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Transferability of local-density norm-conserving pseudopotentials
to electron-molecule-collision calculations
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We present an application of pseudopotentials to ab initio calculations of elastic and electroni-
cally inelastic electron-molecule-collision cross sections. 'We use the Schwinger multichannel method
(SMC) implemented with the local-density norm-conserving pseudopotentials of Bachelet, Ham-

mann, and Schliiter [Phys. Rev. B 26, 4199 (1982)]. In our procedure, the core electrons and
protons are replaced by the nonlocal but single-particle pseudopotential and the valence electrons
are treated in a many-body framework, as in the SMC method. Our calculated integral and differ-
ential cross sections are in very good agreement with previous all-electron calculations,

PACS number(s): 34.80.Bm, 34.80.Gs

I. INTRODUCTION

Although collision cross sections of low-energy elec-
trons with many-electron molecules play an important
role in plasma and industrial processes, there are few ex-
perimental [1] and theoretical [2] results for these sys-
tems. If the existing ab initio methods are also in-
tended to help experimentalists, molecules having hun-
dreds of electrons must be studied. In recent years, the
study of low-energy electron-molecule collisions using the
Schwinger multichannel (SMC) method [3—5] has been
done successfully for some linear targets and some small
polyatomic targets with arbitrary geometry, in elastic
and in inelastic scattering [6—11]. However, for poly-
atomic molecules with heavy atoms, theoretical results
are scarce. In the SMC method, the main diKculty in
obtaining cross sections for these systems is due primar-
ily to the computational effort in the evaluation of the
primitive two-electron integrals

(npivipk) = drrdrga. (ri)P(ri) p(r2)e'" "
r12

which involve three Cartesian Gaussian functions and a
plane wave. These primitives must be evaluated for all
possible combinations of n, P, and p and for several di-
rections and moduli of k. The number of these integrals
is very large, consuming a considerable part of the com-
putation time for the entire calculation.

Recently, the SMC method was implemented in
distributed-memory parallel computers which permit
groups of primitive integrals to be evaluated simul-
taneously, allowing studies of collisions by molecules
formed by heavier atoms. Integral elastic cross sections,
momentum-transfer, and differential cross sections for
molecules such as SiH4, GeH4, and Si2Hs were obtained
in the static-exchange approximation using these power-
ful computers [2].

For the low-energy collision processes, only the valence
electrons are important, the core electrons becoming an
unwanted burden that just increases the computation
time. The proper way to eliminate the core electrons

is, of course, through the use of pseudopotentials (PP).
Aside from the asset of eliminating the core electrons, PP
have the advantage of rendering the valence wave func-
tions much smoother; therefore, they can be expanded in
much shorter bases. PP allow a great simplification in
treating systems with many electrons. For instance, con-
sider molecules such as SiF4, SiCI4, SiBr4, and SiI4. ARer
eliminating the core.they become equivalent to CF4 with
just 32 valence electrons. The advantage in the com-
putational cost is evident. Without this simplification
studies involving these systems are almost impossible.
In Table I we show the number of electrons (N, ) and
of the Cartesian Gaussian functions (NCG) used in the
scattering calculations for some typical molecules in the
all-electron (AE) and pseudopotential cases.

Though the PP were first defined by orthogonal-
ization to core states [12], nowadays one prefers the
smooth and energy-independent pseudopotentials, the
norm conserving -pseudopotentials [13—16], which were
introduced by Hamann, Schliiter, and Chiang [17]. They
are obtained from AE atomic calculations made within
the local-density approximation (LDA) and produce va-
lence true wave functions and pseudo-wave-functions that
are identical beyond some core radius r, . No orthog-
onalization to core states is ever made, in contrast to
the Phillips and Kleinman construct. Bachelet, Hamann,
and Schliiter (BHS) [18] extended the Hamann-Schliiter-
Chiang pseudopotentials to include relativistic effects
and tabulated the PP for many atoms of the Periodic Ta-
ble. They fitted analytical functions (Gaussian and error
function) to the numerical PP so that matrix elements

Molecule
CH4
CH20
SiH4
Si2H6
GeH4

AE
10
16
18

36

N,
PP

8
12
8

14
8

AE
40
68
72

136
93

Nca
PP
32
52
49
84
62

TABLE I. Number of electrons N, and of Cartesian Gaus-
sian functions NCG.
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in a Gaussian or plane-wave basis can be calculated in
closed form.

Though they are derived from LDA atomic calcula-
tions, the BHS pseudopotentials are assumed to have op-
timal transferability to difFerent systems, situations, and
methods. Transferability cannot be proved, but has to be
verified in specific calculations. Within the LDA frame-
work, the transferability has been verified by the many
band-structure calculations that are current in the liter-
ature. On the other hand, there are not many instances
when these norm-conserving PP were used within the
Hartree-Fock (HF) framework: we can only quote a HF
band calculation [19],calculations on atoms and diatomic
molecules [20], and the calculation of scattering of elec-
trons by atoms [21, 22]. Since the HF and LDA frame-
works are so different, and because of the importance of
the norm-conserving pseudopotentials, we found that the
question of transferability to HF calculations should be
studied further.

In this paper we present an application of the BHS
pseudopotentials in HF molecular-structure calculations
and in low-energy electron-molecule scattering calcula-
tions. One readily understands why the HF framework,
and not the LDA, is being used: the HF approximation
(or any methodology based in a combination of Slater de-
terminants) keeps the many-body character of the wave
function and allows a description of the valence excited
states of a molecular system. Such a description is nec-
essary in the calculations of electronic excitation cross
sections by low-energy electron impact. The LDA, being
a ground-state and density (not wave-function) descrip-
tion, is unable to treat such a problem. On the other
hand, one might ask why not consistently use PP defined
in the HF framework instead of the BHS pseudopoten-
tials which are LDA based. We think that LDA aKords
better ways to define the PP than the HF framework, for
instance, by its ability to deal with fractional-occupation-
number configurations.

The success of the transferability of pseudopotentials
to electron-molecule-collision studies can lead to other
very interesting applications such as in valence molecular
photoionization processes and in studies of electron scat-
tering against molecules adsorbed on surfaces. For the
photoionization processes, the combination of PP with
HF techniques can also be very helpful if one desires to
calculate valence autoionization cross sections. For such
a problem we need continuum wave functions of the ion
mixed with bound electronic excited states of the neutral
target. The many-body character of the wave function
is again needed, requiring a HF based methodology. The
use of electron electronic-energy-loss spectroscopy to de-
termine the orientation of an adsorbed molecule with re-
spect to the surface relies on a good theoretical descrip-
tion of the process. Although some progress has been
achieved in obtaining electronic excitation cross sections
for few molecular systems, the models including the sur-
face eÃects are still simple minded and imprecise for these
purposes [23]. The transferability of pseudopotentials
to molecular electronic excitation processes by electron
impact may lead to a substantial progress in this field,
because it would allow the inclusion of surface efFects

II. THEORY

A. The Schwinger multichannel method

The SMC method has been described previously [3—5]
and we only review here some key features. In the SMC
method, the variational expression for the scattering am-
plitude is

[fk, ,kg] = ) (~kg ~V~+yn)(d )rnn(gn, ~V~~k, ),
m)A

where

d - = (x l~"'Ix-)

and

H
%+1

(VP + PV) (i)
2

—VG V (4)

In the above equations Sk,. is the product of a target state
and a plane wave, V is the interaction potential between
the incident electron and the target, y~ is an (N+1)-
electron Slater determinant used in the expansion of the
trial scattering wave function, H is the total energy of the
collision minus the full Hamiltonian of the system, P is a
projection operator onto the open-channel space defined

by the target eigenfunctions, and G&+ is the free-particle
Green's function projected on the P space.

In our formulation all of the matrix elements needed for
the evaluation of the scattering amplitude can be com-
puted analytically, except those involving the Green's
function, i.e. , (y ~VG&(+lV~y„), which are evaluated by
numerical quadrature [11].

B. The pseudopotential implementation

The pseudopotentials of BHS are nonlocal and have
the form

through a cluster technique.
Our conclusions on the problem of transferability of

the LDA pseudopotentials to the HF molecular-structure
calculations confirm the high hopes of BHS [18] and the
conclusions of Woodward and Kunz [20]. In the process
of studying this transferability we were able to formulate
simple rules to reduce standard Gaussian basis sets of
AE calculations, thus profiting from the fact that the
pseudo-wave-functions are much smoother than the true
ones. Our conclusions on the problem of transferability
to the calculation of scattering cross sections are also
very optimistic. Here we were able to make calculations
in small computer workstations (3.0 Mfiops) reproducing
AE results obtained in much more powerful machines,
and to obtain results for molecules formerly considered
very large.
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+PP = +core + +iong

where

(5) In our calculations, the atomic orbitals were expanded in
terms of Cartesian Gaussian functions

2
]./2

core = )~ i f(pq )" i=1

yP „(r) = ~(~~(z—A, )'(y —Ay) (~—A, )"e

(12)

and

1 3 2 +t
V; „=) ) ) A„~ir "e "" ) ilm)(hami. (7)

n=0 j=1 L=O m= —t

The set of parameters A„~i, cr~i, c, , and p, are tabulated
in the article of BHS [18].

In the HF calculations, the three-center integrals of the
nuclear potential and two atomic orbitals

V„""'= dr P„
Zc
r (8)

are replaced by the three-center integrals of the pseu-
dopotential

With this choice the three-center and nuclear hybrid in-
tegrals of the pseudopotential are evaluated analytically.

Finding analytical expressions for the three-center in-
tegrals involving a nonlocal potential (defined in terms of
spherical harmonics, Gaussian functions, and error func-
tions) and two off-center Cartesian Gaussian functions is
tedious but straightforward. The analytical expressions
have been published elsewhere [24], though the expres-
sions we used were differently defined, based on the real
spherical harmonics and their coupling coefBcients with
the Cartesian polynomial part of the Gaussian functions,
instead of the Clebsch-Gordan coefficients. The analyt-
ical expression for the nuclear hybrid integrals were ob-
tained in a similar way.

VPP
pv dr Q„vppg,

III. TRANSFERABILITY TO MOLECULAR
STRUCTURE CALCULATIONS

y nucl
kv dre ik r ZQ

(10)

are replaced by the nuclear hybrid integrals of the pseu-
dopotential

VPP = dr e-'"'Vppy„.

and in the SMC calculations the nuclear hybrid integrals
of the nuclear potential and one atomic orbital and a
plane wave

%'e made HF structure calculations for the molecules
C2, Nz, Fz, BH, NH, HF, CO, BF, HzO, CHgO, CH4,
NHs, CqH4, SiH4, SiqC, and GeH4. For AE calcula-
tions we used the Cartesian Gaussian primitive basis of
Huzinaga [25] with contracted coefficients given by Dun-
ning [26] ((9S5P)/[4S2P]). The Cartesian Gaussian func-
tions used for SiH4, Si2C, and GeH4 were (llS7P2D)
on Si, (llS7PlD)/[6S4P1D] on Si, and Slater-type or-
bitals with each basis function begin expressed in terms
of three Gaussian functions (STO-3G) on Ge and H, re-
spectively. For each molecule, we made the AE calcu-

TABLE II. Ground-state eigenvalues (hartree).

Orbital

20g
20~
1K~
3CJg

2G1

1t2

3ay
2t2

5ay
4t2

AE

-1.5282
-0.7723
-0.6264
-0.6246

-1.5905
-0.8017
-0.6645
-0.5495

-0.9582
-0.5509

-0.7376
-0.4859

-0.7247
-0.4853

N2

CO

PP full

-1.5263
-0.7638
-0.6335
-0.6287

-1.5909
-0.8018
-0.6721
-0.5487

CH4
-0.9570
-0.5528

Si04

GeH4

-0.7418
-0.4879

-0.7662
-0.4951

PP red

-1.5315
-0.7688
-0.6278
-0.6240

-1.5958
-0.8005
-0.6650
-0.5477

-0.9621
-0.5485

-0.7406
-0.4871

-0.7664
-0.4969

Orbital

2G1

1b2
3ay
lb'

2ag
2by„
1b2„
3ag
»3g
1b3„

6ay
5b2
7ay

6b2
2by

8ay

AE
H20

-1,3613
-0.7165
-0.5668
-0.5063

C2H4
-1.0584
-0.8068
-0.6580
-0.6018
-0.5134
-0.3808

Si2C

-0.9052
-0.6269
-0.4407

-0.3571
-0.3532
-0.3472

PP full

-1.3536
-0.7166
-0.5674
-0.5007

-1.0541
-0.8019
-0.6618
-0.6060
-0.5175
-0.3825

-0.9027
-0.6349
-0.4434

-0.3640
-0.3567
-0.3513

PP red

-1.3561
-0.7111
-0.5633
-0.4956

-1.0625
-0.8056
-0.6563
-0.5998
-0.5138
-0.3766

-0.9074
-0.6325
-0.4446

-0.3629
-0.3542
-0.3493
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TABLE III. Vertical excitation energies (hartree). TABLE V. Oxygen Cartesian Gaussian functions.

Molecule

N2

AE
0.2782
0.3441

PP red

0.2732
0.3407

H20 3Q
1B
A2

'A

0.2732
0.3027
0.3610
0.3776

0.2741
0.3054
0.3551
0.3719

SiH4 0.3456 0.3483

lation and two pseudopotential calculations: one used
the full Dunning basis (PP full), the other used that ba-
sis but with all Cartesian Gaussian functions with o. [see
Eq. (12)] greater than 10.0 (13.0 for F) removed (PP red).
Thus we could exemplify how drastically one can remove
the fast oscillations of the wave functions in the pseu-
dopotential method. In Tables II—IV we present results
for some typical cases. For each molecule we tabulate
the orbital eigenvalues for the ground state, the vertical
excitation energies and the vertical ionization potentials
(in hartree). The results of three calculations are pre-
sented: the all-electron HF calculation (columns headed
by AE), the full Dunning basis pseudopotential HF calcu-
lation (columns PP full), and the reduced Dunning basis
pseudopotential HF calculation (columns PP red). [The
PP red for SiH4 and Si2C follows the same criterion for
the other molecules. For GeH4 the PP red is a STO-3G
potential which consists of (1SlP) on Ge.] One exam-
ple of basis reduction is presented in Table V for oxygen,
where, in the original Dunning basis, the coefBcients for
the Gaussian functions that are made zero are put in
parentheses. The EE and the IP were calculated with
the PP red only. In addition to the vertical excitation
energies we also examined the spectrum of improved vir-
tual orbitals (IVO) [27] for the singlet and triplet cou-
plings, for these are used in inelastic-scattering calcula-
tions. For this we made a hole in the highest occupied
molecular orbital to obtain the spectrum in the frozen
core approximation by diagonalizing the V~ q potential
of the core in the self-consistent-field (SCF) basis. The
agreement between the AE and PP spectra is very good
(less than 2% error). This is also a good indication that
the pseudopotential can be trusted in the calculation of
excited states of molecules.

Type
S
S
S
S
S
S

Expt.
7816.5400
1175.8200
273.1880
81.1696
27.1836
3.4136

CoeK
(0.002 031)
(0.015436)
(0.073 771)
(0.247 606)
(0.611832)
0.241 205

9.5322

0.9398

0.2846

1.000 000

1.000 000

1.000 000

P
P
P
P

35.1832
7.9040
2.3051
0.7171

(0.019 580)
0.124 189
0.394 727
0.627375

0.2137 1.000 000

20-

The tables tell clearly that the LDA pseudopotential
is transferable. The small deviations between the two
PP results (Table II) are comparable to the deviations
from the AE results. Much of these deviations may well
be due to the fact that in neither case we have reached
the Hartree-Fock limit. In fact, these deviations are very
small, indicating that the nuclear potential can be suc-
cessfully replaced by the pseudopotential, even using a
poor Cartesian Gaussian expansion. In this process the
core electrons are discarded and the wave functions be-
come much smoother and easier to represent. This suc-
cess is certainly outstanding because the LDA and HF
schemes are so different and unrelated. Further, finding
a "best" Gaussian basis is no difficult matter, because
the tables show that even a simpleminded reduction of a
standard basis will work.

Molecule
N2
CO
H20
CH20
Si2C
CH4
SiH4
GeH4

AE
0.5806
0.4905
0.4072
0.3574
0.3025
0.5067
0.4705
0.4726

PP red
0.5807
0.4878
0.3963
0.3563
0.3040
0.5051
0.4722
0.4822

TABLE IV. Vertical ionization potentials (hartree).
0

16-
(D

M

M 14-
O

12
0 10

Energy (eV)
15 20

FIG. 1. Integral elastic cross section for CH4. Solid line,
present PP results; dashed line, AE SMC results.
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FIG. 2. Integral elastic cross section for SiH4. Solid line,
present PP results; dashed line, AE SMC results; short-
dashed line, complex Kohn results.

FIG. 4. Same as in Fig. 3 for SiH4.

IV. TRANSFERABILITY TO SCATTERING
CALCULATIONS

On the problem of scattering, our main goal was to
verify if the physics of the electron-molecule collisions is
reproduced by these PP, e.g. , if the structures and shape
resonances are present in the cross sections, and if their
maxima occur at the same energies as in the AE cal-
culation. We calculated integral and differential elastic
cross sections for CH4, SiH4, GeH4, and SiqH6 within
the static-exchange approximation and some differential
cross sections for electronic excitation by electron im-
pact of the sA2 and ~As states of CH20, using the SMC
method as implemented with PP, and compared the re-
sults with previous all-electron SMC calculations [2, 28,
29] and others calculations available [30, 31].

In our calculations the PP were put on the C, 0, Si,
and Ge atoms, but the H atoms were treated as usual
by the 1/r potential. The C, Si, and Ge atoms have
four valence electrons and so the CH4, SiH4, and GeH4

molecules have the same number of valence electrons and
orbitals. The basis set and geometries that we used are
the same as the previous AE calculations [2, 29]. We used
in the basis set only those Cartesian Gaussian functions
with a smaller than 10.0.

A. CH4 and SiH4

As a first test of our procedure we chose the CH4 and
SiH4 molecules. For CH4 we did both AE and PP calcu-
lations. In Figs. 1 and 2 we present our results for inte-
gral elastic cross sections for CH4 and SiH4, respectively.
For SiH4 we compare our results to that of Winstead
and McKoy [28] and also to that obtained with the Kohn
method [31]. The integral elastic cross sections obtained
are in excellent agreement with the AE results. We also
show in Figs. 3 and 4 differential elastic cross sections at
7.5 eV for CH4 and SiH4, respectively. The agreement
between AE and PP calculations is again excellent.

60

2 5o-
O

I~ 4o-

0
V
(D

ca 1-
M
M0

o so 6o
Angle (deg)

90 120 150 180

30

O

GQ
" 2O-

M
Mo 10-

0
0 5 10 15 20 25 30

Energy (eV)

FIG. 3. Differential elastic cross section for CH4 at 7.5 eV.
Solid line, present PP results; dashed line, AE SMC results.

FIG. 5. Integral elastic cross section for GeH4. Solid line,
present PP results; dashed line, AE SMC results.
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60

10 50-
I

~ 40-

0
0
Q

CG

b
~ W

o 30-
(D

C/3

0 30 60 90 120 150 180
Angle (deg)

10
0 5 10 15

Energy (eV)
20

FIG. 6. Differential elastic cross section for GeH4 at
15 eV. Solid line, present PP results; dashed line, AE SMC
results.

FIG. 9. Integral elastic cross section for GeH4 and SiH4.
dashed line, GeH4, solid line, SiH4.

60

54 SBF

80

~--
JI

50

O

M
" 40-
M
No 30-

0 5 10 15 20 25
Energy (eV)

30
20

0 5 10 15 20 25 30
Energy (eV)

FIG. 7. Integral elastic cro'ss section for GeH4. Solid line,
54 scattering basis functions (SBF); long-dashed line, 40 sbf;
dashed line, 30 sbf; short-dashed line, 24 sbf; solid circles, AE
results.

FIG. 10. Same as in Fig. 5 for Si2H6.

100

O 10'
l

CO

b

V

M

K
b

et al.
O

CO

I 10-

0
O
&D

V3

~ ~ S o

0 30 60 90 120 150 180
Angle (deg)

m
V)0

0 30 60 90 120 150 180
Angle (deg)

FIG. 8. Differential elastic cross section for GeHq at
20 eV. Labels as in Fig. 7. FIG. 11. Same as in Fig. 6 for SiqH6.
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100—

5 eV
(a) (b)

eo 120 180
3

10
I

0
1

O
(D

0 30 60 90 120 150 180
Angle (deg)

V
CCI

I
CO

O
~ W

0
Q

CG 2-

M
M0

(c)

FIG. 12. Differential elastic cross section for Si2H6 at 5 eV
(solid line), 10 eV (short-dashed line), 25 eV (dashed line),
and 30 eV (long-dashed line).

B. GeH4 and SigH6

0
0 e'0

'
150

'
180

Angle (deg)

We also tested our procedures for the GeH4 and Si2H6
molecules. In Figs. 5 and 6 we present our results for
GeH4 and compare them with the results of Winstead
et aL [2]. For this system we made several calculations
with different number of functions in the basis set to test
the convergence of our results. Though all our results
agree among them, they all lie about 20% below the AE
calculation. In Figs. 7 and 8 we show some results of our
test of convergence. We are sure that the best converged
results are those with 54 scattering basis functions. Part
of the difference might come from the PP including rela-
tivistic efFects, while the AE calculation is nonrelativistic,
but is also possible that the results of Winstead et ct. are
not fully converged.

In Fig. 9 we compare the SiH4 and GeH4 cross sec-
tions. The cross sections for these two molecules are very
similar. The calculated valence eigenvalues and the ex-
perimental geometries are also very similar.

For SiqHs we used the eclipsed instead of staggered
conformation used by Winstead et al. [2]. Both results
are in Fig. 10. The two curves are very similar, showing
that electron scattering is unable to distinguish between
the two conformations (neutrons would be needed).

In Figs. 11 and 12 we show the differential elastic
cross sections at 15 eV and for 5, 10, and 25 eV for SiqH6,
respectively. Again the AE (staggered) and PP (eclipsed)
at 15 eV differ only in details.

C. CHgO

We show in Figs. 13(a)—13(d) our difFerential cross sec-
tions for electronic excitation of the sA2 and ~A2 of

FIG. 13. Differential excitation cross section for CH20 (a)
at 15 eV. Solid lines, present PP results; dashed line, AE SMC
results; short-dashed line, complex Kohn results; (b) same as
in (a) at 20 eV; (c) same as in (a) at 25 eV, except that there
are no Kohn results; (d) same as in (c) at 30 eV.

CH20 for 15, 20, 25, and 30 eV, respectively. These
results were obtained in a three-state calculation with
a small basis set (with no additional functions for the
expansion of the scattering wave function) which was
suKcient to describe the SCF orbitals and the scatter-
ing above 10 eV. The wave functions for the sA2 and

A2 states were obtained using the IVO approach and
the corresponding vertical excitation energies were 4.067
and 4.786 eV for the triplet and singlet, respectively. The
corresponding experimental values are 3.45 and 4.26 eV
and the AE excitation energies are 4.077 and 4.801 eV
for the triplet and singlet states, respectively. Our difFer-
ential cross sections are in perfect agreement with recent
SMC [29] calculations and the Kohn-method [30] results,
both also made in a three-state level of approximation.
These results give an indication that our scheme may also
be used to investigate electronically molecular excitation
by electron impact.
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