump and
the signal modes can appear; therefore if the signal mode

pa(, b]
= Trb(a)p .

In this paper we assume the pump and the signal
modes to be initially prepared in a pure state, that is,
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is initially in the pure state (for instance, in the vacuum
state), then the entropy S, is identically equal to zero for
any t )0. From here we conclude that parametric ap-
proximation leads not only to neglect of the important
role of the pump fluctuations and the pump depletion but
also to neglect of the signal-pump entanglement. In the
remainder of this paper we discuss in detail consequences
of this entanglernent.

II. QUANTUM DYNAMICS OF THE k-PHOTON
DOWN-CONVERTOR

S „,=1—Tr, [(p, ) ]=1—Tr(, [(p(, ) ], (2.5)

and is related to the entropy as its lower bound, i.e.,
S „,~S, (b&. If the mode is in a pure state then S „,=0,
otherwise for mixed states it takes positive values up to
unity. Generally speaking, the higher S „, the higher the
entanglement between the pump and the signal mode [see
Eq. (1.12), from which it follows that 2S „,~ I, ].

To describe statistical properties of the pump and the
signal modes we will consider the Q function correspond-
ing to each of these modes [17],

The Hamiltonian (1.4a) governing the quantum k-
photon down-conversion in the rotating-wave approxima-
tion can be rewritten in terms of two integrals of motion:

(2.1)

and the marginal photon-number distribution

(2.6)

(2.7)

with

and

Ht„, =co[a a+kb b]—:AC'

H;„,=Ak[(a )"b+a "b ) .

(2.2a)

(2.2b)

where D(, (P) is the Glauber-Sudarshan displacement
operator,

D„(P)= exp(Pb —P*b ) . (2.3b)

The signal-pump system at t) 0 can be described by a
state vector

~

)I)( t ) & from a two-mode Hilbert space
&=&,e&b which is a direct sum of the Hilbert spaces
&„&(,of two subsystems a, b We will sho.w below that
at t )0 for k) 1 the state vector

~
)(It() &cannot be gen-

erally written in a factorized form, i.e.,

(2.4)

The fact that the operator C' is the integral of the motion
in the process under consideration implies that the quan-
tum dynamics of the k-photon down-convertor is well

defined [16]. Nevertheless the corresponding dynamical
equations cannot be solved analytically except for the
case of the linear coupler. Therefore we study the dy-
namics numerically using the numerical approach based
on the diagonalization of the interaction Hamiltonian
H;„, (for details see Ref. [16]).

In this paper we assume the signal mode to be initially
prepared in a pure state ~4)(t =0) &, (i.e. , S, =0) and the
pump mode to be prepared in the coherent state ~P &(„

(2.3a)

To analyze the squeezing properties of the modes un-
der consideration we introduce the following quadrature
operators for each of the modes,

—I (m/4)+gf I(,~/4)

a 2

~
—i(~r4) ~f i(~Z4)

2l

(2.8a)

b+b
Xb=, Yb

2l
(2.8b)

which for the MUS is equal to zero and otherwise is posi-
tive.

III. DYNAMICS OF THE QUANTUM
LINEAR COUPLER

with the variances ((», ((,)) &=(X,((,) &
—(X, ((,)&,

((t)), Y, („)) &
= ( Y, ((,) &

—( $', ((,) & related to the squeezing
parameters S, (((, )

' [l8] as follows:

S, („)=4((bX', ((,)) &
—1, S, („)=4((b, Y, ((,)) &

—1 .

(2.9)

The squeezing condition in this notation reads S,~'b]' (0
and maximum squeezing (100%) corresponds to the value
—1

We will also study whether the modes under considera-
tion are in the minimum uncertainty states or not. To
measure the degree of deviation of the state from the
MUS we introduce the parameter u, (b~, defined as

(2.10)

which means that both the pump and the signal become
entangled at t )0. Statistical properties of both subsys-
terns are now given by the reduced density operator p, ~b~

given by Eq. (1.7). The entanglement between the pump
and the signal modes is rejected by the increase of the
marginal entropies S, and Sb. For simplicity, to measure
the degree of the purity of the state we will use in this pa-
per the parameter S„„,instead of the entropy. The purity
parameter S „, is defined as

In this section we will analyze the simplest realization
of the k-photon down-conversion process with k =1. In
this case the Hamiltonian (1.4a) describes the dynamics
of a lossless linear coupler [8] as well as the dynamics of a
lossless beam splitter [19]. The dynamics of the quantum
system described by the Hamiltonian (1.4a) with k =1 is
exactly solvable. To show this we rewrite the Hamiltoni-
an 8', ' in terms of generators of the SU(2) Lie algebra
J+ and J
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HI =A(J++J ), (3.1)

[J~,J3]=+J+, [J+,J ]=2J3 (3.3)

Now using the disentangling theorem for the SU(2) Lie
algebra (see, for instance, Ref. [21]) we can rewrite the

(I) ~

evolution operator U& in the interaction picture as fol-
lows:

0I '(t)= exp[ —iA, t(a b+ab )]
= exp[ i ta—n(A, t )a b ]

8&—bbX exp ln
2

1

cos A. , t

where we use the Schwinger representation [20] for the
generators of the SU(2) Lie algebra,

J+=& b, J =ah, J3= . (3.2)
2

These generators obey the standard SU(2) commutation
relations,

affected by the coupling with the signal mode and the am-
plitude of the pump mode can be assumed to be constant,
while the amplitude of the coherent state in the signal in-
creases linearly, i.e., a(t)= —ipA&t. This is the typical
situation when the parametric approximation is adopted.
The effective Hamiltonian describing the dynamics of the
signal mode in the parametric approximation can be writ-
ten in the form given by Eq. (1.4b) with k = 1 and the cor-
responding evolution operator for the signal mode is
equal to the Glauber-Sudarshan displacement operator.

Here we should emphasize that the parametric approx-
imation in the case of the linear coupler with the pump
mode initially in the coherent state and the signal mode
in the vacuum state can be performed safely because the
pump and the signal modes are not entangled at t )0,
i.e., both modes are in a pure state with the entropy equal
to zero. This is also true when not only the pump mode
but also the signal mode is initially in a coherent state. In
this case the initial state vector of the signal-pump system
reads

(3.8)

X exp[ i t an( A,
—t )8'b ] . (3.4) and at t )0 we find that I%'(t) ) is given as a product of

two coherent states,

then using the explicit expression for the evolution opera-
tor (3.4) we find for the state vector at t )0 the expression

I
+(t ) &

= UI" (t ) I
0 &. I p & b

=
I
a( t ) &. I p(t ) & b,

where Ia(t) ), and Ip(t) )b are the coherent states in the
signal and the pump modes, respectively, with the ampli-
tudes

(3.7)a(t) = ipsinA, ,t,—/3(t) =pcosA, , t .

From Eq. (3.6) it follows that in the lossless quantum
linear coupler with the pump initially in a coherent state
and the signal mode in the vacuum state the energy is
periodically transferred from the pump to the signal and
back. The period of the energy transfer is ~/A, &. At the
midpoint of this period the energy is totally transferred
from the pump to the signal and the pump is completely
depleted. On the other hand, at the initial stages of the
time evolution, for which k, t «1, the pump mode is not

I

If we assume the pump mode to be initially prepared in
the coherent state (2.3) with the real amplitude P and the
signal mode in the vacuum state, i.e., the state vector of
the signal-pump system at t =0 is

(3.5)

with the time-dependent amplitudes

a(t ) =a cosA, , t i p sin—A, ,t,
p(t) =/3cosA, it ia sinA—&t .

(3.9)

(3.1oa)

(3.10b)

From Eqs. (3.9) and (3.10) it follows that with the initial
condition (3.8) the parametric approximation can only be
adopted in the case of a weak signal amplitude (i.e.,
a «p); otherwise the amplitude of the pump mode even
for a short range of interaction time cannot be assumed
constant. Simultaneously, we should stress once more
that with the initial coherent states in the pump and the
signal modes the state vector %(t)) at t )0 is factorized
and both modes are in a pure state for any interaction
time. With other initial states the situation can be
different and the pump and the signal modes can become
entangled due to the quantum dynamics. For instance, if
we assume the signal mode to be initially prepared in the
Pock (number) state In ), and the pump mode in the
coherent state Ip)i„ then at t )0 the signal-pump state
vector at t )0 cannot be factorized as a product of two
state vectors but takes the form [8]

( cosA, , t )"+ g g ( i tanA, , t)—
m=O jc =01=0

[m!n!(n+m —k —/)!(k+/)!]
I

+ k /) Ik+/)
(n —k )!(m —/)!k!l! (3.11)

Even though in the case under consideration the pump
and the signal modes are entangled at t )0 (i.e.,
S, =Sb &0), it can be shown that for small interaction
times (A&t ((1) and for p »n the entropy of the signal

I

(pump) mode is small and the state vector (3.11) can be
approximately written in the form [8]

(3.12)
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+2i sin A, , t cosA, , t ( ga b +g'db )

—sin A, , t[g(& ) —/*a J Io), Io)b .

(3.14)

The explicit expression of the state (3.14) in the Fock
bases can be found in Ref. [23]. In this state the pump
and the signal modes are strongly entangled and the para-
metric approximation can be justified only during the first
instants of the time evolution (see Sec. IV). Here we note
only that the pump and the signal modes in the state
(3.14) exhibit interesting nonclassical behavior (for de-
tails, see Ref. [23]).

Second, if we assume the pump mode initially in the
number state In )i, and the signal mode in the vacuum
state, then at t )0 the signal-pump system evolves into
the SU(2) coherent state [24,8]

1/2

I+(t)&=(1+I(i') ""g
k=0

g" lk ).In —k ), ,

(3.15)

which is a highly nonclassical state exhibiting a high de-
gree of sub-Poissonian photon statistics (for details, see
Ref. [24]). In this case again the pump and the signal
modes are strongly entangled and the application of the
parametric approximation is questionable even for short
time intervals, except of the limit t ~0.

Before we finish this section we should turn our atten-
tion to the fact that in the lossless linear coupler there are
moments during the time evolution at which the pump
and the signal become disentangled (i.e., S, =Sb =0) ir-
respective of the initial states of the signal (l@,), ) and
the pump (I+2)i, ). To show this we utilize the unitary
transformation

with the time-dependent amplitude a(t)= —iPA, &t and P
constant. The state D, (a(t ) ) In )„which is generated in
the signal mode, is called the displaced number state [22]
and it exhibits interesting nonclassical properties. From
the above we can conclude that if the pump mode is ini-
tially in the highly excited coherent state with the num-
ber of photons much higher than in the signal mode, then
for a limited range of time one can adopt the parametric
approximation even though the pump and the signal
modes become entangled due to the quantum dynamics
(i.e., the entropy of the signal mode is very small for a
limited range of time). On the other hand, if the pump
mode is not initially in a coherent state the situation can
be quite different and the application of the parametric
approximation can be questionable even in the case when
the signal mode is initially in the vacuum state. To illus-
trate this we present two examples.

First, if the pump mode is initially in the squeezed vac-
uum state

I g) b [1]defined as

lg)b=Sb(g)lo)b, Sb(g)= exp[/(b ) —g*b ], (3.13)

then the signal-pump state vector at t )0 takes the form

l+(t)) = exp[ cos A&t[g(b ) g*b ]—

UiQUi =& cosA, &t+ib sinA, &t,

U, bU, =b cosA, ,t+ia sink, t,
(3.16a)

(3.16b)

where Oi is the time-evolution operator of the linear
coupler in the interaction picture (3.4). Using this trans-
formation it is easy to find that the initial signal-pump
state vector

I
+(t =0) &

=
I @)&. I @~& b

—— g c."cb ln &. Im & t,
n, m =0

(3.17a)

evolves according the relation

(a cosA, &t
—ib sinA. &t )"

C,"CP
=0 V'n!

( b cosA, , t ia si—nA, , t )x ' lo). lo), .

(3.17b)

From Eq. (3.17b) it follows that at A. , t =m. /2 the signal-

pump state vector can be factorized irrespective of its ini-
tial state, i.e.,

le(t=~/2A, )&= y C;( —t)-Im &.
m=0

X g C,"( i)" n)b .—
n=0

(3.18)

IV. SIGNAL-PUMP ENTANGLEMENT IN THE
TWO-PHOTON DOWN-CONVERSION

In the preceding section we have shown that for
coherent input states the signal-pump state vector of the
linear coupler can be factorized for any t )0, i.e., the
pump and the signai remain in the pure state during the
time evolution. This preservation of the purity of the
pump and the signal modes is a very exceptional property

From Eq. (3.18) it follows that at A, &t
= sr/2 the pump and

the signal up to the phase factors ( i )" "e—xchange" their
states. In particular, if the signal mode was initially in
the vacuum state and the pump mode in the squeezed
vacuum then at A, , t=~/2 the signal mode is in the
squeezed vacuum state (the direction of squeezing of this
mode is rotated by vr/4 with res—pect to the direction of
squeezing of the pump mode). This total transfer of sta-
tistical properties from the pump to the signal mode is
only possible in the case of the quantum linear coupler.
We will see in the next section that in the nonlinear
coupler (i.e., down-convertor with k )2) the situation is
completely different. We should also note that at t =mA, ,
the state vector IV(t) ) can be factorized again and the
states of the pump and the signal are up to phase factors
equal to their initial states. Complete restoration of ini-
tial conditions is obtained at t =2m/A, , The last is also
seen from the expression (3.4) for the evolution operator
which at t =2m/A, i turns to the identity operator.



1242 V. BUZEK AND G. DROBNY

of the linear coupler. In this section we show that in the
two-photon down-conversion process described by the
Hamiltonian

O' '=A, [(d ) b+ftt b ], (4.1)

the situation is different. First of all, we should stress
that the dynamics of the quantum-mechanical system
corresponding to the Hamiltonian (4.1) cannot be de-
scribed in an analytically closed form, but has to be stud-
ied numerically. For details of our numerical approach
we refer the reader to the recent paper by Drobny and
Jex [16].

Let us assume the signal mode initially in the vacuum
state and the pump in the coherent state lP) b. With this
initial state the pump and the signal in the linear coupler
will remain in the pure state for any t )0. In the two-
photon down-convertor the pump and the signal become
entangled, their purity parameter S„„,becomes positive
at t )0, and the signal mode is not exactly in a pure state
anymore. Nevertheless, for a short range of time the pur-
ity parameter is still very small and approximately equal
to zero. As we show during this time interval the para-
metric approximation can be adopted. In Fig. 1 we plot
the time evolution of the purity parameter for several
values of the initial intensity of the pump mode. From
this figure it follows that the higher the initial intensity of
the pump, the more rapidly the purity parameter in-
creases and the shorter the time interval during which
Sp can be approximated by zero.

In Fig. 2 we plot various parameters describing statisti-
cal properties of the signal mode obtained via two-photon
down-conversion with the pump intensity P =9 and for
two values of the interaction time A, 2t =0.2 and 0.5. As
seen from Fig. 1 the purity parameter at A,2t =0.2 is ap-
proximately equal to zero (i.e., the signal mode is in a
pure state), while S „, at A.zt =0.5 is significantly greater
than zero. In Fig. 2(a) contour plots of the Q function of
the signal mode at A,2t =0.2 are shown. We see that the
initial circle contours corresponding to the vacuum state

I

C3

C3

C3

C3

—4.7 —0.0 4.7 —4.7 4.7

0.6
(c)

0.3

are transformed into elliptical (squeezed) contours. The
photon-number distribution [see Fig. 2(c)] exhibits
significant oscillations. Taking into account that at
t =0.2 the degree of squeezing in the signal mode is very
large [see Fig. 2(e)] and the fact that the signal mode is in
a pure state which simultaneously is a MUS [see Fig.
2(f)], we can conclude that under given conditions the
squeezed vacuum is produced in the signal mode.

If we analyze the statistical properties of the pump
mode in the process under consideration at A,zt =0.2 we
find that the pump mode at this time is approximately in
a coherent state, i.e., the Q function is represented by cir-
cle contours [see Fig. 3(a)], the photon-number distribu-
tion is Poissonian [Fig. 3(c)], there is no squeezing exhib-
ited by the pump [Fig. 3(e)], and finally the pump mode is
in the MUS [Fig. 3(f)]. On the other hand, at X2t=0. 5
the quantum-statistical properties of the pump mode are
significantly changed by the back action of the signal
mode. First of all, the pump is not in a pure state at this
moment (Fig. 1), the Q function is "deformed" [Fig. 3(b)],
and the photon-number distribution exhibits oscillations
[Fig. 3(d)]. Moreover, the pump mode exhibits a large
degree of squeezing [Fig. 3(e)]. Needless to say the pump
mode is not in the MUS at this moment [Fig. 3(f)). Obvi-
ously, under this circumstances one cannot adopt the
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FIG. 1. The time evolution of the purity parameter S~„, in
the two-photon down-conversion for initial state ~0), ~P)b with
P= 1 (long-dashed curve), P=3 (short-dashed curve), and P=5
(solid curve). Increase of the intensity of the b mode leads to
the stronger entanglement between the pump and the signal.
Time scale is given by A,2t.
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FIG. 2. Parameters of the a mode for two-photon down-
conversion (P=3): (a) Q function for A2t =0.2; (b) Q function
for A,2t=0. 5; (c) photon-number distribution for X2t=0.2; (d)
for A2t =0.5; (e) shows the time evolution of the squeezing pa-
rameter S~; and (f) gives the uncertainty function u, .
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C3
C3

(a)

C3
C3

(b)
0'"(t)=1—8'"t

and the signal-pump state vector takes the form

I+(t) &=&',"(t)l0&. p&,

=(lo&. —tt&zxgl2&. )lp&, .

(4.4)

(4.5)

C
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As seen from Eq. (4.5) for times t « t, the signal mode is
in a pure state (S „„=0,see Fig. 1) and is given as a su-
perposition of two Fock states. The dominant contribu-
tion from these states is clearly seen from Fig. 2(c). A
significant degree of squeezing in the signal mode in this
case can be explained as a direct consequence of the
quantum interference between the vacuum state and the
two-photon Fock state (for details see Ref. [26]).

If we strictly demand that the parametric approxima-
tion can be adopted only in the case when the signal
mode at the output is in a pure state then this approxima-
tion is valid only for times smaller than t, . For larger
times one should take into account the third term

(I)
( itIIz —'t) /2! in the Taylor-series expansion of the evo-
lution operator [see Eq. (4.4)]. But this term already
leads to an entanglement between the pump and the sig-
nal.

We should note here that the assumption about the
purity of the signal mode in the two-photon down-
conversion leads to a peculiar ambiguity in the descrip-

FICx. 3. The same parameters as in Fig. 2 but for the pump
mode.

parametric approximation. It is quite interesting to note
that the signal mode at this moment also exhibits non-
trivial behavior. The Q function of the signal mode is
split into two parts [Fig. 2(b)], which means that a sort of
superposition [25] state is generated in this mode. Even
though this is not a pure state (see Fig. 1) the quantum in-
terference between component states leads to the appear-
ance of nonclassical effects. Namely, one can observe os-
cillations in the photon-number distribution [Fig. 2(d)]
and even some degree of squeezing [Fig. 2(e)]. As seen
from Fig. 2(f) the signal mode at A.~t =0.5 is not in a
MUS. Moreover, the degree of the deviation from the
MUS is much higher for the signal mode than for the
pump mode [compare Figs. 2(f) and 3(f) at A2t =0.5].

From the above it follows that for times small enough
(A,2tp « 1) the signal-pump state vector can be written in
a factorized form (2.4) (i.e., I'It(t)&=I@(t)&, IN(t)&b),
where

I
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1.0
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0.8

0.2
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0
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2 4 6
n

4
n

(4.3)

In this case the evolution operator
= exp( —i82 't ) can be approximated as

0'"(t )

I+(t)&.=S.( —ttp)10&. , l@(t)&b=Db(p)10&s, (4»
with S, (g') = exp[/(a )~ —/*a ] being the squeeze opera-
tor [1]. Strictly speaking, the above factorization can
take place only for times t smaller than t„where

—4.7
I

0.0 4.7

0.2

0.0
2 4 6

n

FIG. 4. The Q function and the photon-number distribution
of the signal mode in the case of the purely quantized model
with P=3 and Azt =0.1 [(a) and (b), respectively]; in the case of
the parametric approximation with the effective Hamiltonian
(4.9) [(c) and (d), respectively]; and in the case of the parametric
approximation with the eff'ective Hamiltonian (4.10) [(e) and (f),
respectively].
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Ak=
fi', (fi', —k)!
k

(it )", Ak = ( Ak )t . (4.8)

Here [x ] denotes the integer part of x and the operators
Ak, Ak satisfy the Weyl-Heisenberg commutation rela-

A. A, ftlons [ Ak, A k ] = 1.
The generalized coherent state (4.6) describes very well

the output state in the signal mode for small values of g.
This can be seen from Fig. 4, where we plot the Q func-
tion and the photon-number distribution of the signal
mode in three cases: (1) the case of the purely quantized
model at the time A, 2t =0. 1 with the coherent amplitude
of the initial pump field equal to 3 [Figs. 4(a) and 4(b)]; (2)
the case of the parametric approximation with the
efFective Hamiltonian

C3
C3

0.6

0.4-

0.2-

(b)

tion of this mode. As we stated above, the signal mode is
in a pure state for interaction times 0 & t « t„when the
state vector of the signal mode is given by the expression
(4.5). This superposition state is equal to the first two
terms in the expansion of the squeezed vacuum state (4.2)
into the Fock basis

~
n ), . Simultaneously, the state

~C&&(t)), can be described with the same precision as a
generalized coherent state given by the relation

(4.6)

where g= i/3&2—A, 2t, and the generalized displacement
operator D,' '(g) [27,28],

D,'"'(g) = exp(gAk —g*AI, ), (4.7)

is given in terms of the multiphoton Brandt-Greenberg
operators [29]

1/2

(4.9)

[see Figs. 4(c) and 4(d)]; and (3) the case of the parametric
approximation with the effective Hamiltonian given in
terms of the Brandt-Greenberg multiphoton operators:

H2 ' '=Kg&2(22+22) (4.10)

[see Figs. 4(e) and 4(f)]. The interaction time in the first
case is taken short so that only a fraction of the energy
(-2.5%) is transferred from the pump to the signal
mode. The signal mode at this time is approximately in a
pure state. In the other two cases the interaction time is
chosen in such a way that the intensity of the signal mode
is equal in all cases. From Fig. 4 we can conclude that
both effective Hamiltonians (4.9) and (4.10) describe
suSciently well the signal mode at initial stages of the
time evolution. For longer interaction times the para-
metric approximation with the effective Hamiltonian
(4.10) is not as good as the one with the Hamiltonian
(4.9). For instance, at X2t =0.2 when —12% of the ener-

gy is transferred from the pump to the signal mode the
effective Hamiltonian (4.9) describes the signal mode
better than the Hamiltonian (4.10). This is clearly seen
from Fig. 5, from which we can also conclude that the
effective Hamiltonian (4.10) gives results which are at
least in qualitative agreement with the purely quantum
model. We will utilize this observation in the next sec-
tion, in which we will analyze multiphoton down-
conversion.

Up to this moment we have assumed the signal mode
in the two-photon down-conversion to be initially
prepared in the vacuum state ~0), . The pump mode at
t=0 was assumed to be in the coherent state ~P)b. The
variation of the statistics of the signal mode at t =0 can
significantly change the character of the output state in
this mode. In particular, if we assume the signal mode to
be prepared in the Fock state ~n )„then the entangle-
ment between the pump and the signal modes becomes
stronger. Generally, the larger the initial number of pho-
tons n in the signal mode the stronger the entanglement
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n 0.8
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FIG. 5. The same as Fig. 4 but X2t =0.2.
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FIG. 6. The time evolution of the purity parameter S~„, in
the two-photon down-conversion. The b mode is initially in the
coherent states with P=3 and the a mode is in a Fock state ~n ):
n =0 (long-dashed curve), n =2 (short-dashed curve), n =4
(solid curve). The higher the number of photons in the a mode
the stronger the entanglement between the modes.
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for given p and A, ~t and consequently the larger the value
of the purity parameter S „, (see Fig. 6). From here we
can conclude that variation in the statistics of the initial
signal mode can significantly constrain the applicability
of the parametric approximation.

V. k-PHOTON DOWN-CONVERSION

In the k-photon down-conversion process one photon
of the pump mode with frequency kco is transformed into
k photons of the signal mode with frequency co. If we as-
sume the signal mode initia11y to be prepared in the vacu-
um state then at t )0 we find

(a &. =(a'&. = =(a' '&. =0, (5.1)

1

&k |Pa„
(5.2)

For times obeying condition (5.2) the evolution operator
0& '(t ) can be approximated as

(5.3)

and the signal-pump state vector can be factorized as
l%1(t ) &

= 4(t ) &, l
N(t ) & b, where

which means that in the k-photon down-conversion with
k ) 2 the signal mode does not exhibit quadrature squeez-
ing. Nevertheless, observation of higher-order squeezing
[30], or amplitude-squared [31] and amplitude kth-power
squeezing [28], is not excluded.

In the k-photon down-conversion the signal and the
pump modes become entangled in the same way as in the
two-photon down-conversion. Generally speaking, the
higher the order of the process (i.e., the higher the k ), the
stronger the entanglement (at least during the first in-
stants of the time evolution). This is seen from Fig. 7.
For initial states of the signal mode other then the vacu-
um state the entanglement is even stronger.

The signal-pump state vector in the k-photon down-
conversion process can be written in the factorized form
(4.2a) only during first instants of the time evolution
when

Q(a) —e [1—2ptlal" sinkO+p t lal "], (5.5)

where a=lal exp(iO). This Q function, as well as the
phase properties of the signal mode in the process under
consideration, has recently been analyzed by Tanas and
Gantsog [13].

In the Introduction we have shown that the application
of the parametric application in the k-photon down-
conversion (k )2) is questionable because of the diver-
gence of the vacuum-to-vacuum matrix element of the
evolution operator (1.5). In other words, it is question-
able to describe the signal mode in the k-photon down-
conversion at t )0 by the state vector

lg';k &, =S,(g';k)l0&, = exp[/(a )"—g'*a "]l0&, , (5.6)

even though some numerical calculations can be per-
formed by using the Pade approximants [for instance,
Braunstein and McLachlan [11] have shown that for
small values of g, the Q function of the state (5.6) is equal
to the expression (5.5)].

In the preceding section we have shown that for small
interaction times the dynamics of the signal mode can be
approximated either by the effective Hamiltonian (4.9)
given in terms of the operators a or the Hamiltonian
(4.10) given in terms of the multiphoton Brandt-
Greenberg operators Az. The effective Hamiltonian (4.9)
describes the signal mode at t )0 better than the Hamil-
tonian (4.10). Nevertheless, the latter gives qualitatively
good results. In the case of the k-photon down-
conversion (k )2) the application of the effective Hamil-
tonian (1.4b) given in terms of the operators a is prob-
lematic (see above). On the other hand, the dynamics of
the signal mode during the first instants of the time evo-
lution (when the purity parameter is approximately equal
to zero) can be described by the effective Hamiltonian

(5.4)

The Q function corresponding to the state
l
4(t ) &, exhib-

its k-fold rotational symmetry (group of symmetries Ck )

and can be written in the form

(5.7)

0.4

0.3

0.2

given in terms of the multiphoton operators Ak, Ak. In
the time interval in which S „, is approximately equal to
zero this evolution describes the signal mode very well.
Moreover, divergences of the matrix elements do not
occur in this case.

VI. CONCLUDING REMARKS

0.0
0.0
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0.2 0.4 0.6
sea, le 8 Arne

0.8 1.0

FICz. 7. The time evolution of the purity parameter Sp in
the k-photon down-conversions with P=3: k=2 (dashed
curve), k=3 (solid curve), k=4 (curve with 6), k=5 (curve
with Q). The scaled time is taken to be ~=t&k!A,z.

We have studied the entanglement between the pump
and the signal modes in the k-photon down-conversion
process. We have shown that the entanglement between
the pump and the signal depends on the order of the non-
linear process under consideration and the initial quan-
tum statistics of the signal and the pump modes.

The analysis of the signal-pump entanglement in the
k-photon down-conversion presented in this paper can be



1246 V. BUZEK AND G. DROBNY 47

performed in a more realistic way. Namely, one can con-
sider a model of the k-photon down-conversion when the
optical crystal is placed within an optical cavity which is
coherently driven at the frequency of the pump. The
Hamiltonian describing this device is

Hk =coa a+kcob b+Ak[(a )"b+a b ]+(Eb +E*b),

(6.1)

where c. is the amplitude of a classical driving field multi-
plied by the coupling constant between the pump and the
signal field. In the model described by the Hamiltonian
(6.1) the pump depletion is compensated by the action of
the classical driving field. The dynamics of this model
with a special emphasis on the entanglement between
modes are planned to be studied elsewhere. The influence
of mode damping will be taken into account as well.
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