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Within the framework of scattering integral equations in momentum space, we present numerical
results of scattering of three identical bosons at low energies in two dimensions for short-range sep-
arable potentials. An analysis of the present numerical results reveals the three-particle scattering
observables to be independent of potential shape provided the low-energy two-particle binding en-
ergy and scattering length are held fixed throughout the investigation. We think that the present
conclusion of model independence will be valid for any potential, local or nonlocal, whose range is
much smaller than the size of the two-particle bound state.

PACS number(s): 03.65.Nk

I. INTRODUCTION

Over the past decade there has been a great deal of ac-
tivity in studying the three-particle problem in two space
dimensions both theoretically [1-6] and experimentally
[7-10] due to a variety of reasons. Experimentally, there
has been considerable interest in two-dimensional sys-
tems such as helium adsorbed on graphite [10] and spin-
polarized hydrogen (H|) [5,7-9] recombining on a helium
film. Also, in view of the possibility of detecting mul-
tiparticle bound states on monolayers of quantum gases
[10], it is interesting to study numerically the quantum-
mechanical few-particle bound-state problem.

In the recent past there has been a significant amount
of theoretical studies [11] in the quantum and statistical
mechanics of anyons, which are particles having continu-
ous fractional spin and thus interpolating and simulating
between boson and fermion properties. Anyons exist only
in two dimensions and this has increased the relevance of
few-particle problems in two dimensions. As the anyons
represent bosons in one of the extreme limits a study of
the quantum-mechanical three-boson system is likely to
enhance the understanding of anyon properties.

A knowledge of the complete spectrum of the Hamil-
tonian for the few-particle systems in two dimensions is
essential for studying the quantum-cluster coefficients in
two dimensions [12]. For a confining potential the com-
plete spectrum constitutes of bound states only, whereas
in the nonconfining case one has to deal with both bound
states and scattering. Such studies have been undertaken
[11,12] for bosons, fermions, and anyons in general and
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also in the limits of high and low temperatures. A knowl-
edge of the complete spectrum of the n-particle Hamilto-
nian is necessary for the study of the nth quantum-cluster
coefficient [12]. At the low- (high-)temperature limit one
needs such a knowledge at low (high) energies.

Hence, a systematic study of the quantum-mechanical
few-particle system in two space dimensions will shed
light on all the above-mentioned problems. Here we re-
port numerical results on both scattering and bound-
state observables at low energies for the quantum-
mechanical three-boson system with a special objective
in mind. We would like to investigate how sensitive are
these observables to variations of the interaction poten-
tial while maintaining two-particle binding energy and
scattering length fixed under certain restrictions. The
restrictions are those of short-range potentials where the
typical few-particle bound-state size is much larger than
the range of the interaction potential. We would like
to study the few-particle system under such restriction
partly because of previous studies indicating that this
is the situation in many atomic and chemical systems
[1,2], and partly because of the simplicity in the treat-
ment of the few-particle problem in two dimensions via
the momentum-space connected kernel integral equations
using such short-range potentials. Also, under these re-
strictions and at low energies the result of such a study is
expected to be universal and independent of the details
of the potential model employed [13].

There have been certain calculations [1-6] for few-
particle bound states in two dimensions. Bruch and Tjon
[1,2] were the first to investigate the model dependence
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of the three- and four-particle bound states on the shape
of the interaction potentials. They compared the results
of separable potential calculations with those employing
the Lennard-Jones potential. They concluded that the
results were sensitive to the potential model employed as
they varied the strength of the potential. Later on in
relation to the study of Efimov and Thomas [14] effects
in two dimensions Adhikari et al. [4] pointed out that
the study of Bruch and Tjon is not entirely to the point
and one should maintain the two-particle low-energy ob-
servables — both binding energy and scattering length
— fixed in studying the above model dependence. Once
thiv is done the above model dependence of few-particle
bound-state observables in two dimensions reduces sig-
nificantly. This has been related to the absence [4] of
Efimov and Thomas effects in two dimensions.

In this work we complement the study of Ref. [4] in two
dimensions on the model independence of three-particle
bound states on potential models and present a system-
atic study of the low-energy scattering of a boson on the
bound state of two identical bosons. We consider three
identical bosons interacting via pairwise S-wave separa-
ble potentials with simple form factors. We calculate the
S-wave scattering length and phase shifts for the scat-
tering of a boson on the bound state of two others. We
investigate the sensitivity of our result on variation of
the shape of interaction potential. Presently, nothing is
known about the scattering observables of three particles
in two dimensions. Our study will provide some idea of
the scattering in the three-boson system.

Though we have limited the present study to a class
of separable potentials, we think that the present conclu-
sion of model independence of scattering of three iden-
tical bosons in two dimensions will have a much wider
range of validity provided that the range of the two-
particle potential is much smaller than the size of the
two-particle bound state. The present conclusion is sim-
ilar to the existence of the well-known effective-range ex-
pansion for the low-energy two-particle problem interact-
ing via short-range potentials. The result of low-energy
two-particle scattering in three dimensions is essentially
determined by two parameters and is independent of the
shape of the potential — local or nonlocal. A similar
model independence is observed in the low-energy three-
particle system in three dimensions [4], where the result
is determined by three parameters — two-particle bind-
ing energy and scattering length and three-particle bind-
ing energy—and is independent of the potential shape.
We find in the present work that the low-energy three-
particle scattering in two space dimensions is essentially
determined by two parameters and is independent of the
shape of the potential. This is what we call the model in-
dependence in the present context. Deviation from this
model independence has occurred in our study, as we
shall see in Sec. III, when we are away from the short-
range potential limit. Use of realistic potentials is not
expected to change the present conclusion provided that
the potentials are of the short-range type. Bruch and
Tjon [1], in their study of the three-boson bound-state
problem in two dimensions, observed that the results of
Lennard-Jones and separable potentials have the same
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trend.

Through our numerical study we establish that the
three-particle bound state and scattering observables at
low energies in two dimensions are quite insensitive to
variations of the interaction potential provided that the
two-particle binding energy and the scattering length are
held fixed. This is not quite so in three dimensions where
the low-energy scattering and bound-state observables
for three- and few-particle systems are sensitive to the
details of the potential models employed or to the shape
of the interaction potentials even if the low-energy two-
particle observables are held fixed.

We have confined the present study to the S-wave iden-
tical bosons but our conclusions are expected to hold true
in the case of fermionic systems and higher partial waves
also. This is because few-fermion systems obey scatter-
ing integral equations quite similar to the few-boson sys-
tems with a somewhat weakened effective interaction as
a consequence of the Pauli principle between identical
fermions. Because of the Pauli repulsion between iden-
tical fermions the few-fermion system is expected to be
less sensitive to the interaction potential than the few-
boson system and our conclusions should extrapolate to
the fermionic case. Also, the higher partial waves of the
three-particle system are expected to be weakly attrac-
tive because of the centrifugal barrier, and so are ex-
pected to be insensitive to the two-particle potential.

The present result should have interesting conse-
quences on the calculation of quantum-cluster coeffi-
cients, surface recombination rates of spin-polarized hy-
drogen atoms, and the formation of helium clusters in two
dimensions. Our calculations and the general arguments
of Ref. [4] indicate that the results of such calculations
should be independent of potential shape provided that
the low-energy two-particle observables are held fixed.

In Ref. [4] the model (in)dependence of few-particle
observables in different space dimensions has been re-
lated to the divergence of the trace of the momentum-
space kernel of the scattering integral equation. This
divergence is reduced as one moves from higher to lower
dimensions as a result of the reduction of the momentum-
space phase space — d™k for n dimensions. In one dimen-
sion the bound state and scattering results are expected
to be even more insensitive to potential shape. The calcu-
lation of Dodd [15] indicates this for three-particle bound
states in one dimension.

In Sec. II we present the two-particle separable po-
tential model which we employ for the calculation of
the three-particle system and also some results for two-
particle scattering. Then we develop the three-particle
dynamical equations which we use for the numerical
study of three-particle scattering in two dimensions. An
account of the numerical method and a suitable defini-
tion of the scattering phase shifts are also given in this
case. In Sec. III we present and discuss our numerical
results. In Sec. IV we present a summary and concluding
remarks.

II. THE MODEL

Let us consider three identical bosons in two-
dimensional space interacting via the following S-wave
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separable potential in momentum space:

(plVIk) = —Ag(p)g(k), 1
with
(8% +p*)~™. (2

One of our main interests in this work is to study the
sensitivity of few-particle observables to variations of po-
tential shape, and this will be achieved by varying m
from 1 to 10. For potential (1) the scattering ¢ matrix is
given by

(plt(s)k) = 7(s)g(p)g(k), (3)
with

g(p) =

®  qdqg?(q) ]_1, @

1

T(s) = [/\+27r W10
where s = h2k2/2u, 4 is the reduced mass of the two-
boson system, s is the center-of-mass energy, and k is
the on-the-energy-shell (on-shell) relative wave number.
In this work we shall employ units & = 2y = 1. The fully
on-shell ¢ matrix (k|t(k?)|k) = 2m(k|t(k?)|k), k2 = s , is
given by

2 2\2m
(klt(k?)|R) = [—(—ﬁ%’})— +1n (%)

2m-—1 -1
,62 k2 J
( T [m) +3] . (5)

The two-particle bound states at negative energies are
given by the vanishing of the quantity in the square
bracket. Using the effective-range expansion, this ¢ ma-
trix is usually parametrized by [16]

2
m(—cotdy + 1)

=1

(klt(k?)|k) = (6)

with
cotdy = ap + (1/7) In(k?) + bk? + ck* + - . (7)

Here 62 is the scattering phase shift and a; is the two-
particle scattering length. There is some ambiguity in
defining a in two dimensions because of the In(k?) term;
the numerical value of a; depends on the scale used to
measure the energy k2. In our study we shall be measur-
ing energy in units of the two-particle binding energy B,
and the scattering length a2, defined by
k2

LEW La + b’-— +- (8)

téy = @
cotog a2+ B,

is related to that of Eq. (7) by
1
az =ag+;lnBz. (9)

The scattering length @, will be useful in our study of
model independence of a three-particle bound state and
scattering observables in two dimensions. When the two-
particle binding energy Bs = 1, @2 reduces to a. In the

low-energy limit, for the ¢t matrix of Eq. (5), coté, is
given by

4m 1 k2

t6, = 2—
coto2 = "3

1

so that the scattering length @, is written as
am 1
e Z = (11)

Qg = 71-2 B\ +
With this discussion of the two-particle system we now
present a discussion of the three-boson Faddeev equations
[17,18] in two dimensions for separable potentials (1). In
this case the Amado-Lovelace-Mitra equation [18], which
is the special case of Faddeev equations for separable po-
tentials, is given by

(@lT()[k) = (alV(s)[k)
+ / dp(a|V (s)|p)7(s — 352/4)(p|T(s)[Kk),
(12)

where

g(|q+ p/2))g(lp +q/2|)
@V(s)lp) = 2£ B EREREAZ) (1g)
Here T'(s) is the ¢t matrix for the scattering of a boson on
the bound state of two others at a three-particle center of
mass energy s, and V(s) is the energy-dependent effective
potential in this case. The on-shell wave number & in this
case is given by

s = 3k%/4 — By, (14)

where 3k2/4 is the relative kinetic energy.
The partial S-wave projection of the Amado-Lovelace-
Mitra equation (12) is written as

QT () k) = (alV($)Ik)
+ [T pdstav©lpi(s - 38 GIT IR,
(15)
where
@vis)n = [ dolalv(s)lp). (16)

The equation for the partial-wave ¢ matrix (15) above has
a singularity in the kernel in the 7(s — 3p?/4) term when-
ever p equals the on-shell wave number k. In order to
make this singularity more explicit we introduce a mod-
ified t matrix and interaction potential in the Amado-
Lovelace-Mitra equation via

(T (s)lp) = —(k? — ¢*)7(s — 3¢ /4)(q|T'(s)|p), (17)

and
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(@lV(s)|p) = —(kK* — ¢*)7(s — 3¢%/4){q|V (s)|p)- (18)

The condition for the two-particle system to have a
bound state of binding energy Bj is given by

9> ()

1 *® 9°(p)
— =9
X 7r/0 pde2 et (19)

With this condition the expression (17) for T'(s) above is
rewritten as

aren = |3 [y

We have a similar equation for V (s).
In terms of these modified potentials and ¢ matrix the
Amado-Lovelace-Mitra equation becomes

(<1|V(S)|:D)(P|T(S)|k>
—130)
(21)

(@ T()Ik) = (a7 (s)]k) + /

For energies below the three-particle breakup threshold
the potential V' (s) is real and the analytic structure of Eq.
(21) is identical to that of the two-particle Lippmann-
Schwinger equation. We employ a subtraction in the ker-
nel of this equation in order to eliminate the singularity
of the kernel. The nonsingular equation we consider for
an auxiliary matrix I'(s) can be written as [17]

(aIT(s)|k) = (g|V(s)lk)
< gV (s)lp) — (gIV (s)IK)
+/o pdp (»? - k?)
X (p|L'(s)|k). (22)

In Eq. (22) we have performed a specific subtraction in
the kernel. This specific subtraction is a special case of a
more general subtraction scheme for calculating the fully
off-shell scattering ¢ matrix in terms of the solution of
an auxiliary nonsingular integral equation [17]. As the
integral in Eq. (22) is nonsingular the {0 prescription in
the denominator has been dropped. In the present study
we shall be only concerned with the on-shell ¢ matrix
which is expressed in terms of the auxiliary matrix I'(s)
via [17]

= (k|L(s)|k)
(k|T(s)|k) = ) T(s)[k) ’ (23)
1— J5° adar #5583
which can be rewritten as
(k|T(s)|k)
_ (KPR |
1— fooo dqq(qlf(f)l(lsg:’;gl;IF(s)lk) _ W(kll;(S)lk)
(24)

In arriving at Eq. (24) we have separated the principal-
value and the imaginary parts of Eq. (23) and have added
a term to the principal-value part which is zero. The re-

(B2 + p'*)(s — 3¢2/4 — p'% +i0)

-1
] (a|T(s)|p)- (20)

sultant integral of Eq. (24) is not singular and hence does
not need the principal-value prescription for its evalua-
tion.

Comparing with Eq. (6) we identify (k|T(s)|k) as the
physical ¢ matrix for the scattering of one boson on the
bound state of two others and the phase shift for this
scattering, 63, is given by

cotds = —-—-2———
m(k|T(s)|k)
[ / dqqu(S)Ik) k(kIF(S)Ik)]
k2)
(25)
This expression for cotdz should diverge as

(1/m)In(3k2/4) for small k. In order to calculate the
scattering length ag for the scattering of one boson on
the bound state of two others we have to extract this
divergent part of cotéz and take the limit ¥ — 0. The
integral in Eq. (25) is identically rewritten as

/°° g LT G)E) = k{kT(s) k)
0 (¢* — k?)

(kIL(s)|k)
— k2 '

/ dg (qIF(S)Ik>+k/ {gIT(s)| )

(26)

It is easy to see that the first term on the right-hand
side of this equation gives the Ink divergence for small
k and the second term vanishes in this limit. In order
to extract the divergent term for small k£ in expression
(26) we rewrite the first term on the right-hand side, for
example, as

/ dq {a|T'(s)|k)
“(g+k)

/ dg (q|T(s)|k)(1 4+ q) — (O|T'(s)lk)
(1+q)(g+k)
dg

”O‘F(s)"“)/o EICETOR

Equation (27) is just one way of separating the divergent
part from the finite part of the first integral on the right-
hand side of Eq. (26) in the limit & — 0. The first

(27)
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term on the right-hand side of Eq. (27) is finite in this
limit whereas the last term, which can now be evaluated
analytically, diverges in this limit. This last term of Eq.
(27) is immediately evaluated to yield

(@It (9)|k)(1 +q) —

(O[T'(s)[%)
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mw@nm/"(l+®@+k) wf“””lk (28)

Now the expression (25) for cotés is rewritten as

(K[L(s)[k) _ (OI'(s)[k)

cotls = <k|r(s>|k>[ Vi

(1+q)(g+k)

k/ dg <4|P(S)Ik> nkl

— k2 k—1
(29)

The analog of the effective-range expansion (7) in this case is given by

cotéz = ag + (1/7) In(3k%/4) + b(3k%/4) + c(3k%/4)? + (30)
with 3k?/4 playing the role of the relative kinetic energy, which in the two-particle case given by Eq. (7) is k2.
The scattering length for scattering of one boson on the bound state of two others, a3, is now defined as
(1 +¢)(¢IT'(0)|0) — (0|T'(0)[0) <0|F(0)|0) ]
a dq In(3/4 31
T 7r<01r<0)|o [ / a0 +9) (3/4) (31)

We can redefine a3 in units such that B, = 1 as in Eq.

),

az = asz + }1(_-3_2) (32)
T
In Eq. (32) a3 so defined is the scattering length for
By =1.

III. RESULTS AND DISCUSSIONS

In this section we present numerical results at low ener-
gies below the three-particle breakup threshold for scat-
tering and bound states involving three identical bosons
in two dimensions. One of the purposes of this study is to
investigate the sensitivity of these results for scattering
and bound states on the shape of the two-particle interac-
tion potential while the low-energy two-particle observ-
ables, the binding energy Bz, and the scattering length
az, are maintained constant. In some areas, such as nu-
clear physics, such a variation of the potential is called
an “off-shell” variation, as the potential is varied in such
a way that the (low-energy) two-particle on-shell observ-
ables are maintained constant. Usually, the features of
the potential well known from physical considerations,
e.g., the range, is held fixed in such a study while the
shape is varied. We simulate such a variation by varying
the constant m (=1,2,4, and 10) of the potential form
factor (2).

Because of considerations of Ref. [4] the results of
three-boson bound-state and scattering calculations at
low energies should depend only on the two-boson ob-
servables B, and ag for B;/ l« B, where 3 is the range
parameter introduced in Eq. (2). Under this condition
the behavior of the three-particle system is expected to
be universal, independent of the detail of the interaction
potential. Due to the low binding of the two-particle
system, the three particles are expected to spend most of
the time outside the range of the potential. This model

independence of the three-particle system increases as the
dimension of the space is reduced. In three-dimensional
space there is a reasonably strong model dependence,
whereas in two-dimensional space this model dependence
is non-existent at least at low energies and in the weak-
binding limit [4].

Another way to understand this model independence of
three-particle observables in two dimensions is achieved
through a consideration of the dynamical equations (15).
In the three-dimensional equivalent of Eq. (15) the con-
vergence at the upper limit of the integral in this equation
is achieved by the potential form factors g’s through Eq.
(13). The integral in Eq. (15) diverges as the form fac-
tors g’s are set equal to unity, which corresponds to the
two-particle zero-range interaction; this divergence has
been related to the appearance of the Thomas effect in
the case of the zero-range potential [4]. Consequently,
in three dimensions the solution of Eq. (15) depends on
the shape of the potential form factors. The integral in
Eq. (15) in two space dimensions, because of the reduced
phase space, converges even when the potential form fac-
tors g’s are set equal to unity [1,4]. The solution of Eq.
(15) in this case is expected to be insensitive, or at best
very weakly sensitive, to the shape of the potential form
factors. It is important to note that in the limit 8 — oo
(the potential range going to zero) Eq. (15) produces a
convergent result for three particles in two dimensions.
Consequently, the Thomas effect is absent, which implies
that the short-range or the large momentum parts of Eq.
(15), expected to be the region most sensitive to the off-
shell variation of the potential, have no significant rele-
vance on the three-particle low-energy observables in two
dimensions.

In our calculations we utilize 8 = 1 and vary A, so that
B; <« 1, which is expected to be the domain of model in-
dependence discussed above. We vary the two-particle
scattering length a2 and the two-particle binding energy
B, during the actual calculation. However, we would like
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to have results for fixed as and B in order to study the
model independence of three-particle observables. This
is achieved in a simple fashion. The three-boson re-
sults for § = 1 and any By can be transformed to the
case with a fixed Bz (=1) by considering Bs = B3/Ba,
as = a3 + (1/7)In By, and @2 = a2 + (1/7)1n B;. Here
the barred quantities refer to the case with By = 1.
Equations (3), (4), and (19) exhibit this remarkable scal-
ing property. Suppose that for a given A = A¢ and
B = Bo(= 1) we have the two-particle scattering length
a2 and a two-particle bound state of binding energy Bs.
It is easy to see from Eq. (19) by scaling arguments that
then one has a bound state of binding energy B, =1 for
B = Bo/Bi? and A = X\o/B2™ and from Eqs. (9) and
(11) that a2 is the corresponding scattering length. A
similar scaling argument applied to Eq. (15) reveals that
under this modification the three-particle binding energy
and scattering length get changed from Bz and a3 to Bs
and ag, respectively.

In Ref. [4] it is demonstrated that the plot of Bj
(= Bs/By) vs @y is independent of the potential form
factors. The plots for m = 1,2,4, and 10 yielded es-
sentially the same result. This demonstrated the model
independence of the three-boson bound states in two di-
mensions. We have reconfirmed this model independence
for other values of m.

Here we shall mainly concentrate on the three-boson
scattering observables. In Fig. 1 we plot the scattering
length @g vs as for m =1,2,4, and 10 in Eq. (2). For small
o this plot is completely universal with all m yielding es-
sentially the same result. For large ao and as this model
independence tends to break down as we start moving out

of the weak-binding limit (B;/ 2/8 < 1). In the actual
calculation for the extreme point given by 100a, = 15,
BY?/8 ~ 0.35(m = 1), 0.24(m = 2), 0.01(m = 4),
and 0.08(m = 10). We see that the smaller values of
m have deviated more from the weak-binding limit com-
pared to the larger values of m. This justifies the de-
viations of the m = 1 and 2 curves from the m = 4
and 10 curves for large @;. The m = 10 curve in this

0.5 ‘ |
0 5 10 15

FIG. 1. The three-boson scattering length as plotted vs
the two-boson scattering length a2 for the separable potential
(2) with m = 1, 2, 4, and 10.
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case is closer to the universal weak-binding limit. Even
in the extreme point 100@; = 15 the dipersion in @3 is
small and is of the order of 10%. This case is compara-
ble to the three-dimensional three-nucleon system where
the range parameter 8 = 1.4 fm and the square root
of the deuteron binding is B;/ ? = 0.23 fm [17). How-
ever, in the three-nucleon system the dispersion in the
value of the S-wave neutron-deuteron scattering length
a3 is much larger, with a3 varying from —1 fm to 1 fm.
Hence, unlike in the three-dimensional case, in the weak-
binding limit @, and Bz(= 1) are enough to determine
the scattering length a3 of one boson on the bound state
of two bosons independent of the shape of the interaction
potential as is obvious from Fig. 1.

In Fig. 2 we plot @3 vs Bz for m = 1 and 10. The
plots for m = 2 and 4 lie between those for m = 1 and
10. For small @z the model independence of the result is
obvious. As in Fig. 1 this model independence starts to
break down as a3 increases and we move out of the region
of weakly bound two-particle bound states. This plot
should be compared to the Phillips [19] plot of the three-
nucleon system, which yields a linear correlation between
the triton-binding energy and the S-wave spin-doublet
neutron-deuteron scattering length while different poten-
tial models with fixed two-nucleon binding and scatter-
ing lengths are employed. However, there is an interest-
ing difference between the Phillips plot and the present
plot. The present variation of Bs; and @3 arises due to
the variation of @ while in the correlation of the Phillips
plot both two-nucleon binding and scattering length are
fixed. From Figs. 1 and 2 we realize that once we hold
both the two-particle scattering length a, and binding
energy B; fixed this will correspond to a unique scatter-
ing length a3 and binding energy Bz with an estimated
dispersion of 10%. In other words, in two dimensions
with fixed a; and Bj, the a3 vs B3 plot reduces practi-
cally to a point with some dispersion, in contrast to the
three-dimensional three-nucleon system. Consequently,
the weakly bound three-dimensional three-nucleon sys-
tem is model dependent or sensitive to the off-shell be-
havior of the two-nucleon interaction potential, whereas

T T
20 -
1.5 -
93
1.0 -
05} —
1 1
5 10
B;/B,
FIG. 2. The three-boson scattering length as plotted vs

the three-boson binding B3 (= Bs/B;) for the separable po-
tential (2) with m= 1 and 10.
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tan(s,)

-0.5

0.8 1.0 1.2 1.4

FIG. 3. The tangent of the three-boson phase shift tanés
of Eq. (31) plotted vs the three-boson scattering length as
for the separable potential (2) with m= 1 and 10.

the two-dimensional three-boson system in identical sit-
uations is virtually model independent and insensitive to
the off-shell behavior of a two-particle interaction.
Finally, we see that this model independence of the
three-boson binding energy and scattering length in two
dimensions can be extended to the scattering phase shifts
63 below the breakup threshold of a boson on a two-boson
bound state. In order to test this we calculated 63 for
k =1 and By = 1. This corresponds to a three-particle
center-of-mass energy s given by Eq. (14). In this case
we plot tanés vs @z in Fig. 3. As in Figs. 1 and 2 as is
varying in this calculation. For small @3 again the result
is model independent. When a3 and a. increases this
model independence starts to break down as in Figs. 1
and 2. This plot should be compared to that of Fred-
erico and Goldman [20] (FG) for the three-dimensional
three-nucleon system, where they plotted k cotd (6 being
the nucleon-deuteron S-wave scattering phase shift) ver-
sus the nucleon-deuteron scattering length and obtained
a linear correlation as in the Phillips plot. This study of
FG is the three-dimensional analog of the present study
in two dimensions in Fig. 3. However, in the study
of FG both the two-nucleon binding energy and scat-
tering length are held fixed. In the three-nucleon sys-
tem even in the weak-binding limit, in contrast to the
two-dimensional three-boson case, the result is model de-
pendent. In the present study the two-particle binding
energy is fixed but the two-particle scattering length is
varying. Once the corresponding quantities (B2 and as)
are held fixed in the present study we have only a sec-

tion of the present plot in Fig. 3, which is just a point
with small dispersion. Again we reach the same conclu-
sion of model independence (off-shell independence) of
the three-particle scattering observables in two dimen-
sions.

IV. SUMMARY

In this paper we have presented a systematic study of
scattering and bound states of three identical bosons in
two space dimensions at low energies using the Faddeev
equations in the momentum space. The two-particle po-
tential is taken to be of the S-wave separable type with
varying form factors. In this case the Faddeev equations
reduce to one-variable integral equations, which we refer
to as the Amado-Lovelace-Mitra equations. One of the
purposes of the present study is to investigate the model
(in)dependence of the results once the two-particle bind-
ing energies and scattering lengths are held fixed. In the
limit of weak two-particle binding (Bj 2 « B) we find the
result of both scattering and bound states of the three-
boson system to be independent of the variation of the
potential shape provided that the two-particle scattering
length and binding energy are held fixed. In the three-
dimensional three-particle system the results for three-
particle bound states and scattering are sensitive to the
shape of the potential employed, even when the two-
particle binding energy and scattering lengths are held
fixed. This behavior of the three-particle system in two
dimensions has been justified by considering the analytic
behavior of the dynamical equation (15) and has been
related to the absence of the Thomas effect in this case
[4]. The present finding is expected to have interesting
consequences in the study of several few-particle systems
in two dimensions. We have made a limited model study
but we have argued that our conclusions are expected to
be generally valid provided that we are limited to low
energies and consider only the case of weak two-particle
binding: Bé/ 3 B, where By is the two-particle binding
and S is the inverse range parameter of the two-particle
interaction.
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