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Calculation of electron-lithium scattering using the coupled-channel optical metho
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We present calculations of spin asymmetries for the elastic and 2 P channels, difFerential and
integrated cross sections for the elastic through to 4 I channels, and total cross sections of electrons
scattering on lithium at a range of energies from I to 200 eV. Very good agreement is found with
available measurements at all energies, which for the spin asymmetries may only be achieved by the
inclusion of coupling of the low-lying target states to the target continuum.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Nz

I. INTRODUCTION

Calculation of electron-atom scattering is of fundamen-
tal interest to a theorist. One-electron atoms, e.g. , hy-
drogen and the alkali metals, provide an ideal testing
ground for many theories. The hydrogen atom is most
ideal for the theorist as its wave functions are known
exactly. However, atomic hydrogen is a difBcult target
for experimentalists, but the alkali metals present fewer
problems. These hydrogenlike atoms are well modeled by
the Hartree-Fock model of one valence electron above a
frozen core, particularly for the lighter alkali metals. As
a result there is a considerable amount of data of elec-
tron scattering on alkali metals which may be used to
thoroughly test any scattering theory.

The coupled-channel optical (CCO) formalism of Bray,
Konovalov, and McCarthy [1] has proved to be one of the
most successful theories of electron-atom scattering to
date. It is based on the close-coupling formalism, but in
addition is able to treat the target continuum states via
a complex nonlocal polarization potential. It is therefore
applicable at all projectile energies, which has been am-
ply verified by comparison with experimental difFerential
cross sections for hydrogen [1, 2] and sodium [3, 4]. Bray
[5] showed that the treatment of the target continuum
had a very large effect on the sodium spin asymmetries
at projectile energies of 10 and 20 eV, and yielded ex-
cellent agreement with experiment. A full application
of the method by Bray and McCarthy [6] to electron-
sodium scattering data of Celotta and co-workers [7—ll]
and Hegemann et al. [12] showed that it was applicable to
spin-dependent data at a range of projectile energies from
1 to 40 eV. As a result, this work demonstrated that in
describing scattering phenomena, electron-sodium scat-
tering may be treated as a three-body problem of a frozen
core with one valence electron and one projectile electron.
Thus the relatively simple theory of electron-hydrogen
scattering may be directly applied to electron-sodium
scattering with the interchange of the electron-proton
potential of hydrogen for the frozen-core Hartree-Fock
potential of sodium.

The aim of this paper is to apply the CCO formal-

ism to lithium. We do this with a number of purposes in
mind. The nature of the spin asymmetry data for lithium
of Baum and co-workers [13, 14] is different from that of
Celotta's group. Rather than presenting differential spin
asyrnmetries at each energy, Baum and co-workers mea-
sured the spin asymmetry at three angles as a function of
the energy of the incident projectile electron. This allows
for a test of the theory at a continuos range of energies
which may be used, for example, to establish at which
energy continuum states become important. An impor-
tant feature of the CCO method is that the T-matrix el-
ements for the transition from the ground state to any of
the discrete target states, treated via the close-coupling
formalism, are simultaneously calculated. This allows us
to compare with available measurements the differential
cross section of higher, as well as lower, excited states
resulting from a single calculation, and we do so in this
work.

There have been a number of electron-atom scattering
theories applied to electron-lithium scattering with var-
ious degrees of success. The close-coupling calculations
of Burke and Taylor [15] and Moores [16] yield good re-
sults for low projectile energies, though they do not at-
tempt to study convergence as a function of the number
of target states treated in the close-coupling formalism.
Some higher-energy approximations based on perturba-
tive approaches have been applied by Kumar, Tayal, and
Tripathi [17] and Gien [18]. Mathur and Purohit [19) ap-
plied a two-potential approach, also to higher energies.
None of these theories is able to reproduce the data of
Baum and co-workers [13,14] in the intermediate energy
region. We shall see that our CCO method works equally
well in all energy regions.

In Sec. II we give the formal derivation of the CCO
equations for electron scattering on one-electron targets.
This combines the ideas of an earlier work [1], where
use of symmetric Feshbach projection operators P and
Q was introduced, together with the fact that the three-
body scattering problem has core states for nonhydrogen
one-electron targets.

In Secs. III and IV we present the results of our CCO
calculations which have been performed at a range of pro-
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jectile energies of 1 to 200 eV incident on the ground state
of lithium. We compare our results with measurements
of the elastic and 2 P spin asyrnmetries and differential
cross sections, as well as the differential cross sections of
the 3 8, 3 P+3 D and 4 P+4 D+4 F channels.

TABLE I. Ionization energies (eV) of the lithium states
used in the 13CC and 13CCO8 calculations. The pure
frozen-core Hartree-Fock results are denoted by FCHF. The
results with an added phenomenological polarization poten-
tial given in Eq. (5), with n = 0.19ae and p = 1.4ao, are de-
noted by FCHF+. The experimental values are due to Moore

II. THEORY

In order to calculate electron scattering on one-electron
atoms we make the approximation that the complete
problem may be treated as a three-body problem. The
interacting particles are taken to be the frozen core and
the valence and projectile electrons. Thus, we write the
total Hamiltonian of the system as

H = Hi+ Her+ Vjg,

where

H = K~+V~ (2)

Z
V.»() = ——+,.()r

+2 )
P iEC

is the one-electron Hamiltonian for both the projectile
(n = 1) and the valence (a. = 2) electrons. The electron-
electron potential is Ui2, and the potential of &he core in
the space denoted by n is V~.

To define U we first find the one-electron core wave
functions I») c C by solving the self-consistent-field
Hartree-Fock equations [20] for the ground state of the
target atom. We use these wave functions to define
the frozen-core Hartree-Fock potential to which we may
also add a phenomenological core-polarization potential.
To obtain the set of one-electron noncore target states
I») g' C, discrete and continuous orthogonalized to the
core states, we solve [21]

(Kq+ V2 —e~)»(r) = 0,

where

State

2s
3s
4s
5s
2p
3p
4p
5p
3d
4d
5d
4f
5f

FCHF

5.342
2.008
1.047
0.641
3.500
1.545
0.864
0.552
1.512
0.850
0.544
0.850
0.544

FCHF+

5.391
2.018
1.051
0.643
3.538
1.555
0.869
0.554
1.513
0.851
0.544
0.850
0.544

Experiment

5.390
2.018
1.050
0.643
3.54~
1.557
0.870
0.554
1.513
0.851
0.544
0.850
0.543

McCarthy [6] have shown that this potential results in a
small, but significant improvement in agreement between
theory and experiment for the sodium I & parameters.

Having defined the structure of the atom we are now in
a position to solve the three-body Schrodinger equation

where S is the total spin (S = 0, 1 for singlet, triplet scat-
tering, respectively). In the CCO formalism the difficulty
of treating the target continuum is relegated to a complex
nonlocal polarization potential which is derived using the
Feshbach projection operators P and Q. For nonhydro-
gen one-electron atoms this procedure must be performed
taking into account the existence of core states.

We use the complete set of target states to define the
projection operators I, C, C, P, Q~, via

p )gC

We use the form of the polarization potential v~~~ given
by Zhou et aL [22]:

where n is the static dipole polarizability constant [23],
and p is determined by trial and error to get the best
possible one-electron energies. Note that the same val-
ues of n and p apply for all partial waves of I»). For
lithium we take n = 0.19a30 and p = 1.4ao, see Table
I. Having good one-electron energies is important when
the incident electron energy is near a threshold for excita-
tion of one of the inelastic states. Furthermore, Bray and

p;cp
= C~ + P~ + Q~ (respectively)
=C +C

for cx = 1, 2, Here the target space has been split into a
finite sum over the core states, an infinite sum over the
discrete noncore states, and an integral over the contin-
uum states. We define orthogonal symmetric P and Q
projection operators by

P = PiC2+ CiP2 —PiP2) Q = QiQ2.

With this definition it can be simply verified that P+Q =
CiC2. As the core is completely filled the total wave
function 14' ) must be orthogonal to the core states, i.e. ,
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I&') = «.I+') = (P+ Q)I+') (9) where we define

Projecting (6) by P, then Q, together with (9) we have
the P-projected Schrodinger equation

P IO') = (& + Q )P21&')

P(E —H —V&)PI@~) = 0,

where

PVqP = PHQ QHP
1

(io) To solve the P-projected Schrodinger equation (10) we
first employ the multichannel expansion

P I@') = ). I&'f,')
Q, EP2

Pl@ ) =-,'[1+(—1) P.](&1+Ql)P2I@ )

= —,'[1+(-1)'P.]P.IO'), (13)
I

is the I eshbach complex nonlocal polarization potential.
Due to the Pauli exclusion principle the total wave

function must satisfy the symmetry property

I+') = (—I)'P.I+')

where we use P„ to denote the space exchange operator.
Using (12) we can write

where the If, ) = (P, lg ) are functions which by (12)
and (14) for P~) E P& must satisfy

(0'If,') = (-I)'(4glf, ). (16)

Bray and Stelbovics [24] have shown that without this
condition the

I
fs) would not be uniquely defined. Sub-

stituting (13) in (10), and projecting with P2 (P2P = Pq)
we obtain

P2(E —Ki —H2)P2ly ) =P2 (vi+ (V$2+ vq)[1+ (—1) Pp] —(—1) (E —Hi —H2)P„) P2Iq )

=P2 (V&+ (V»+ Vz)[1+ (—1) P„] —P&(E —H& —H&)) P2I@ )

= P2VqP2IQ ),

which defines V&, and where we imposed the symmetry condition (16) by considering for (P~ I
e P2

(-1)'(4~1(E—H —H )P.P I@')=(-1)' ).(E-Hi -s )14")(4 If,')
P, CP1

= ).(E —Hi —&~)l&*)(4'If;)
p, GP1

= (4g IPi(E —Hi —H~)P~lq').

This is the simplest way of imposing condition (16). It is also imposed by writing

(17)

(-I)'(0 lf; ) = (—1)'(1 —6)(4'If'') + e(4" lf,')

for any nonzero 6I. This introduces an arbitrary constant into the equations, yet we find that the results are independent
of 8, and so it is convenient to set it to unity for simplicity of presentation.

The asymptotic states lg, k) are solutions of

P,(E-z, —H, )P, ly, k) = o. (20)

For projectile Iko) incident on the target in state lgo) we have the on-shell energy E = ko/2+ so. As the P2-projected
T matrix is given by

(k0'I&'140ko) = (k0'l&q P2I&'(&o ko))

using (17) we have the Lippmann-Schwinger equation

(k4' I I
doko) = (kO' I vq I 4oko)+ )

$,1&P

(kP, I

V~s
I P, k')

+ o —2—

(21)

(22)

The matrix elements of V&s are defined by (17), and are

(kgb I Vq I Pi k) = (kgb
I

Vj + (Vj2+ Vq)[l+ (—1) P~] I Qi k ) + 6ii ) (ei+ e„—E)(k P„)(g„lk ).
&P1

(23)
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The reduced matrix elements of Vg have the same form
for all one-electron atoms, and are given in Ref. [1].

The Lippmann-Schwinger equation (22) derived here
uses plane waves for the projectile lk). To find the solu-
tion of this equation numerically it is often easier to use
a distorted-wave representation [6, 25]. This is a purely
numerical technique used to minimize the number of in-
tegration points necessary to solve this integral equation.
It is solved in partial-wave formalism [26] with each par-
tial wave being treated in exactly the same way, with as
many partial waves taken as necessary for convergence.
The relations between various observables, such as the
difFerential cross section or spin asymmetry, and the par-
tial T-matrix elements, may be found in Ref. [2].

III. DISCUSSION

to be the 8 states that have principle quantum number up
to 4 and orbital angular momentum up to 2. In this table
we give two sets of energies corresponding to the calcu-
lation of the states above the frozen core with (FCHF+)
and without (FCHF) the phenomenological polarization
potential (5). We see that the FCHF model yields quite
good one-electron energies, with the FCHF+ model pro-
viding marginal improvement. Not surprisingly we find
that for lithium our results are not significantly affected
by either choice of the one-electron wave functions. This
is an indication that lithium is the best of the alkali met-
als for testing scattering theory. Though the lithium tar-
get wave functions are not known exactly, as they are
for atomic hydrogen, for the purposes of scattering cal-
culations the frozen-core Hartree-Fock model provides an
excellent description.

In Eq. (7) of the preceding section we deliberately split
the P and Q spaces so that the former contained only
discrete states and the latter only continuum states. In
our work preceding Ref. [6] we took Q space to contain
not only the continuum but also the higher excited dis-
crete states. These calculations were denoted by nCCO,
where n indicated the number of P-space states. The
effect of Q-space states was included in all n channels.
The contribution of Q-space states on P-space states is
calculated in the weak-coupling approximation [1]. By
this we mean that only direct coupling between Q- and
P-space states is included, with direct coupling between
distinct Q-space states being ignored.

In Ref. [6] and subsequent work, we present results of
calculations denoted by mCCOn, where now m denotes
the number of P-space states, and n & m denotes the
number of P-space states that have contributions from Q
space. As it is the contribution of the continuum part of
Q space to the reduced matrix elements of Vq that take
95% of the calculation time, the calculations mCCOn
and nCCO take approximately the same time, even if
m )) n The forme. r of these has the advantage that all
of the m P-space states are treated via the close-coupling
formalism, without having to resort to the weak-coupling
approximation.

Using techniques outlined by Bray and Stelbovics [24]
we perform a number of mCC runs, with ever-increasing
m until convergence in the particular observable of in-
terest is obtained. This task takes very little time as
there is no calculation of the Vg matri~ elements. Hav-
ing decided on m, we proceed to perform a number of
mCCOn calculations, with ever-increasing n until con-
vergence is obtained. The calculation time grows rapidly
with increasing n, but convergence is obtained whenever
the observable of interest is contained in the n P-space
states.

Convergence studies are channel and energy depen-
dent. For simplicity of presentation, rather than finding
the minimum number of m and n necessary for conver-
gence at each energy, we use the same m and n at all en-
ergies which yield convergent results at all energies. For
the description of the elastic and 2 ~P spin asymmetries
and differential cross sections up to the 4 P+4 D+4 F
channel, we take m to be the 13 states in Table I, and n

IV. RESULTS

A. Spin asymmetries

If we write the singlet and triplet scattering cross sec-
tions as lSl2 and lTl2, respectively, then spin asymmetry
A,„ is related to the ratio of triplet to singlet scattering
r = TI'il~l'by

1 —r
A, 1+3r (24)

For presentation purposes it has the advantage over r in
that it always remain finite: A,„=—

3 when triplet scat-
tering is dominant (r = oo), and A,„=1 when singlet
scattering is dominant (r = 0).

In Fig. 1 we present 13CCO8 and 13CC calculations
of the elastic and 2 2P spin asymmetries as a function of
energy at the three angles measured by Baum et al. [13]
(elastic), and Baum et aL [14] (inelastic). We see gen-
erally very good quantitative agreement of the 13CCOS
calculation and the measurements. By comparing the
13CC and 13CCO8 calculations we see that the target
continuum begins to have a significant effect on the spin
asymmetries soon after the ionization threshold of 5.4
eV, and yields very good agreement with experiment.

In Fig. 2 the differential spin asymmetries at 5.4, 10,
and 20 eV are presented. Comparison of the 13CCO8 and
13CC results show the effect of the continuum on the
spin asymmetries as a function of the scattering angle.
As expected it is largest for the bigger of the energies
presented, and must be treated in order to get agreement
with experiment. The measurements are at 65', 90', and
107.5', and have been extracted from Fig. 1.

These two figures indicate that our CCO formalism is
valid at low and intermediate energies. As far as we are
aware it is the only theory of electron-atom scattering
that is able to achieve this result to date. Comparison
with some other theories may be found in Refs. [13, 14].
In order to examine some of the small discrepancies be-
tween our theory and experiment, e.g. , at 90', it would
be helpful to have differential asymmetry measurements
at energies around 7 eV. There are no measurements of
spin asyrnmetries at high energies, presumably because
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FIG. 1. Spin asymmetries for electron scattering on the ground state of lithium at a range of projectile energies calculated
with the 13CCO8 and 13CC models. The 13 states are given in Table I and are suKcient for convergence in the close-coupling
expansion using just discrete states. The 13CCO8 calculation has the efFect of the continuum target states added to the 8
lowest-lying states via a complex polarization potential. See text for more detail. The measurements are due to Baum et al.
[13] (elastic) and [14] (inelastic). Quantitative results may be obtained by correspondence with the first author.

they rapidly diminish with increasing energy as exchange
becomes less significant.

B. DifFerential cross sections

The differential cross sections for the elastic, 2 2P, 3 8,
3 2P + 3 2D, and 4 zP + 4 z D + 4 2E channels at a range
of projectile energies incident upon lithium in ground
state are presented in this section, and are compared with
available measurements. We treat the measurements of
Williams, Trajmar, and Bozinis [27] as relative since they
give an error of 35Fo for the integrated cross sections.
Accordingly, for graphical presentation we renormalized
their data to the integrated cross section of the 13CCO8
results, and compare their estimates of the integrated
cross section with the theoretical ones in Table II. The

measurements of Vuskovic, Trajmar, and Register [28]
have errors for the integrated cross sections of 10%, so
we treat them as absolute measurements.

In Fig. 3 we present the differential cross sections at
5.4 eV. We see excellent agreement of both the 13CCO8
and 13CC results with the measurements of Williams,
Trajmar, and Bozinis [27]. The theoretical integrated
cross sections are well within the error bars of their em-
pirical estimates given in Table II. The very small dif-
ference between the 13CCOS and 13CC results indicates
that continuum states have little effect on the differential
cross sections at this energy. We would expect this since
it was also the case for spin asymmetries at this energy.

The differential cross sections at 10 eV are given in Fig.
4. There are considerably more measurements available
at this energy. We see generally good agreement between

0. 6
13CC08 5. 4 eV 10 eV 20 eV

0.3

0. 0

6
E

-0.3
0. 6

5. 4 eV 10 eV 20 eV

0.0 "

-0.3

40 120 160 0 40 80 l20 160 0

scattering angle (deg)
40 80 120 l 60

FIG. 2. DifFerential spin asymmetries for electron scattering on lithium at 5.4-, 10-, and 20-eV projectile energies. The
theory and data are as in Fig. 1.
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3 P+3D
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13CC08

13CC

4 P+4 D+4 F

120 160

FIG. 3. Differential cross sections for electron scattering on lithium at 5.4-eV projectile energy. The data is due to Williams,
Trajmar, and Bozinis [27]. The measurements have been normalized to the 13CCO8 theory (see Fig. 1). Comparison of the
theoretical and experimental estimates of the integrated cross sections are in Table II.

theory and experiment. There is a small discrepancy
between the measurements of Williams, Trajmar, and
Bozinis [27] and Vuskovic, Trajmar, and Register [28] in
the intermediate angular range for the 2 P channel, with
the theory favoring the former. Both sets of measure-
ments and theories yield much the same integrated cross
section (after renormalization of the Williams, Trajmar,
and Bozinis data) which is dominated by the forward an-
gles, so the discrepancy is not due to normalization. Et
is an indication of the difficulties associated with mea-

suring the differential cross sections at angles where it
has dropped many orders of magnitude from the forward
angles. This kind of discrepancy between various mea-
surements is also evident in electron-sodium scattering
[4]

Though Williams, Trajmar, and Bozinis [27] claimed
to present the differential cross sections for the 32P and
42P channels, our results indicate that their measure-
ments corresponded to the 3 2P+ 3 D and 4 z P+ 4 D+
42F channels, respectively. They did specify that they

TABLE II. Integrated cross sections (ao) for electron scattering on lithium. The theoretical results are denoted by 13CCO8.
The measurements denoted by Expt. 1, Expt. 2, Expt. 3, Expt. 4 are due to Williams, Trajmar, and Bozinis [27], Vuskovic,
Trajmar, and Register [28], Kasdan, Miller, and Bederson [29], and Jaduszliwer et aL [30], respectively.

2 S

2 P

32P
3 D
3 P+3 D

4 S
4 P
4 D
4 F
4 2P + 42 D+42 F

13CCO8
Expt. 1

13CCO8
Expt. 1
Expt. 2

13CCO8
Expt. 1

13CCO8
13CCO8
13CCO8
Expt. 1

13CC08
13CCO8
13CCO8
13CC08
13CCO8
Expt. 1

13CCO8
Expt. 3
Expt. 4

149
175+61

136
175+61

3.21

3.73
5.30
9.03

0.58
1.32
1.67
2.06
5.05

310
399148
296+18

10

75.9
143+50

133
157+55
136+20

4.50
6.79+2.4

3.00
8.48
11.5

10.7+3.7
1.11
1.27
2.93
1.14
5.34

1.21+0.4
244

317+38
257+11

20

39.8
67.9+24

109
129+45
111+17

2.85
3.93+1.4

1.56
6.52
8.08

9.64+3.4
0.61
0.53
2.05
0.48
3.06

1.79+0.6
169

236+28

60

14.8
16.1+6

63.9
100+35
62.5+8

1.35
3.00+1.1

0.68
2.84
3.52

6.43+2.3
0,31
0.18
0.75
0.12
1.05

1.86+0.6
85.3

157+19

100
0

9.46

42.2

44.3+4
0.89

0.42
1.68
2.10

0.19
0.11
0.46
0.06
0.63

54.3

200

5.15

20.8

27.0+3
0.47

0.20
0.81
1.01

0.10
0.06
0.22
0.03
0.31

28.0
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CD

10

10

I

10o
Gj

13CC08

13CC

1
p-I

O

M

O

(D 1O'
CQ

O 10

V

10

g 1p-I

10

Q 40 80 120 160 0 40 80 '1 20 160 0

scattering angle (deg)
40 80 120 160

FIG. 4. Differential cross sections for electron scattering on lithium at 10 eV projectile energy. The data denoted by o
and are due to Williams, Trajmar, and Bozinis [27] and Vuskovic, Trajmar, and Register [28], respectively. The former
measurements have been normalized to the 13CCO8 theory (see Fig. 1), the latter have not. See text for more detail.

were unable to distinguish between the different channels
in each set, but presumed that the P channel was domi-
nant. We find that this is not the case, and in fact it is
the D channel that is usually dominant in both sets, see
Table II. Without the addition of the other channels, the
shape of the theoretical differential cross section would be
very different to the measurements.

Comparison of the 13CCO8 and 13CC calculations in-
dicates that the continuum does not have a great influ-
ence at this energy either. Since we saw in Fig. 2 that
the continuum had a significant effect in the 2zS and
2 2P channels, we conclude that from a theoretical point
of view the difFerential cross section is a considerably less
sensitive parameter than the spin asymmetry. Given the

difficulty associated with putting the relative measured
differential cross sections on an absolute scale, we see
that such measurements are unable to conclusively show
that the 13CCO8 results are superior to the 13CC ones.

In Fig. 5 we look at the differential cross sections
of 20-eV electrons scattering on the ground state of
lithium. We see good agreement of the two theories
for the 228, 22P, and 32P+ 32D channels. The re-
maining two channels show a discrepancy at the forward
angles. Given that the results for all channels are cal-
culated simultaneously we are unable to suggest why
agreement for some channels would be better than oth-
ers. This problem appears only at this energy. We see
that at 60 eV (Fig. 6) good agreement is again obtained

CD

10

QI

3S

13CCOB

13CC

O

10

O
-r I

1O'
CD
M

10
O

Ip

f4

10
(D

(Dw 1Q
4—I

Q
Q 40 80

3P+3D

120 160 0 40 80 120 160 0

scattering angle (deg)
40 80

4 P+4 0+4 F

120 160

FIG. 5. Differential cross sections for electron scattering on lithium at 20-eV projectile energy. Theory and experiment are
the same as for Fig. 4.
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O

10
G3
CQ
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0
C3

100

2 s

2P

3s

3 P+3 D

13CC08

13CC

4 P+4 D+4 F

10

1O' . .

CD

10-i

0 40 120 160 0 40 80 120 160 0

scattering angle (deg)
40 80 120 160

FIG. 6. Differential cross sections for electron scattering on lithium at 60-eV projectile energy. Theory and experiment are
the same as for Fig. 4.

for all channels, though it appears that experiment sug-
gests a faster falloff for the 32S channel. It is inter-
esting to note that whereas the experiment of Vuskovic,
Trajmar, and Register [28] consistently predicted higher
values at the intermediate angles for the 22P channel at
10 and 20 eV; it is in excellent agreement with theory at
60 eV.

In Figs. 7 and 8 we present the differential cross sec-
tions for projectile energies of 100 and 200 eV, respec-
tively. Only the absolute measurements of Vuskovic,
Trajmar, and Register [28] for the 2 P channel are avail-
able. These are in excellent agreement with theory. Com-
parison of the 13CCO8 and 13CC results indicates that
the already small effect of continuum on the differential
cross sections diminishes with increasing energy.

C. Integrated cross sections

In Table II we present our 13CCO8 results of inte-
grated cross sections for the channels considered above,
as well as the total cross section. The latter is calculated
with the aid of the optical theorem. The integrated cross
sections are compared with the estimates of Williams,
Trajmar, and Bozinis [27] and Vuskovic, Trajmar, and
Register [28]. We find excellent agreement with the lat-
ter estimates for the 2~P channel at all energies, with
the exception of 200 eV. Given the excellent quantitative
agreement between their absolute measurements of the
difFerential cross section and our theory (Fig. 8) we are
not perturbed by this discrepancy.

For channels with principle quantum number up to
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FIG. 7. Differential cross sections for electron scattering on lithium at 100-eV projectile energy. Theory and experiment
are the same as for Fig. 4.
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