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Propagator of the general driven time-dependent oscillator
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In this paper we generalize Wang's approach [J. Phys. A 20, 5041 (1987)] and investigate the
algebraic structure of the Schrodinger equation associated with a general driven time-dependent
oscillator. Using the Lie-algebraic technique we obtain an exact form of the time-evolution operator
which, in turn, enables us to derive the propagator of the system readily. Since the propagator is
for the most general time-dependent oscillator, results for any special case can be easily deduced
from it. These results will be useful for future studies in quantum optics as well as in atomic and
molecular physics.

PACS number(s): 03.65.Fd

In a recent communication Wang [1] investigated the
algebraic structure of the Schrodinger equation associ-
ated with the Hamiltonian of a general driven time-
independent harmonic oscillator, and took advantage of
Lie algebra to derive the kernels of the equation. The
method is simple and gives the same results as those ob-
tained by the path-integral approach. In this paper we
shall extend the method to the case of a general driven
time-dependent oscillator whose Hamiltonian takes the
form [2]

(4)Hp(t) = ai(t) J+ + az(t) Jp + as(t) J
where

2
~J+ — z

2h

J 2

2h,

Jp = (s ~ + ~p)

(5)

(6)

2

H(t) = + -m(t)cu(t) x —m(t) f(t)z,
2m(t) (1)

and

It is well known that Hp(t) can be rewritten in terms of
the su(1, 1) generators as follows [6]:

where the mass parameter is taken as ai(t) = —ibm(t)~(t),
az(t) =0,

(8)
(9)

m(t) = mp exp 2 p(t)dt (2) as(t) =—
m(t)

(10)

2

HP(t) = + zim(t)~(t)zxz .
2m{t) (3)

and w(t), f(t), and p(t) are arbitrary functions of time.
The study of problems involving the time-dependent os-
cillator has long been a research area of considerable
interest. Apart from its intrinsic mathematical inter-
est, these problems have invoked much attention be-
cause of their connections with many other problems
belonging to different areas of physics, such as molecu-
lar physics, quantum chemistry, quantum optics, plasma
physics, gravitation, quantum field theory, etc. For in-
stance, Oh et al. [3] investigated a molecular system ab-
sorbed on a dielectric solid surface, modeled as a damped
harmonic oscillator driven by a time-dependent external
force. Colegrave and Abdalla [4] studied the harmonic os-
cillator with a constant frequency and a time-dependent
mass in order to describe the electromagnetic-field in-
tensities in a Fabry-Perot cavity. Also, Lemos and Na-
tividade [5] have solved the harmonic oscillator with a
time-dependent frequency and a constant mass in an ex-
panding universe.

To begin with let us consider the Hamiltonian Hp(8)

The operators J+, Jp and J form the su(1, 1) Lie alge-
bra

[J+,J ] = —2Jp,

[J„J~]= +J~.
The corresponding Schrodinger equation is

(12)

Hp(t) lop(t)) = in lep(t)) . —
As usual, we will define the evolution operator Up(t, 0)
such that

Hp(t) Up(t, 0) = ih —Up(t, 0),

Up(0, 0) =1 .

(15)

(16)

Since J+, Jp, and J form a closed Lie algebra su(1, 1),

e, (t)) = U, (t, o)le, (0))

where l@p(0)) is the wave function at time t = 0. Insert-
ing (14) into (13) yields the evolution equation
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the evolution operator can be expressed in the following
form:

Up(t, o) = exp[ci(t) J+] exp[c2(t) Jp] exp[cs(t) J ], (17)

where c,(t) are to be determined. Then by direct differ-
entiation with respect to time, we obtain

Up—(t, o) = [h+(t) J+ + hp(t) Jp + h (t)J )Up(t, o)t

H, (t)UI(t, O) = it- —U, (t, O),

UI(0, 0) =1,
with HI(t) being defined by

H, (t) = U,'(t, O)(—m(t) f(t)z)Up(t, O) .

(18) By straightforward evaluation of (35) we obtain

with

h+(t) =
d,

dc2 2 dc3—ci + ci exp( —c2)
dt dt

HI (t, 0) = —m(t) f(t) exp
c2(t)

2 (t)&)

dc2 GC3
hp(t) = —2ci exp( —c2)dt dt

dcs
h (t) =exp( —c2) „dt

(20)

(21)

In terms of the generators of the Heisenberg-Weyl alge-
bra, HI(t) can be written as [8]

HI(t) = bl(t)ei + b2(t)e2 + b3(t)e3

Substituting (4), (17), and (18) into (15), and comparing
the two sides, we obtain after simplication

where

ci(t) = m(t) —ln[F(t)], ci(O) = O
t

c2(t) = —2 ln
F(t)

(22)

(23)

ei(t) = p,

e2(t) = X,

(38)

(39)

cs(t) = —F(0)2 du
m, (u)F(u)2 ' (24) es(t) =i

where F(t) satisfies the differential equation

(25) by(&) = . m(t) f(t)cs(t) exp
~n "(t)

2
(41)

((t) = —ln[m(t)] .
t (26)

b, (t) =icbm(t) f(t) exp—c2(t)
2

(42)

The second-order differential equation can be cast in the
standard form such that

bs(t) = 0 . (43)

The operators e, form the Heisenberg-Weyl Lie algebra

with

+ t t =0, e], eg = e3,

[ei, es] = [e2, e3] = 0 .

(44)

(45)

Following a similar procedure as shown above, the evo-
lution operator UI(t, o) is found to be

(28)

(»)
G(t) = g(t)F(t),
A(t) = ~(t)2 —h(t),

1 d2g(t)

g(t) dt2

g(t) = gm(t).

(46)(3o)
UI(t, o) = exp[di(t)ei] exp[d2(t)e2] exp[d3(t)e3]

with
(31) 1

d (t)=-
ih (47)bi(u)du,

1
d2(t) = —.

ih b2(u)du, (48)

1
d, (t) = ——.

ih (49)b2(u)di(u)du .

Infeld and Hull have noted that most of the analytically
solvable second-order differential equations, involving a
single variable, which are of interest in electromagnetic
and quantum theory can be transformed into this stan-
dard form [7]. Since Up(t, o) is known, the evolution op-
erator U describing the whole system will be given by

U(t, 0) = Up (t, 0)UI (t, 0),
where UI(t, 0) satisfies the evolution equation

(32)

Hence, we have obtained an exact form of the time-
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evolution operator U(t, 0) of the general driven time-
dependent oscillator.

Next using the well-known relations
e'**f(x) = exp — f(y)dy

1 x —y

&4vro

e -f(x) = f(x+ a),
e *'*f(x)=f(e x),

as well as the formula [9]

(50)
(51)

(52)

we can readily derive the formal solution of the time-
dependent Schrodinger equation associated with the gen-
eral driven time-dependent oscillator,

@(x,t) = U(t, 0)4(x, 0)

(xe")' + mahdi —y) ici z id' . cq
dy exp . + x + y+ ids+ — 4'(y, 0)

2' hc3 2ihcs 4
(53)

Since the propagator of the system satisfies the relation

@(xt) =j, dye(x, t;y, o)4(y, 0),

by comparing (53) and (54) we have

(xe" + y hdi —y) ici ~ id'
K(x, t;y, 0) = exp . + x + y+ids+-

2mhcs 2ihcs 2h 4

This propagator is for the most general time-dependent oscillator, and thus results for any special case can be easily
deduced from it. In the following we shall present some examples to illustrate the validity of our method.

(i) A free particle —m(t) = rnp and cu(t) = f(t) = 0 [1]

K(x, t;y, 0) = . exp
mp mp(x —y)~

2~zht 2iht
(56)

(ii) A harmonic oscillator in a gravitational field —m(t) = mp, cu(t) = up, and f(t) = —g with mp, cup, and g being
constant [1]

K(x, t;y, o) = exp [(x + y ) cos(u)pt) —2xy]
2+ih sin(apt) 2h sin(a)pt)

impg (capt ) impg' t 1 &~pt ))

), 2i FLGJr) 2 Ldp

(iii) An oscillator with periodic mass —m(t) = mp cos (bt), u(t) = ap, and f(t) = 0 [10]

K(x, t;y, 0) = mpA cos(6't) [ imp A
exp . [x cos(bt) —y cos(At)] + [6 tan(6t) —A tan(At)]xzm(t) 2

2vrih sin(At h sin 2At 2h
(58)

where A = Qcu~ + b~.

(iv) A damped oscillator —m(t) = mp exp( —2bt), cu(t) = cup, and f(t) = 0 with up ) 6 ) 0 [2]

K(x, t;y, o) = mpA im(t) sin(At) (xA —yq(t) exp(bt) )
2mih sin(At) 2hi1(t) ) sin(At) ) (59)

where r1(t) = A cos(At) —6 sin(At) and A = gu1z~ —6' .
In summary, we have investigated the algebraic structure of the Schrodinger equation associated with a general

driven time-dependent oscillator. Using the Lie-algebraic technique we have obtained an exact form of the time-
evolution operator vrhich, in turn, enables us to derive the propagator of the system readily. Since the propagator is
for the most general time-dependent oscillator, results for any special case can be easily deduced from it, and these
results will be useful for future studies in quantum optics as well as in atomic and molecular physics.
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