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Directional characteristics of the moments of the dipole-oscillator-strength distribution
of molecules: H2 and H20
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We report polarization propagator calculations within the random-phase approximation of several
isotropic moments and their directional components of the dipole-oscillator-strength distribution of H2
and of H20. The calculations show that there is strong dependence on the polarization direction of the
incoming beam. The dependence of the moments on the molecular geometry is also discussed. In partic-
ular, the mean excitation energy for stopping is found to be very directionally sensitive, leading to the
necessity of using directionally specific mean excitation energies when discussing oriented targets. It is
possible that the sample phase dependence of the stopping power of water may be in part due to direc-
tional effects in Io. A transferable bond mean excitation energy for the 0—H bond is calculated, and is
found to be constant within +1% for gH —0—H from 95' to 120' at constant bond length RoH. It
agrees well with previous results.

PACS number(s): 34.50.Bw

I. INTRODUCTION

The various energy-weighted moments of the dipole-
oscillator-strength distribution (DOSD)

S(p)= fE" dE,

I.(p)= fE"lnE dE,d
dE

and the associated mean excitation energies

I„=2R exp[L (p, )/S(p)]

(2)

(3)

of a molecule can be related to many aspects of the in-
teraction of radiation with matter [1,2] such as the stop-
ping and straggling of swift, massive projectiles, the
Lamb shift, polarizabilities, refractivities and normal
Verdet constants, and many more. In addition, they
satisfy sum rules [3] which deepen understanding of the
properties they describe. To calculate these moments, it
is necessary to have access to the complete dipole-
oscillator-strength distribution, as the moments are
formed from sums over the entire energy spectrum of os-
cillator strengths [f] and excitation energies [E]. Un-
der most circumstances the appropriate moments to be
used are the isotropic ones, comprising contributions
from all polarizations, as there is generally no directional
relation between the incoming beam and the symmetry
axes of the target system. Experimental technology has
improved so much in recent years, however, that ques-
tions of directional dependence of the moments of the
DOSD have arisen. For example, consider the stopping
(the property that we will be concerned with here) of a
crystalline molecular solid. In this case, the molecular

bonds will have a particular directional relationship to
the velocity of the incoming particles, and one must con-
sider the directional characteristics of the mean excita-
tion energy (Io, the appropriate moment to describe stop-
ping, vide infra) Amor. e dramatic example might be ul-
trathin films [4] where bonds can be lined up parallel to
or perpendicular to the beam direction, again requiring
investigation of the directional aspects of the moments of
the DOSD.

The question then arises as to whether directional
effects are large enough to cause physically observable
phenomena. There has been very little work along these
lines other than on the S(p) [5] moments. There are,
however, two theoretical and one semiempirical paper
dealing with anisotropic stopping which treat it from
very different perspectives. In a thorough analysis, Craw-
ford [9] considered the stopping power in the high veloci-
ty (nonrelativistic) limit of a swift particle penetrating an
anisotropic medium characterized by a frequency-
dependent dielectric constant. He found a lateral force
on the particle, and, more germane, a difference in stop-
ping dependent on the directional relationship of the par-
ticle beam to the target molecular axes. In the case of
protons impinging on graphite, this amounts to a
difference of -5—6% at a projectile energy E =100
keV, well within experimental reach. A very different ap-
proach was taken by Diercksen et al. [6], who used the
polarization propagator scheme (vide infra ) to calculate
the spectral moments of the DOSD of Nz directly by ex-
plicitly summing over the pseudostates. They found a
difference between I~~ and Ij of nearly 20%, correspond-
ing to a 10% difference in stopping. Finally, Kumar and
Meath, using anisotropic DOSD constraint techniques
[7], found a slightly smaller (15%)but still substantial an-
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isotropy in Io (and other moments of the DOSD) for N2.
Thus all methods indicate that the directional depen-
dence in stopping powers is experimentally accessible.

In the following, we report polarization-propagator
[10]calculations [11]of the directional components of the
moments of the DOSD with emphasis on the mean exci-
tation energy for stopping, I0.

and the associated mean excitation energies are

L (p)I' ' =2R exp S (p)
(9)

The total moments are then the sums of the components,
and the directional mean excitation energies add as

II. METHODOLOGY lnI„= g S (0)lnI„'
1

S 0
(10)

From the residues and poles of the polarization propa-
gator

n(%0)

(0/a/n ) (n /p[0)
E —E„+E0

&0]p/n )(n /a/0)
E +En —E0

f,'„'=—', E,„&Oiain & &n iaiO& . (6)

Using a finite basis set, as is the case here, results in a
discrete representation of the continuum, allowing us to
calculate the moments in Eqs. (1) and (2) by direct sum-
mation. The Cartesian components of the DOSD become

L (V)= & «o. lnEo. )fo.'

n&0
(8)

one can obtain the transition moments (and thus oscilla-
tor strengths) and excitation energies, E„Eo,of —the sys-
tem directly, without explicitly generating the excited
states of the system [10]. Here a,p are Cartesian com-
ponents of the dipole-moment operator and the sum is
over all excited states ~n ). The polarization propagator
can be evaluated perturbatively at several levels of sophis-
tication [10]. The zeroth-order approximation, generally
taken to be the Hartree-Fock (HF) solution, takes both
ground and excited states as simple, unrelaxed, single
determinants of ground-state HF orbitals. Some correla-
tion is introduced into the excited state when the propa-
gator is approximated at the monoexcited configuration
interaction (MECI) level. Both ground and excited states
are correlated in the self-consistent first-order approxima-
tion to the propagator, the random-phase approximation
(RPA). Our experience has consistently been that the
propagator must be evaluated at least at the RPA level if
properties of the DOSD [such as the Thomas-Reiche-
Kuhn (TRK) sum rule] are to be represented accurately.
Higher orders of approximation to the propagator are
also extant, but require excessive computational eA'ort for
minor improvements in the property [12]. The calcula-
tions reported here are thus carried out in the RPA to
the propagator.

The poles of the propagator give the excitation ener-
gies of the system

E0„=E„—E0

while the residues determine the Cartesian components of
the oscillator strengths,

It is also possible to obtain the S and L of the DOSD
directly from the propagator matrices, without going
throughout the explicit sum over states. However, at the
RPA level that we use here, it is equally easy to the sum
over states, and the results are identical.

III. RESULTS AND DISCUSSION

A. H2

The calculations on H2 were carried out in the
random-phase approximation, using a basis of 90 con-
tracted Gaussian type orbitals (CGTO's) comprised of
[9s,6p, 3d] atomic orbitals on each atom [13]. This basis
has been shown to give good results for moment-related
properties of H~ [14]. It gives a value of the TRK sum
rule, which is exact for a complete basis set in RPA, of
1.999 885 in the length formulation and 1.999345 in the
velocity formulation at the equilibrium internuclear dis-
tance of 1.4011 bohr. The agreement between the two
formulations indicates that the basis is well balanced, and
that both agree with the total number of electrons in the
system indicates that the basis is reasonably complete, at
least for properties of this sort.

Calculations were carried out in the RPA length for-
mulation at several distances around the equilibrium
value, and the energy-weighted moments of the DOSD
and their components parallel and perpendicular to the
molecular axis (z) are presented in Table I for several
values of p.

The behavior of the moments is consistent with the
general structure of the DOSD. The spectrum of pseudo-
states for the transitions polarized perpendicular to the
molecular axis (II~X) has components at higher energy
than does the spectrum of pseudostates polarized along
the molecular axis (X~X). The S(p) moments are sums
of energy-independent transition moments, M0„, weight-
ed by E"+' [see Eqs. (6) and (7)]. Since p) —1 weights
the high-energy region of the spectrum most, S~(p, )

would be expected to be larger than S~~(p) for positive p.
For p & —1, the opposite energy dependence is expected.
There is no energy dependence in S( —1), which is the
simple sum of the transition moments, and S (0) is
governed by the TRK sum rule. This is consistent with
the results in Table I.

A similar analysis pertains to the L (p) moments, but
the weighting factor is now E"+'lnE [see Eqs. (6) and
(8)]. Both E"+' and lnE weight the high-energy region
more for p ) —1, so for non-negative p the perpendicular
component of L(p) should be larger, which is the case.
For p & —1, the weighting factor falls from zero to nega-



47 DIRECTIONAL CHARACTERISTICS OF THE MOMENTS OF. . . 1125

tive infinity for 0 ~ E + 1 due to the dominance of the lnE
factor at small E. Above 1, the factor rises to a broad
maximum and then falls off as E '"+". Thus the high-
energy region of the DOSD is weighted more heavily
than the low and since the perpendicular DOSD has
more transitions with excitation energies above 1 a.u. , the
perpendicular component of L ( —1) and L( —2) is seen
to be the larger. Thus, for L (p) the perpendicular com-
ponents are always larger, while for S (p) this is only true
for p) —1.

The mean excitation energies Io and I, are of interest
as they are the material parameters that determine the
stopping, or linear energy transfer, and straggling, or line
broadening, of swift, charged particles by matter [15].
The calculated values of I„ for —2 ~ p ~ 1 are presented
in Table II. From Eq. (9) it can be seen that I„has only
energy dependence of InE from L(p)/S(p, ). Thus the
high-energy part of the DOSD dominates, and I~ should
be larger than I~~~, as is indeed the case. Figure 1 depicts
Io and its components as a function of the internuclear
distance. It should be noted that the total mean excita-
tion energy and its components are all rather strong func-
tions of internuclear distance, and that there is a
significant difference among the three components at all
distances. Thus one would expect that in oriented targets
where the projectiles sample only one polarization direc-
tion, it would be inappropriate to use the isotropic mean
excitation energy in preference to, or in lieu of, the prop-
er anisotropic value. An example is that mentioned
above of ultrathin H2 layers, where the molecules could
be oriented either parallel or perpendicular to a particle
beam.

I'p(eV )

22—

20—

18—

L

1.2 1.6

FIG. 1. Mean excitation energy of H2 and its components as
a function of internuclear distance.

The standard work on anisotropic moments of the
dipole-oscillator-strength distribution of H2 is that of
Ford and Browne [16]. They report only the anisotropic
S(p) for —2 p~0, and their results are in agreement
with those reported here to about 1.5%. They also report
mean excitation energies, but not their anisotropic com-
ponents [17].

TABLE I. Total and directional components of the energy-weighted moments of the DOSD of H2 vs

internuclear distance.

R (bohr)

S(1) (a.u. )

S(0)

S( —1) (a.u. )

S( —2) (a.u. )

L(1) (a.u. )

L (0)

L( —1) (a.u. )

L( —2) (a.u. )

2.5042
0.7444
0.8799
1.9996
0.6665
0.6666
2.1019
0.7356
0.6831
2.5552
0.9171
0.8190
1.0936
0.1956
0.4490
0.1141

—0.0091
0.0610

—0.2871
—0.1250
—0.0811
—0.6244
—0.2418
—0.1913

1.9451
0.5416
0.7018
1.9998
1.6665
0.6666
2.6309
0.9642
0.8334
3.9180
1.5174
1.0023
0.3464

—0.0313
0.1888

—0.3639
—0.2066
—0.0787
—0.9165
—0.4032
—0.2567
—1.7242
—0.7344
—0.4949

1.4011

1.6693
0.4485
0.6104
1.9999
0.6666
0.6667
3.0540
1.1596
0.9472
5.2289
2.1525
1.5382
0.0582

—0.0962
0.0772

—0.6178
—0.3362
—0.1678
—1.5035
—0.6866
—0.4084
—3.0096
—1.3804
—0.8146

1.70

1.4728
0.3855
0.5436
1.9999
0.6666
0.6667
3.4846
1.3690
1.0578
6.7785
2.9637
1.9074

—0.1105
—0.1235

0.0065—0.9366
—0.4491
—0.2438
—2.1689
—1.0299
—0.5695
—4.7507
—2.3389
—1.2059

2.10

1.2902
0.3309
0.4797
2.0001
0.6666
0.6667
4.0650
1.6667
1.1991
9.2437
4.3651
2.4393

—0.2325
—0.1317
—0.0504—1.2349
—0.5774
—0.3287
—3.1653
—1.5796
—0.7929
—7.9165
—4.2538
—1.8313



1126 SAUER, SABIN, AND ODDERSHEDE 47

TABLE II. Mean excitation energies (eV) of H2 for
RHH =1.4011 a.u.

TABLE III. Total and directional components of the mo-
ments of the DOSD of H&O at R oH = 1.811096 a.u. and
0= 104.4499'.

1

0
—1
—2

28.18
19.45
16.63
15.30

21.96
16.43
15.05
14.33

30.88
21.16
17.68
16.02

B. H20

In a recent paper, Kumar and Meath [7] (KM) have
used constrained dipole-oscillator-strength techniques
[7,8 I to calculate the anisotropic moments of the DOSD
for Hz. The overall agreement between their results (see
Tables 1 —3 of Ref. [7]) and ours is good [19]. Generally,
our values for S(p), L(p), and I„are a bit larger than
those of KM for p (0 and are smaller for p )0, but the
differences are typically of the order of a volt or less. It is
difFicult to. contrast the two methods at this level of accu-
racy. Certainly the high-energy region of the DOSD gen-
erated in the polarization-propagator approximation is
the least accurate part, so that moments that weight this
region of the spectrum most (p, & —1, Uide supra) will be
the least accurate. Thus one might expect the KM values
for the p=1 moments to be the more accurate. On the
other hand, no constraints are used in this calculation,
while the KM DOSD is constrained to fit theoretical
values of S (p) for —2 5p ~ 2. In the present work,
values of S(0) are calculated, not obtained by requiring
that the TRK sum rule be fulfilled. Similarly S( —1),
containing no energy dependence, is simply the sum of
the appropriate calculated oscillator-strength distribu-
tion. In both the case of our calculation and that of KM,
the pseudostate approach is used. KM use 10 pseudo-
states for each polarization direction, while the number
of pseudostates in the present calculation is determined
by the basis, which in this case includes 24

~~
and 9 each I

pseudostates. The two methods agree to within 1.3'f/o.

Finally, the calculations reported here are for fixed bond
length. KM, however, use experimental data in the con-
struction of the DOSD (although not for the constraints).
Thus, their results might be more appropriately com-
pared to vibrationally averaged moments. Such averag-
ing can easily give a percent or so change in the moments
[6]. In conclusion, the agreement between these results
and those of KM seems to be very good.

This work CKP' ZMMD

S(1)

S(0)

S( —1)

S( —2)

tot

Z

tot

Z

tot

Z

tot

96.015
31.766
32.175
31.789
10.007
3.323
3.359
3.323
7.042
2.492
2.209
2.345
8.500
3.059
2.617
2.837

92.5
30.8
30.9
30.8

8.23
2.56
2.92
2.76

95.60

10.00'

7,23

9.64

'Reference [22].
Reference [23].

'Constraint of the calculation.

man, and Palke (CKP) [22] and the semiempirical results
of Zeiss et al. (ZMMD) [23]. Our methods are poorest
for S(p) when p is large and positive (see Ref. [18]),espe-
cially for S(2), which we consequently do not report. We
do agree, however, within —5% with the CKP results for
S( —1) and S(1) and their directional components, and
our agreement with ZMMD is a little better than is that
of CKP.

The variation of Io and its components as a function of
RoH for fixed angle is shown in Fig. 2. The mean excita-
tion energy is a rather strong function of the internuclear
distance over the range considered, with the direction
perpendicular to the molecular plane having the largest
mean excitation energy. The direction along the symme-
try axis has the next largest, and the direction in the
molecular plane perpendicular to the symmetry axis the
smallest, mean excitation energy. The explanation of this
behavior parallels that suggested in the case of H2, name-
ly, that there are higher-energy components in the DOSD
for y polarization than for z polarization, or for x polar-
ization. Since the mean excitation energy components

Calculations were carried out on water at various
geometries (bond length:—RoH and gH —0—H=8)
using the uncontracted, 101 functions (15s, 8p, 4d/
10s, 3p) Cxaussian basis of Lazzeretti and Zanasi [20].
This basis has previously been shown to give good results
for calculation of the DOSD of water [18,21]. Calcula-
tions were carried out in the RPA in the length formula-
tion, and the results are presented in Tables III and IV.
(The molecule lies in the x-z plane with the z axis as the
C~ symmetry axis. )

In Table III we present the directional components of
the S(p) moments for —2~@~ l. For comparison we
also include the Hartree-Fock results of Chipman, Kirt-

Ro„(a.u
1.600
1.775
1.811 096
1.905 601
2. 100
1.775
1.775
1.775
1.775

0 (deg)

104.4499
104.4499
104.4499
104.4499
104.4499
120
115
100
95

73.63
69.91
69.21
67.45
64.21
68.37
68.84
70.39
70.92

79.42
77.18
76.76
75.71
73.80
76.97
77.08
77.22
77.27

76.50
73.49
72.87
71.55
69.06
74.82
74.45
73.04
72.52

Itotal

76.47
73.44
72.91
71.51
68.96
73.31
73.34
73.51
73.53

TABLE IV. Variation of the mean excitation energy (eV) of
water and its components with geometry.
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Io{eV)
80—

70—

has only weak dependence on bond angle.
One might note here that there is perhaps a clue here

as to why is an unexpectedly large phase effect observed
in the stopping of water [24]. In ice, the bonds are both
longer than in the isolated (gaseous) molecule and orient-
ed with respect to the beam. Thus one might expect a
difference of up to 5 eV between the main excitation ener-
gy appropriate to the oriented bonds in ice and that ap-
propriate to water vapor, which could be a major contri-
butor to the observed target phase difference in proton
stopping.

C. Geometrical aspects
of bond mean excitation energies

65—

1.6 1.8
) I

2.0 2.2

RoH(a. u. )

FIG. 2. Mean excitation energy of H2O and its components
as a function of R» for fixed 0= 104.4499 .

Ic{eV)
80—

add as in Eq. (10), the x and y components average, and
the total Io behaves much like I, . The changes in the
components of the mean excitation energy with bond
length are also explicable in terms of shifts in the DOSD
with bond length.

A similar plot is given in Fig. 3 for the change of the
mean excitation energy as a function of bond angle for
fixed R~H =1.775 a.u. It is clear that the dependence of
Io on angle is much weaker than that on bond length, as
has been remarked previously [21]. In this case there is a
reasonable variation in both I, and I . The changes are,
however, of opposite sense and the effects cancel out.
Since I varies but little, the total mean excitation energy

R.ecently we have had interest [25] in determination of
transferable mean excitation energies and associated stop-
ping powers of individual chemical bonds [26,27] which
could be used additively in a Bragg-type rule to approxi-
mate the stopping powers of complicated or large mole-
cules. Some isotropic bond mean excitation energies and
stopping powers as a function of projectile velocity have
previously been determined [26,27] using methods related
to those reported here. However, as has been pointed out
above, for oriented samples, the anisotropic mean excita-
tion energies and stopping powers are the more appropri-
ate, and we consider them here.

Consider a molecular bond in the xz plane of a space-
fixed Cartesian coordinate system, A. In this coordinate
system, the total mean excitation energy I has directional
components I =(I„I,I, ). Let B be another Cartesian
coordinate system with its z axis directed along a molecu-
lar bond in the xz plane and its y axis collinear with the y
axis in the A frame. In this (bond fixed) frame, the mean
excitation energy is denoted I~ =(Ig, I~, I~ ). Hence
I =I&~. Assuming that the angle between the two z axes
(and thus between the x axes as well) is P, we find the re-
lations between the other components of the mean excita-
tion energy in the two coordinate systems by noting that
the transition moments (Mo„) are vector quantities. The
oscillator strength along a polarization axis in 2 will
then be

75—

70—

Iz
fo„~(MO„) cos P,

where e is the direction of the space-fixed axis and Mo„ is
the transition moment in the 8 frame. As there is no
directional component in Eo„, then one would expect I to
have the same directional as does fo„[cfEqs. (1) and (2)].
Thus

Ix
I„=I~sin P+Ig cos P,
I, =icos P+Ig sin P .

(12)

(13)

65—
10 ohio

90 100
I

110
I

120

8(deg)

FICx. 3. Mean excitation energy of H&O and its components
as a function of 0 for fixed R« = 1.775 a.u.

Rotation of H2 up from the z axis in the xz plane gives
the expected result: at 45' I„=I„at 90 I =I& and
I, =I&, and I~ and I„, remain constant, independent of
P. This must, in fact, be the result, as it is a simple rota-
tion of the molecule in the plane with no change of the
bond itself, and calculation of the mean excitation energy
for such a process is certainly independent of the choice
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, 0 „ , 0—lnI = lnI + ln I'sin —+Ixcos-x 3 C 3 8 2 8

N~ N~ z p t9 x—lnI, = lnIC+ ln I~cos +I/sin —,(16—)
3 ' 3 3 2 2

and

Nc N~—lnI = lnI + lnI~,
y 3 c 3 B (17)

where 8 is the QH —0—H and the z axis is the Cz sym-
metry axis. For each value of 0 we use the data in Table
IV for I, I„, and I, as well as Hartree-Fock core mean
excitation energies [28] to determine Ig, Ig, and Ig from
Eqs. (15)—(17). We find that I~ and its components are
nearly independent of 0. The average values for
R QQ 1 .775 a.u. and 95' ~ 0 ~ 120' are reported in Table
V.

The variation in the values of the components of the

of coordinate system.
We now wish to apply this idea to water with the pur-

pose of determining a mean excitation energy and its
directional components for the 0—H bond that could be
used in a Bragg-like rule.

The scheme will be to write the isotropic mean excita-
tion energy Io and its Cartesian components (I„,I,I, )

for a fixed bond length in terms of the bond mean excita-
tion energy Is and its components (Is, I~,I~). We as-
sume that as the bond angle of water is varied (i.e., the
molecule is bent while maintaining the z axis as the Cz
symmetry axis), the change in the mean excitation energy
arises from the change of relative orientation of the two
bonds in the coordinate system, rather than from shifts in
the DOSD attendant on alteration of the electronic struc-
ture of the molecule. The required bond mean excitation
energies can then be extracted from the data in Table IV.
The deviation of the derived bond mean excitation ener-
gies from constancy will provide a measure of goodness
of the assumption that the changes are due to orienta-
tional effects alone, and the effect of the change of elec-
tronic structure on bending is minimal.

To implement this scheme, we first divide the molecule
into core and bonding electrons (in this case, including
the lone pairs). The total mean excitation energy of the
system can then be written as [26]

r

cores bonds

jnIO =— g XclnIC+ g XglnI$ (14)
J J

where N is the total number of electrons in the target, N~
is the number of electrons in each core (Nc in total), and
X$ is the number of electrons in each bond (Ns in total).
In the case of water, we consider the 1s core of two elec-
trons and two identical bond functions of four electrons
each. It should be remembered that the bond functions
refer only to the valence electrons, and that the core elec-
trons have been separated out. Combining this with Eqs.
(10), (12), and (13), and assuming that the core electrons
contribute equally to all three polarization directions
(Xc /3 to each), we can write

TABLE V. 0—H bond mean excitation energy and its com-
ponents (eV).

I~
I~
I~
I~

45.15
44.02
33.15
41.19

bond mean excitation energy is +1% over the range of
angles considered. The bond mean excitation energy is
nearly constant and apparently independent of electronic
changes in the molecule on bending. The near invariance
of I (see Table IV) on bending illustrates the same point.

Due to the lack of literature pertaining to this problem
it is difficult to compare the result with other work. We
have made a more empirical evaluation of the total bond
stopping and mean excitation energy of the 0—H bond
[26] in the context of an ongoing program to determine
transferable bond stopping cross sections for use in a
Bragg rule, and the value there was found to be 40.68 eV,
in good agreement with the value determined here.

IV. SUMMARY
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The directional components of the moments of the
DOSD of H2 and water have been calculated, and it is
found that there is significant difference among them. It
is also found that they vary with internal coordinate with
various strengths. The differences in the directional com-
ponents of the moments as well as their variation with
internal coordinate can be related to the relative shapes
of the DOSD and to its shift with internal coordinate.
The quantity of greatest interest to us, the mean excita-
tion energy for stopping, is found to be strongly direc-
tionally dependent, leading to a strong directional depen-
dence in the stopping cross sections of oriented targets.
We therefore suggest that directional rather than isotro-
pic mean excitation energies be used in the interpretation
of experiments on anisotropic targets.

We show that it is possible to define a bond mean exci-
tation energy for H20 which is nearly independent of
gH —O—H for angular variations between 95' and 120'.
The same holds for its directional components. This is
particularly interesting in view of the large variations in
the total mean excitation energy and its components
shown in Table IV. Such a transferable quantity is of use
in a bond Bragg rule for calculation of stopping cross sec-
tions in large molecular targets. The value calculated
here is in good agreement with the only other available
value.
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