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The generalized Breit interaction is included in the scattering matrix elements when determining col-
lision strengths for electron-impact excitation of highly charged ions. We use a relativistic distorted-
wave approach that employs a Dirac-Fock-Slater potential to calculate the free-electron wave functions.
This same potential is used to calculate the atomic-structure data. Collision strengths are presented for
H-like, He-like, and Li-like ions for a range of Z values and impact-electron energies. Good agreement
is obtained when comparing to the few existing calculations for hydrogenic ions. The effect of including
the interaction is found to be small for ions with Z =26, but increases steadily with Z. Changes of nearly
70% are observed for Z =92. Effects for the more complex He-like and Li-like ions are greater than for
the hydrogenic analogs for the entire range of Z values considered. The accuracy of some simpler forms

of the Breit interaction is also discussed.

PACS number(s): 34.80.Kw

I. INTRODUCTION

Over the past 20 years the Breit interaction, and its rel-
atives, have been applied to atomic structure [1] and pro-
cesses such as autoionization [2—4] and ionization [5].
As of yet, only a few test cases that include the Breit in-
teraction in calculations for excitation of ions by electron
impact have been published [6—8]. These results show
significant changes in the collision strengths for ions with
high nuclear charge number Z, but are limited to hydro-
genic ions with a single bound electron. The purpose of
this work is to include the Breit interaction, in various
forms, in the scattering matrix elements for electron-
impact excitation of various types of highly charged ions
and to determine the range of conditions for which the
interaction makes a significant contribution. We restrict
ourselves to highly charged ions which satisfy Z >2N,
where N is the number of bound electrons. This restric-
tion is a direct consequence of the approach put forth by
Sampson et al. [9] and Zhang, Sampson, and Mohanty
[10], and of which the current work is an extension.

The main motivation of this research is to supply the
vast amount of atomic data necessary for the modeling
and diagnostics of very-high-temperature plasmas. More
specifically, in such plasmas with sufficiently low density
that the assumption of local thermodynamic equilibrium
is not valid a detailed accounting of the atomic processes
responsible for populating and depopulating energy levels
of the highly charged ions is required. The rates of these
processes can then be used to model the plasma to predict
and understand its emerging spectra. Examples of such
plasmas are those occurring in fusion energy and x-ray
laser research [11].

A more fundamental application of this research is the
comparison with results for highly charged ions in the re-
cent electron beam ion trap (EBIT) experiments by Marrs
et al. [12]. Just recently [13], measurements were carried
out on He-like ions with atomic numbers as high as 26
and future measurements are planned for Z much beyond
this value [14]. For sufficiently high Z, any collision
strengths inferred from these latter measurements could
exhibit large effects due to the Breit interaction and could
be directly compared to the results presented in this pa-
per.

In Sec. II we give an outline of the distorted-wave
theory incorporating the Breit interaction in the scatter-
ing matrix elements. We also include a brief explanation
of the various forms of the Breit interaction used present-
ly and elsewhere in the literature. Section III gives nu-
merical results for H-like, He-like, and Li-like ions.
Comparisons are made ‘with other hydrogenic results
where appropriate. The final section summarizes the
trends observed over the range of Z values and transi-
tions considered. Conclusions are then drawn about the
range of conditions for which the Breit interaction makes
a significant contribution to the collision strengths.

II. OUTLINE OF THEORY

Since this work is an extension of the distorted-wave
approach of Zhang, Sampson, and Mohanty [10], the fol-
lowing outline will closely follow that which is found in
Ref. [10] and in the atomic-structure paper of Sampson
et al. [9]. But before discussing the process of excita-
tion, a brief explanation of the various forms of the Breit
interaction is necessary.
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A. Breit interaction

Around 1930 Breit published a series of papers
[15-17] in an attempt to further explain the fine struc-
ture splitting in helium. He suggested the following
correction to the Coulomb interaction between two elec-
trons:

e

Hy =—
Br
r12

[, +(d-m)(ayn)], (1)
where r,, is the interelectron separation, 1’ is a unit vec-
tor along r'},, and ; and &, are the usual Dirac matrices.
In Eq. (1) and the remainder of this paper distances are in
units of Bohr radii and energies are in rydbergs. We shall
refer to the above interaction simply as the Breit interac-
tion. It includes both magnetic and retarded corrections
to the Coulomb interaction.

We note that the Breit interaction was derived with the
intent to explain bound-state energy discrepancies. On
the other hand, we are primarily interested in scattering
phenomena that require the interaction between bound
and free electrons. In 1932, Mgller [18] derived a relativ-
istic interaction for electron-electron scattering given by

2 N .
—(1—da,-d,) explior;,) , (2)
T12

M(1,2)=

where o is the wave number of the photon exchanged be-
tween the two electrons. More precisely, Mdller scatter-
ing was derived for the relativistic interaction between
two free electrons, but its form remains the same for
bound-free interactions. Note that this interaction al-
ready includes the Coulomb part of the interaction, while
the Breit interaction must be added to the usual Coulomb
interaction.

The relationship between the Breit and Mdiller interac-
tions is clarified in the context of QED. We consider the
lowest-order Feynman diagram for the exchange of a sin-
gle virtual photon between two electrons. Using the
Coulomb gauge for the photon propagator, the interac-
tion is found to be
B(1,2)= —2(a@,-a,) 2 r2)

T2
_ _, explior;)—1
+2d V&) V) ————— (3)
0’ryy

where o is the wave number of the exchanged virtual
photon. Following Mann and Johnson [19] we call Eq.
(3) the generalized Breit interaction. Once again B(1,2)
is added to the usual Coulomb interaction as with Hg,.
One can show that the Breit interaction Hp, is the limit
of B(1,2) as o—0 [20]. As the nuclear charge number Z
increases we expect w to also increase and the use of
B (1,2) instead of Hg, becomes necessary.

If the Lorentz gauge, instead of the Coulomb gauge, is
used for the photon propagator, one obtains the Mgdller
interaction given in Eq. (2). Since both the Mgller and
generalized Breit interactions contain the entire lowest-
order Feynman diagram, with retardation included to all
orders, they are the most accurate of the interactions and
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their matrix elements should be identical from gauge in-
variance. An argument due to Hata and Grant [21]
shows that their matrix elements are indeed equal provid-
ed that the wave functions used are determined from a lo-
cal potential such as the Dirac-Fock-Slater potential used
in our research. For nonlocal potentials the picture is not
so clear and the validity of gauge invariance is question-
able. This topic is hotly contested in the literature and a
detailed discussion is beyond the scope of this paper. The
reader is referred to the literature for an in-depth discus-
sion (e.g., Ref. [22], and the references cited therein). The
generalized Breit interaction, Eq. (3), and occasionally its
o =0 limit, the Breit interaction, were chosen for all cal-
culations in this research.

B. Relativistic collision strength theory

The relativistic cross section Q(i — f) for the transition
i— f is related to the collision strength Q(i — f) by

Qi—f), )

where a, is the Bohr radius, g; is the statistical weight of
the initial level of the N-electron target ion, and k is the
relativistic wave number. The magnitude of k is related
to the relativistic kinetic energy of the free electron by
k’=¢

2
1+“Ta , (5)

with € given in rydbergs.
The distorted-wave collision strength is then given by

QUi —f)=23 (2J+1)
J

N+1[ o 2
x3 (v S | Zrpoa | v)
KK 0,9 pq

p<g

(6)

which agrees with Eq. (3) of Ref. [10] except that the gen-
eralized Breit interaction has been included in the
scattering matrix elements. The summations over «,x’
are the usual partial wave summations over initial and
final continuum electron angular momentum quantum
numbers, respectively, and the sum over J represents all
the possible angular momentum couplings of the free
electron with the N-electron target ion states. The initial
(N + 1)-electron system state wave function is

_ 1 N2+1(_1)N+1—p
i (N+1)1/2 =
X 3 CU M m;IM)®y,; (x, ')
Mr,m
Xtgpjm(Xp) 5 @)

where x, ! stands for all (N + 1)-electron coordinates ex-
cept for those of electron p. The expression for W, is
analogous to the above equation with a'J;; M/, ', I', j’,

and m’ replacing the corresponding unprimed quantities.
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The ®,; are wave functions representing the N-

electron target ion states with total angular momentum
J, and a representing any additional quantum numbers
necessary to distinguish the state. These wave functions
are built up from jj-coupled, one-electron Dirac spinors,
which have the form

P, (1) Xm(6,0,0)
iQnK(r) X-Km(9’¢:a) ’

where P,, and Q,, are the large and small components of
the radial function, respectively, the x,,, are the usual
spin-orbital angular momentum functions

(8)

u =1
nKm r

Xem = 2 C(l%mlmsﬂ'm)Y1m1(9,¢)5(ms'U), 9)

mpmg

and the relativistic quantum number k takes on the
values

k=1, j=l—1; k=—(+1), j=I+1. (10)

The large and small components satisfy the usual coupled
differential equations and the reader is referred to Ref. [9]
for further details. In addition, several options were add-
ed to the structure code of Sampson et al. [9]. These
were a finite nucleus obtained from a Fermi nuclear
charge density, inclusion of the generalized Breit interac-
tion as a perturbation when diagonalizing the Hamiltoni-
an, approximations for the lowest-order vacuum polariza-
tion and self-energy QED corrections to the level ener-
gies, and inclusion of retardation when calculating elec-
tric dipole oscillator strengths.

The u;,, in Eq. (7) are angular momentum representa-
tion wave functions for a free electron and are positive
energy solutions to the Dirac equation. These continuum
wave functions have the same form as the bound spinors
of Eq. (8) except that the discrete quantum number » is
replaced by the continuous parameter €. Our choice for
the distorted-wave potential used in determining these
continuum wave functions is the same Dirac-Fock-Slater
potential used in solving for the one-electron spinors of
Eq. (8). Thus the continuum wave functions are automat-
ically orthogonal to the bound ones since both are solu-
tions to the Dirac equation with the same central poten-
tial.

What remains is to reduce the matrix elements of Eq.
(6) to products of angular coefficients and radial integrals.
An outline of this reduction for the Coulomb part of the
interaction is given in Ref. [10]. Basically, the angular
coefficients may be calculated by the angular package in
the relativistic atomic structure code of Grant et al. [23]
and the radial integrals are the Slater integrals appearing
in Egs. (9) and (10) of Ref. [10].

For purposes of comparison there are instances when
the above equations must be modified to allow for bound
and free orbitals that are not orthogonal. Such is the case
when the free and bound radial functions are solutions of
the Dirac equation with different central potentials. In
particular, Walker [6] uses a central potential equal to
the Coulomb potential for the case of hydrogenic ions.
When solving for the bound orbitals, the total nuclear

charge Z is used. But, when solving for the continuum
orbitals, a screened nuclear charge given by z=Z —1 is
used. This difference results in continuum orbitals that
are not orthogonal to the bound ones. Then an extra
term must be inserted in the radial integrals. The neces-
sary substitution is

A

A
r< r< S0 (11
—=< L |L= _ A
r7;+1 r};—Fl rl

in the exchange integral of Eq. (10) of Ref. [10]. The
choice of r; above corresponds to the “prior”” approxima-
tion, while using r, corresponds to the “post” approxi-
mation [24]. Like Walker [6], we use the prior approxi-
mation when comparing with his data.

The reduction of the generalized Breit interaction can
be handled in a similar fashion. The angular coefficients
are calculated by using the package of McKenzie, Grant,
and Norrington [1]. There are two types of radial in-
tegrals that occur in the reduction of the generalized
Breit interaction. They are

RV(ac,bd)=fo°° fowpac(rl)[Vv(rl,rz;wac)
TV (r,ry504)]
Xppary)drdr, (12)
and
SHae,bd)= [ [ " pacri I Wimi 1,6 (r1572304)
T Wit k+1,6(F157250pq)]
Xppa(ry)dridr, , (13)
where
V,(ri,rye)=[vi]wj (or )n (or,) (14)
and

Wi k+1,k(r7050)

(15)
[kKlwji —1(orIny 4 1(0ry)+ [—22%’ ry<r,
= 2
[Klon, —(or)ji+1lwry), ri>r; .
The density p,.(r) is given by
Pac (=P, (r)Q.(r), (16)

with a similar expression for p,,(r). For the process of
excitation, orbitals @ and c¢ represent bound electrons
while orbitals b and d represent free electrons. As with
the Slater integrals for the Coulomb interaction, there are
exchange integrals analogous to the direct integrals above
which are obtained by making the exchange c<«>d every-
where in Egs. (12) and (13). In the above equation we
also have [x]=(2x +1) and the spherical Bessel func-
tions j, and n,. The notation used above is that of Grant
and Pyper [25] and Grant and McKenzie [26].

Note, however, that these integrals have no imaginary
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part, and yet the generalized Breit interaction of Eq. (3) is
complex. In fact there is an additional set of integrals
which must be calculated that is very similar to R and
S* above. One must simply make the replacement
n,— —ij, everywhere in the above equations. The ex-
planation for this replacement becomes obvious when
viewing the expansion [27] of

expliory,)

=io Y Qv+1)j (or.)
F12 v=0

X[jlor, ) tin (or, )]

X[C"(1)-C"(2)] (17)
from Eq. (3), where
1/2
Ve | T :
(i) i1 Y, (i) (18)

is a renormalized spherical harmonic. In structure calcu-
lations this imaginary part is usually ignored when calcu-
lating energies and is attributed to the lifetime of a bound
state [20], but we see from Eq. (6) that the scattering ma-
trix elements require the imaginary part of the electron-
electron interaction as well as the real part. These imagi-
nary integrals are expected to make a negligible contribu-
tion when the energy of the exchanged photon is small
(low Z). We will determine from our results presented in
the next section whether the contribution is significant
for sufficiently high Z values.

There is still one more alteration that must be made to
arrive at the actual interaction used in this paper. In-
stead of using the interaction B(1,2) we replace it by a
sum of two similar terms that differ only in their values of
. The expression for the actual matrix elements, which
we will call matrix elements of B ,, is

(A1B2IB12|C1D2)
=(4,B,4{B,,, (1,2)+B, (1,2)}|C;Dy), (19)

where ¢, =(ec—e4)/2¢c and €., €, are the one-
electron spinor energies for |C ), | 4 ), respectively. The
operator B (1,2) is the same as B (1,2) with the o depen-
dence stated explicitly.

The advantage in using B, is that it is valid for off-
diagonal matrix elements as well as diagonal ones. On
the other hand, B(1,2) is valid only for diagonal ones
and is equivalent to B, when wc, =wp,. Mittleman
[28—-30] derived this operator by using a succession of
contact transformations to decouple the electron and ra-
diation fields and it is claimed to be correct to order
O(a?) [25]. Use of B,, will also take into account part of
the fourth-order effects (two-photon exchange) [21]. In
this paper, however, only single-photon exchange is in-
cluded in its entirety.

Finally, in addition to Eq. (3), we are also interested in
the interaction originally formulated by Breit, Eq. (1).
The radial integrals for the Breit interaction can be found
by taking the @ =0 limit of Egs. (14) and (15). The results
are

V. (r,rp0)—rY /rit! (20)
and

Wv——l,erl,v(rl’rZ;a))"“)—%[V][ﬁv—-l(rl’r2)

~ﬁv_{_](r],"z)] , (21)
where
_ /eyt oifr <,
U,lrir)= 0 ifr;>r,. (22)

The application of Eq. (19) is not necessary in this case
because the interaction is independent of w. As stated
earlier we expect this interaction to break down for
sufficiently high Z ions as will be evident from the data
displayed in the next section.

III. NUMERICAL RESULTS AND DISCUSSION

A. Test cases

The first collision strengths we calculated that included
the generalized Breit interaction were for comparison
with the test cases evaluated by Walker [6] in the middle
1970s. He calculated collision strengths for transitions
from the ls, , ground state to the 2s, 5, 2p, ,, and 2p3 ,
states in H-like ions with atomic numbers Z =25, 50, and
100. We compare results for the latter two Z values,
where he found the effect of the Breit interaction to be
significant. As mentioned in Sec. II, for the test cases
considered by Walker, we use the modification in Eq. (11)
in the exchange Coulomb integrals in conjunction with a
screened nuclear potential to obtain the continuum wave
functions. All other data presented in this section were
found using the same potential for determining both
bound and free electrons. This was the unscreened nu-
clear potential for hydrogenic ions and the Dirac-Fock-
Slater potential for He-like and Li-like ions. For the hy-
drogenic ions considered here, the difference in results
from the screened and unscreened procedures was almost
undetectable.

Also we note that Walker’s data were calculated using
the Mdller interaction given in Eq. (2). Since the required
wave functions were calculated from a local potential, we
can expect, by gauge invariance arguments [21], that the
collision strengths obtained with the Mdller interaction
will be equal to those obtained with the generalized Breit
interaction. Therefore Walker’s results can be used as a
valid test for our excitation collision code before moving
on to more complex cases such as He-like and Li-like
ions.

In Table I we present our results (rows labeled O) for
the scaled cross sections Z*Q in units of 7a (2,, along with
Walker’s results (rows labeled W), for hydrogenic ions
with Z =50 and 100. The transitions listed are for those
between the n =1 and 2 levels. The impact-electron en-
ergies are E=0.8E,, E;, and 4E,;, where E; is the ioniza-
tion energy of the 1s,,, level (approximately 35 keV for
Z =50 and 162 keV for Z =100), calculated with the
Dirac-Fock-Slater structure code using the pure
Coulomb potential due to the unscreened nuclear charge
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Z. Unfortunately, our Dirac-Fock-Slater structure code
was not able to provide a converged wave function for
the 2p, ,, level for such a high Z value as 100. Therefore
the values of the 1s,,,-2p,,, cross sections are listed as
zeros in the table.

We did, however, use bound wave functions generated
from the more elaborate code of Grant and co-workers
[1,23] to calculate the same n =1-2 cross sections with
the same physical approximations made as in the present
case. For Z =100, Grant’s code did obtain a converged
wave function for the 2p,,, level along with the other
n =1 and 2 levels. Therefore cross sections calculated
with Grant’s bound wave functions (rows labeled G) are
also given in Table I for the usual impact-electron ener-
gies.

The method for labeling transitions in this table and all
subsequent ones is

(23)
(24)

nl*=nlj, j=I1—1,
nl=nlj, j=I1+1.

For example,

TABLE I. Comparison of scaled cross sections

1013

252251/2, Zp*:2P1/2, 2p=2p3/2 ’

3d*=3d,,, 3d=3ds,, etc. (25)

There are actually four cross sections listed for each tran-
sition in Table I and all subsequent tables. The column
labeled C lists results that use only the Coulomb interac-
tion when calculating the scattering matrix elements for
the cross sections. The results in column B were calculat-
ed with inclusion of the matrix elements of the Breit in-
teraction, Eq. (1). The columns labeled GB and GBI list
cross sections that were calculated with the generalized
Breit interaction. The GB calculations, however, use
only the real part of the expansion given in Eq. (17) for
the generalized Breit interaction. Even though Walker
did not include analogous GB and B calculations for all
three energies, we list our results for comparative pur-
poses to be discussed in the next subsection.

For each of the three impact energies we see that our
data agree with Walker’s to within 0.5% for all transi-
tions and both Z values. This agreement gives us
confidence that our method is in fact correct and that
there are no errors in our computer code. We reserve our

(Z*Q) in units of ma} for hydrogenic ions with

Z =50 and 100 at impact electron energies of 0.8E,, E;, and 4E;.

Z =50 Z =100

Transition C B GB GBI  Transition C B GB GBI

E =0.8E, E =0.8E;
1s-2s O 0.5331 0.6123 0.6140 0.6145 1s-2s O 09914 1.5863 1.6129 1.6322
W 0.534 0.616 W 0.996 1.641
G 09932 1.5879 1.6146 1.6339
1s-2p* O 0.6262 0.6153 0.6219 0.6224 1s-2p* O 0.0000 0.0000 0.0000 0.0000
W 0.626 0.624 W 0.649 1.035
G 0.6491 0.9019 0.9994 1.0244
1s-2p O 1.1214 1.0989 1.1063 1.1072 1s-2p O 0.6550 0.7161 0.8008 0.8343
W 1.122 1.109 W 0.658 0.842
G 0.6585 0.7199 0.8044 0.8379

E=E, E=E,
1s-2s O 0.4438 0.5064 0.5082 0.5085 1s-2s O 0.8269 12514 1.2816 1.2928
W 0.4445 0.5072 0.5095 W 0.8304 1.2566 1.2994
G 0.8283 12526 1.2829 1.2941
1s-2p* O 05536 0.5428 0.5466 0.5470 1s-2p* O 0.0000 0.0000 0.0000 0.0000
W 0.5536 0.5414 0.5474 W 0.5228 0.7154 0.8296
G 0.5227 0.7173 0.8040 0.8241
1s-2p O 1.0127 09829 0.9934 0.9941 1s-2p O 0.5940 0.6241 0.7068 0.7346
W 1.0133 0.9855 0.9958 W 0.5974 0.6292 0.7402
G 05973 0.6283 0.7102 0.7382

E=A4E, E=4E,
1s-2s O 0.1577 0.1689 0.1701 0.1701 1s-2s O 0.3479 0.4026 0.4167 0.4169
W 0.158 0.170 W 0.349 0.418
G 0.3485 0.4032 0.4173 0.4176
1s-2p* O 0.3741 0.3658 0.3757 0.3759 1s-2p* O 0.0000 0.0000 0.0000 0.0000
W 0372 0.374 W 0.346 0.576
G 03481 0.4247 0.5660 0.5745
1s-2p O 0.7253 0.7028 0.7154 0.7157 1s-2p O 0.5647 0.5595 0.6989 0.7113
W 0.720 0.710 W 0.565 0.714
G 0.5672 0.5631 0.7017 0.7141
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analysis of the data itself until the next section where we
introduce new data and systematically explore the range
of conditions for which the generalized Breit interaction
can make a significant contribution to the excitation col-
lision strengths.

B. H-like ions

We now discuss our excitation collision strengths, be-
ginning with hydrogenic ions, for a range of Z values,
transitions, and impact-electron energies. In this paper
we focused on three Z values encompassing a range that
will demonstrate the extent to which the generalized
Breit interaction is important in calculating excitation
collision strengths. We chose ions with Z =26 (iron), 54
(xenon), and 92 (uranium).

For hydrogenic ions we considered transitions from the
n =1 ground state to the n =2 and 3 levels, from the
n =2 to the n =3 levels, and among the n =2 levels. We
also varied the impact-electron energy from near thresh-
old to about six threshold units for some of the Z =92
calculations. Unless otherwise stated, the near-threshold
energies were chosen so that the energy of the scattered
electron is about 1% of the corresponding transition en-
ergy, except for the n =2-2 transitions for which the
lowest scattered electron energies are equal to those for
the n =1-2 transitions.

We begin by listing in Table II our near-threshold, hy-
drogenic collision strengths for the n =1-2 and 2-2 transi-
tions with Z =26, 54, and 92. As expected, the Z =26

collision strengths are relatively insensitive to inclusion of
any form of the Breit interaction. Except for a small
3.5% increase in the collision strength of the 1s, ,,-2s,
transition, the results show practically no effect when any
form of the Breit interaction is used in the calculations.

On the other hand, the Z =54 data show an apprecia-
ble increase of 18% in the 1s;,,-2s; ,, collision strength.
We see similar increases in the Z =50 data from Table 1.
Because this transition involves two s electrons we expect
that it would exhibit the largest effect of all the n =1-2
and 2-2 transitions. In fact, the other five transitions
show effects hardly rising above 1% even for this fairly
large Z value.

Another observation is that, for these Z values of 50
and 54, there is practically no difference (<0.2%) in
whether or not one includes the imaginary part of the
generalized Breit interaction when calculating the
scattering matrix elements. This behavior can be ex-
plained in the following way. The imaginary piece con-
tains the product of two j-type spherical Bessel functions,
as can be seen from Eq. (17), while the real piece contains
a product of the form jn. The greatest contribution of
the generalized Breit interaction to the radial integrals in
Eqgs. (12) and (13) occurs for arguments of the Bessel
functions, (wr), that are relatively small. For small argu-
ments, the n-type Bessel functions approach negative
infinity, while the j-type functions are finite and on the
order of one. So, a product of the form jn will be much
larger than a product of the form jj, at least for small ar-
guments.

TABLE II. Collision strengths for n =1 to n =2 and n =2 to n =2 transitions in hydrogenic ions
with Z =26, 54, 92. The final scattered energies are 70 and 300 eV for ions with Z =26 and 54, respec-
tively. For ions with Z =92 the final scattered energy is 2000 eV for the » =1-2 transitions and 900 eV

for the n =2-2 transitions. x[y]=x X 10’.

Transition C GB GBI
Z =26
1s-2s 1.139[ —3] 1.179[ —3] 1.179[ —3] 1.179[ —3]
1s-2p* 1.488[ —3] 1.470[ —3] 1.471[ —3] 1.471[ —3]
1s-2p 2.893[ —3] 2.866[ —3] 2.868[ —3] 2.868[ —3]
2s-2p* 4.919[—1] 4.919[—1] 4.919[—1] 4.919[—1]
2s-2p 3.056[ —1] 3.057[—1] 3.057[—1] 3.057[—1]
2p*-2p 2.594[ —2] 2.593[—2] 2.593[ —2] 2.593[ —2]
Z =54
1s-2s 3.271[—4] 3.849[ —4] 3.862[ —4] 3.867[ —4]
1s-2p* 3.667[ —4] 3.640[ —4] 3.676[ —4] 3.680[ —4]
1s-2p 6.412[ —4] 6.265[ —4] 6.346[ —4] 6.354[ —4]
2s-2p* 8.567[ —2] 8.574[ —2] 8.574[ —2] 8.574[ —2]
2s-2p 5.638[ —2] 5.637[—2] 5.637[—2] 5.637[ —2]
2p*-2p 5.658[ —3] 5.642[ —3] 5.646[ —3] 5.646[ —3]
Z=92
1s-2s 2.074[ —4] 3.189[ —4] 3.233[—4] 3.265[ —4]
1s-2p* 1.543[ —4] 1.944[ —4] 2.107[ —4] 2.145[ —4]
1s-2p 1.821[ —4] 1.894[ —4] 2.075[ —4] 2.130[ —4]
2s-2p* 1.384[ —2] 1.396[ —2] 1.395[ —2] 1.396[ —2]
2s5-2p 1.366[ —2] 1.350[ —2] 1.352[ —2] 1.352[ —2]
2p*-2p 1.613[—3] 1.593[ —3] 1.605[ —3] 1.607[ —3]
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As for the collision strengths calculated with only the
Breit interaction (column B), they too differ by less than a
percent from the generalized Breit interaction calcula-
tions for most of the listed transitions. However, this be-
havior changes as we go to higher Z values, which we dis-
cuss next.

The near-threshold collision strengths for Z =92 in
Table II exhibit much greater effects than the previous
data for Z =26 and 54. First we mention that the n =1-
2 collision strengths in this table were calculated with a
final electron energy of E,=2000 eV, which roughly
equals 2% of the transition energy in question. This
differs from the usual 1% because we wanted to compare
with the recent results of Moores and Pindzola and co-
workers [7,8]. The n =2-2 transitions were calculated
with E, =900 eV.

Looking at the Z =92 data we immediately see effects
for all three of the n =1-2 transitions, not just the 1s, ,-
2sy,, transition. The percentage increases due to in-
clusion of the generalized Breit interaction are 57%,
39%, and 17% for the three transitions and are in good
agreement with the results of Moores and Pindzola [8].
We saw similar large percentage increases, as high as
65%, among the near-threshold »n =1-2 collision
strengths for Z =100 when viewing Table I. The effects
were slightly greater than the Z =92 data in all cases,
which is to be expected since the Z value is slightly
greater. As with the Z =50 and 54 data, the transition
involving two s electrons is most greatly affected for high
Z. But, unlike the lower Z results, the transitions involv-
ing the 2p electrons are significantly affected in the very
high Z regime.

By comparing the GB and GBI entries in the tables
one sees that neglecting the imaginary piece of the gen-
eralized Breit interaction results in a maximum
discrepancy of 2.7% for Z =92 and 4% for Z =100 for
the n =1-2, near-threshold collision strengths. From our
discussion in Sec. II, it follows that including the imagi-
nary piece doubles the number of radial integrals that
must be evaluated for the generalized Breit interaction
part of the calculations. Since the effects of the imagi-

nary piece change the collision strengths by only a few
percent, which is acceptable for most plasma applica-
tions, we can cut the total computing time approximately
in half by ignoring this term because the generalized
Breit interaction part of the calculations is responsible for
the bulk of the total computing time. On the other hand,
we now find that simply using the Breit interaction given
by Eq. (1) is not a valid approximation if the cross sec-
tions are to be obtained within a few percent.
Specifically, using the more approximate Breit interaction
data listed in column B can result in a discrepancy as
high as 12% for Z =92 and 17% for Z =100 for near-
threshold energies. As for the n =2-2 collision strengths,
they are seemingly unaffected by any form of the Breit in-
teraction, even for Z values as high as 92, thus
confirming that the ls electron is all important for the
generalized Breit interaction to have a large effect on the
collision strengths.

To see the effects of higher impact energies on high Z
collision strengths, we present Table III, which contains
additional collision strengths for the n =1-2 transitions
with E,=100, 300, and 500 keV for Z=92. Another
pattern is uncovered here by noticing the steady decrease
in the effect of the Breit interaction on the ls,,,-2s,,,
collision strengths with increasing impact energy. The
effect decreases from 57% at threshold to 17% for a scat-
tered energy of 500 keV. The effect on the 2p,,, and
2p; , transitions declines slightly and then increases with
energy. Similar trends were duplicated by the Z =100
data in Table I. Of course, the actual percentage changes
are greater for Z =100 than for Z =92. In examining
the relative effects of the three forms of the Breit interac-
tion that we considered for these high impact energy cal-
culations, we observe that ignoring the imaginary piece is
even less important for the high impact energy results
given in Tables I and III than it is for near-threshold en-
ergies. The GB column gives collision strengths accurate
to within 2% of the GBI values calculated with the full
interaction for high impact energies. However, as with
the near-threshold data, the w=0 limit results differ
significantly from the full interaction collision strengths.

TABLE III. Collision strengths for n =1 to n =2 transitions in hydrogenic ions with Z =92. The

final scattered energies are 100, 300, and 500 keV.

Transition C GB GBI
Final energy is 100 keV

1s-2s 2.641[ —4] 3.548[ —4] 3.648[ —4] 3.660[ —4]

1s-2p* 2.106[ —4] 2.457[—4] 2.758[ —4] 2.805[ —4]

1s-2p 3.270[ —4] 3.150[ —4] 3.508[ —4] 3.582[ —4]
Final energy is 300 keV

1s-2s 4.047[ —4] 4.830[ —4] 4.981[ —4] 4.985[ —4]

1s-2p* 4.299[ —4] 4.996[ —4] 5.940[ —4] 6.014[ —4]

1s-2p 7.361[ —4] 7.189[ —4] 8.280[ —4] 8.396[ —4]
Final energy is 500 keV

1s-2s 5.714[ —4] 6.475[ —4] 6.677[ —4] 6.678[ —4]

1s-2p* 7.062[ —4] 8.127[ —4] 1.073[ —3] 1.083[ —3]

1s-2p 1.226] —3] 1.217[ —3] 1.495[ —3] 1.511[ —3]
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The maximum differences are 34% for Z =92 and 35%
for Z =100.

We next consider transitions involving excitation to the
five n =3 levels: 3s,,,, 3p,5, 3p3,, 3d3,, and 3ds ;.
The near-threshold collision strengths for these transi-
tions are presented in Table IV for Z =26, 54, and 92.
For Z =26 and 54 we see very similar results to those for
the n =1-2 transitions. The three forms of the Breit in-
teraction yield results that differ by at most 1.5% for
both Z values. The effect of including the interaction for
ions with Z =26 is small, but can become appreciable for
ions with Z =54. In fact, the effect of the generalized
Breit interaction on these n =1-3 transitions for Z =54
are slightly larger than those observed for the n =1-2
transitions, which is most likely due to the larger transi-
tion energies involved in the » =1-3 transitions.

The Z =92 data in Table IV again show very
significant increases in collision strengths due to the pres-
ence of the generalized Breit interaction in the scattering
matrix elements. In this case the increases range from
24% to 68% for the five transitions. Higher impact ener-
gies are expected to result in similar significant increases,
analogous to the n =1-2 collision strengths. For this
large Z value we again see the trend that collision
strengths calculated with only the real part of the gen-
eralized Breit interaction agree with calculations using
the full interaction to within a few percent (<2.5%). Us-
ing the more approximate Breit interaction results in
differences of over 9% for four out of the five transitions,
once more suggesting that the ©=0 limit is not adequate
for high Z calculations.

We could continue by listing results for the 15 n =2-3
transitions for ions with Z =26, 54, and 92. However,
the effects are not as significant as the previous results, so
we present only a representative data set for the most
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strongly affected results for ions with Z =92. The
remainder of the n =2-3 results will only be summarized
here. The interested reader may contact one of us
(C.J.F.) or consult the thesis in Ref. [31] for greater de-
tail.

As in all previous transitions the near-threshold data
for the 15 n =2-3 transitions for Z =26 exhibited very
little effect due to including any form of the Breit interac-
tion in the scattering matrix elements as compared with
only using the Coulomb interaction. From the data
presented thus far, it appears that, at least for hydrogenic
ions, there is little need to include the generalized Breit
interaction in calculating excitation cross sections for Z
values in the vicinity of 26 for any of the usual transitions
of interest. In the next subsection we see that this is less
true for He-like and Li-like ions.

Also for Z =54 there are only small changes in the
near-threshold collision strengths for the » =2-3 transi-
tions due to any form of the Breit interaction. In general,
the changes were a couple of percent, becoming as high
as 4.5%. The form of the Breit interaction chosen to do
the calculations did not appear to matter at all. Some-
thing to note is that the effect of the generalized Breit in-
teraction has been, for the most part, to increase collision
strength values. However, for the n =2-3 transitions
with Z =54, decreases occur about as frequently as in-
creases.

For Z =92 we first calculated the near-threshold col-
lision strengths for the n =2-3 collision strengths, which
are presented in Table V. From the table it appears that
the effect of the generalized Breit interaction on these
transitions is quantitatively somewhere in between its
effect on the n =1-2 and 2-2 transitions. On average, the
effect of the generalized Breit interaction is a change of
+5% in the collision strengths with an occasional change

TABLE IV. Collision strengths for n =1 to n =3 transitions in hydrogenic ions with Z =26, 54, and
92. The final scattered energies are 83, 300, and 2000 eV, respectively.

Transition C B GB GBI
Z =26
1s-3s 2.408[ —4] 2.500[ —4] 2.501[ —4] 2.501[ —4]
1s-3d* 6.279[ —5] 6.323[—5] 6.326[ —5] 6.326] —5]
1s-3d 9.026[ —5] 9.168[ —5] 9.173[ —5] 9.173[ —5]
1s-3p* 3.176[ —4] 3.156[ —4] 3.160[ —4] 3.160[ —4]
1s-3p 6.230[ —4] 6.199[ —4] 6.200[ —4] 6.200[ —4]
Z =54
1s-3s 6.894[ —5] 8.267[ —5] 8.307[ —5] 8.320[ —5]
1s-3d* 1.475[—5] 1.541[ —5] 1.555[—5] 1.556][ —5]
1s-3d 1.832[ —5] 1.975[ —5] 1.999[ —5] 2.000[ —5]
1s-3p* 7.960[ —5] 8.118[—5] 8.235[—5] 8.244[ —5]
1s-3p 1.444[ —4] 1.441[ —4] 1.457[ —4] 1.458[ —4]
Z =92
1s-3s 4.312[ —5] 7.008[ —5] 7.141[ —5] 7.231[ —5]
1s-3d * 4.768[ —6] 5.844[ —6] 6.343[ —6] 6.372[ —6]
1s-3d 4.008[ — 6] 5.208[ —6] 5.832[—6] 5.860[ —6]
1s-3p* 3.519[ —5] 4.573[—5] 4.981[—5] 5.061[ —5]
1s-3p 4.598[ —5] 5.046[ —5] 5.540[ —5] 5.680[ —5]
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TABLE V. Collision strengths for n =2 to n =3 transitions in hydrogenic ions with Z =92. The

final scattered energy is 200 eV.

Transition C GB GBI

2s-3s 1.131[ —3] 1.217[ —3] 1.217[ —3] 1.217[ —3]
2s-3d* 5.436[ —4] 5.888[ —4] 5.886[ —4] 5.887[ —4]
2s-3d 7.826[ —4] 8.102[ —4] 8.090[ —4] 8.092[ —4]
2s-3p* 3.282[ —4] 3.064[ —4] 3.097[ —4] 3.106[ —4]
2s-3p 1.864[ —4] 1.940[ —4] 1.942[ —4] 1.952[ —4]
2p*-3s 7.849[ —5] 9.367[ —5] 9.309[ — 5] 9.351[ —5]
2p*-3d* 1.989[ —3] 1.825[ —3] 1.838[ —3] 1.842[ —3]
2p*-3d 3.780[ —4] 3.807[ —4] 3.832[ —4] 3.834[ —4]
2p*-3p* 1.184[ —3] 1.264[ —3] 1.265[ —3] 1.265[ —3]
2p*-3p 2.655[ —4] 2.501[ —4] 2.524[ —4] 2.529[ —4]
2p-3s 2.956[ —4] 3.071[ —4] 3.071[ —4] 3.079[ —4]
2p-3d* 1.573[ —3] 1.518[ —3] 1.524[ —3] 1.525[ —3]
2p-3d 6.928[ —3] 6.536[ —3] 6.579[ —3] 6.585[ —3]
2p-3p* 4.413[—4] 4.387[—4] 4.408[ —4] 4.414[—4)
2p-3p 3.096[ —3] 3.294[ —3] 3.300[ —3] 3.301[ —3]

getting as high as 8% and a maximum change of 19%.
In an attempt to see if these changes would become more
significant at higher scattered energies, we calculated the
same 15 collision strengths for Z =92 with impact-
electron energies of about two, four and six times thresh-
old. For the most part we observed similar changes with
an occasional 10% effect, but no results approached the
large 50% plus effects seen in the n =1-2 and 1-3 cases.

C. He-like ions

Since our survey of H-like collision strengths was rath-
er in depth and the transitions of interest for He-like ions

have very similar radial matrix elements to those of H-
like ions, we give collision strengths for only one set of
transitions for He-like ions. These are the six transitions
of the form

Is’+e —1s2l+e; (26)

for which near-threshold results are given for the usual Z
values of 26, 54, and 92 in Table VI.

As far as the relative effects of using the different forms
of the Breit interaction are concerned, one sees that they
follow the same pattern as for hydrogenic ions. That is,

TABLE VI. Collision strengths for the six n =1 to n =2 transitions in He-like ions with Z =26, 54,
92. The final scattered energies are 70, 300, and 1000 eV, respectively.

Transition C B GB GBI
Z =26
152-(1525)0 7.687[ —4] 8.102[ —4] 8.101[ —4] 8.101[ —4]
152-(1s2s)1 3.626[ —4] 3.600[ —4] 3.604[ —4] 3.604[ —4]
152-(1s2p*)0 2.267[ —4] 2.108[ —4] 2.108] —4] 2.108[ —4]
152-(1s2p *)1 8.079[ —4] 8.140[ —4] 8.143[ —4] 8.143[ —4]
152-(1s2p)1 2.122[ —3] 2.077[—3] 2.077[—3] 2.077[—3]
152-(1s2p)2 1.065[ —3] 1.082[ —3] 1.083[ —3] 1.083[ —3]
Z =54
152-(1525)0 2.260[ —4] 2.777[ —4] 2.772[ —4] 2.773[—4]
152-(1s2s)1 9.931[—5] 1.046[ —4] 1.062[ —4] 1.066[ —4]
152-(1s2p*)0 6.211[—5] 4.468[—5] 4.474[ 5] 4.477[—5]
152-(1s2p*)1 2.854[ —4] 3.016[ —4] 3.055[ —4] 3.058[ —4]
152-(1s2p)1 4.113[—4] 3.769] —4] 3.798] —4] 3.804[ —4]
1s2-(1s2p)2 2.332[ —4] 2.548[ —4] 2.579[ —4] 2.580[ —4]
Z=92
152-(1525)0 1.503[ —4] 2.321[ —4] 2.311[ —4] 2.319[ —4]
152-(152s)1 5.531[—5] 8.456[ —5] 8.961[—5] 9.198[ —5]
152-(1s2p*)0 3.383[—5] 1.198[ —5] 1.246[ —5] 1.289[ — 5]
1s2-(1s2p*)1 1.194[ — 4] 1.815[ —4] 1.965[ —4] 1.997[ — 4]
1s2-(1s2p)1 1.156[ —4] 9.763[ —5] 1.041[ —4] 1.087[ — 4]
152-(152p)2 6.474[ —5] 9.128[ —5] 1.009[ —4] 1.016[ —4]
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all three forms give almost the same results for Z =26
and 54 while use of the =0 limit, Eq. (1), leads to appre-
ciable error for Z =92 and neglect of the imaginary part
has little effect, even for Z =92 (<4.5%). On the other
hand, the effect of the generalized Breit interaction on the
collision strengths for He-like ions is appreciably in-
creased as compared with H-like ions for the same Z
value. The maximum effect for each Z value is only a few
percent more, but a much larger fraction of transitions
are appreciably affected. For example, there is a decrease
of 7% in the collision strength for the 1s2-(1s2p*)0 tran-
sition in ions with Z =26, while there was essentially no
effect for the 1s-2p* transition in H-like ions with this
value of Z. More remarkably, the collision strength for
the 152-(1s2p*)0 transition in He-like ions with Z =54 is
decreased by 28% upon inclusion of the generalized Breit
interaction. In addition, the other transitions involving
excitation to a 2p* or 2p state are changed by +7% and
11%, while for H-like ions with Z =54 the results for the
1s-2p* and 1s-2p transitions at the same scattered elec-
tron energy were changed by less than 19%. Of course, re-
sults summed over final target J values are similar to the
corresponding results for hydrogenic ions.

D. Li-like ions

The final data we present are for Li-like ions, those
ions with three bound electrons. Here we consider all
possible transitions of the form

1s%21+e; —1s2121" +e; . 27

These inner-shell excitation transitions produce satellites
to the He-like n =1-2 lines that are important for plasma
diagnostic purposes [32—34]. There are 42 transitions in
all, 11 from the ground level and 15 and 16 for 2/ in Eq.
(27) equalling 2p* and 2p, respectively. Table VII lists
the 19 relevant levels ordered according to energy among
the levels in each complex. In general a complex consists
of all states with the same parity, total angular momen-
tum J, and principle quantum numbers n. Next to each
level in the table is a number that is used to represent the
level in the tables to follow. The levels are labeled by
their dominant jj-coupled state in the relevant complex
with the total J value and intermediate J listed when
necessary. Hence, for example, level 12 predominantly
consists of a jj-coupled state with a total J value of 3
which was obtained by coupling the s, ,, electron to the
2p? subshell with a J value of 2.

The number of radial integrals required for even this
simple Li-like case was large enough to warrant an ener-
gy interpolation scheme that would yield accurate in-
tegrals with a much reduced computing time. The
method used in this paper is identical to the Lagrangian
scheme used in Ref. [10] expect that, in addition to the
Slater integrals, the Breit integrals in Egs. (12) and (13)
were also interpolated. We ran several detailed test cases
to compare with the interpolated collision strengths. In
all cases, the calculated results agreed with the interpo-
lated values to within less than a percent.

Near-threshold results for the collision strengths for
the inner-shell transitions of Eq. (27) are given for Z =26,

TABLE VII. Labeling of levels by dominant jj state for the
19 levels involved in inner-shell excitation of a 1s electron to an
n =2 subshell in Li-like ions.

Jj Level labels as a function of Z
state Z =26 Z =54 Z=92
[(1s><2)02s]1/2 1 1 1
[(1sX2)02p*]1/2 2 2 2
[(1s X2)02p]3/2 3 3 3
[1s(2s X2)0]1/2 4 4 4
[1s(2p*X2)0]1/2 5 5 5
[(1s2p*)12p]1/2 6 6 6
[1s(2p X2)0]1/2 7 7 7
[(1s2p*)02p]3/2 8 9 9
[(1s2p*)12p]3/2 9 8 8
[1s(2pX2)2]3/2 10 10 10
[(1s2p*)12p]5/2 11 11 11
[1s(2pX2)2]5/2 12 12 12
[( 1s2s)12p*]1/2 13 13 13
[(1525)02p*]1/2 14 14 14
[(1s2s)12p]1/2 15 15 15
[(1s25)12p*13/2 16 16 16
[(1s25)12p]3/2 17 17 17
[(1s25)02p]3/2 18 18 18
[(1s25)12p]5/2 19 19 19

54, and 92 in Table VIII. One sees that the results follow
a similar pattern to those for He-like ions. That is, the
relative effects of using the three different forms for the
Breit interaction are again similar to those observed for
H-like ions with corresponding values of Z. However, as
with He-like ions, the importance of including the gen-
eralized Breit interaction is somewhat greater for Li-like
than H-like ions. The maximum effect for a given Z
value is increased by quite a small amount as compared
with H-like ions, but the effects on individual transitions
become significant for lower Z and for a larger fraction of
these transitions, even though results summed over J
values are quite similar to those for H-like ions.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented the framework neces-
sary to include the generalized Breit interaction in the
scattering matrix elements for electron-impact excitation
of highly charged ions. This framework consisted of a
fully relativistic Dirac-Fock-Slater approach to the atom-
ic structure and a fully relativistic distorted-wave method
for calculating excitation collision strengths. The relativ-
istic structure code of Sampson et al. [9] was altered to
include options for a finite nuclear potential with a Fermi
nuclear charge distribution, inclusion of the generalized
Breit interaction perturbatively, approximations for the
lowest-order vacuum polarization, and self-energy QED
corrections to the level energies and retarded oscillator
strengths.

The distorted-wave, excitation collision code of Zhang,
Sampson, and Mohanty [10] was extended to include the
generalized Breit interaction in the scattering matrix ele-
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Transition C B GB GBI
Z =26
1-4 1.032[ —3] 1.067[ —3] 1.068[ —3] 1.068[ —3]
1-5 1.257[—5] 1.300[ —5] 1.300[ —5] 1.300[ — 5]
1-6 5.331[—6] 5.513[—6] 5.514[ —6] 5.514[ —6]
1-7 6.718[ —5] 6.947[ —5] 6.949[ — 5] 6.949[ —5]
1-13 4.628[ —4] 4.425[—4] 4.426[ —4] 4.426[ —4]
1-14 1.088[ —3] 1.074[ —3] 1.074[ —3] 1.074[ —3]
1-15 7.858[ —4] 7.644[ —4] 7.647[ —4] 7.647[ —4)
1-16 9.560[ —4] 9.638[ —4] 9.642[ —4] 9.642[ —4]
1-17 2.802[ —3] 2.745[ —3] 2.747[ —3] 2.747[ — 3]
1-18 8.610[ —4] 8.737[ —3] 8.742[ —4] 8.742[ —4]
1-19 1.282[ —3] 1.302[ —3] 1.303[ —3] 1.030[ — 3]
2-4 5.638[—5] 5.581[—5] 5.586[ —5] 5.586[ —5]
2-5 7.290[ —4] 7.228[ —4] 7.230[ —4] 7.230[ —4]
2-6 1.607[ —3] 1.575[ —3] 1.576] —3] 1.576[ —3]
2-7 1.120[ —4] 1.111[ —4] 1.111[ —4] 1.111[ —4]
2-8 8.183[ —4] 8.311[ —4] 8.316[ —4] 8.316[ —4]
2-9 2.161[ —3] 2.110[ —3] 2.112[ —3] 2.112[ —3]
2-10 8.374[ —5] 8.315[ —5] 8.320[ —5] 8.320[ —5]
2-11 8.994[ —4] 9.136[ —4] 9.141[ —4] 9.141[ —4]
2-12 3.802[ —4] 3.862[ —4] 3.864[ —4] 3.865[ —4]
2-13 2.290[ —4] 2.274[ —4] 2.276[ —4] 2.276] —4]
2-14 1.269[ —3] 1.337[ —3] 1.337[ —3] 1.337[ —3]
2-15 2.546[ —4] 2.676[ —4] 2.676] —4] 2.676[ —4]
2-16 3.553[—4] 3.525[ —4] 3.529[ —4] 3.529[ —4]
2-17 8.150[ —5] 8.087[ —5] 8.095[ —5] 8.095[ —5]
2-18 4.621[ —5] 4.585[—5] 4.590[ —5] 4.590[ —5]
3-4 5.136[ —5] 5.089[ —5] 5.094[ —5] 5.095[ —5]
3-5 1.976] —4] 1.990[ —4] 1.991[ —4] 1.991[ —4]
3-6 6.905[ —4] 6.901[ —4] 6.904[ —4] 6.904[ —4]
3-7 1.201[ —3] 1.190[ —3] 1.191[ —3] 1.191[ —3]
3-8 9.831[ —4] 9.494[ —4] 9.496[ —4] 9.496[ —4]
39 1.090[ —3] 1.069[ — 3] 1.070[ —3] 1.070[ —3]
3-10 4.136[ — 3] 4.059[ —3] 4.062[ —3] 4.062[ —3]
3-11 1.919[ —3] 1.939[ —3] 1.940[ —3] 1.940[ —3]
3-12 3.502[ —3] 3.502[ —3] 3.504[ —3] 3.504[ — 3]
3-13 1.387[ —5] 1.377[ —5] 1.378[ —5] 1.378[ —5]
3-14 3.790[ —5] 3.761[ —5] 3.765[ —5] 3.765[—5]
3-15 1.897[ —4] 1.882[ —4] 1.884[ —4] 1.884[ —4]
3-16 1.306][ —4] 1.298[ —4] 1.299[ —4] 1.299[ —4]
3-17 1.188[ —3] 1.237[ —3] 1.237[ —3] 1.237[ —3]
3-18 2.185[ —3] 2.297[—3] 2.296[ —3] 2.296[ — 3]
3-19 7.246[ —4] 7.190[ —4] 7.197[ —4] 7.197[ —4]
Z =54
1-4 3.077[ —4] 3.614[ —4] 3.625[—4] 3.629[ —4]
1-5 1.423[ —5] 1.672[ —5] 1.677[ —5] 1.679[ — 5]
1-6 1.945[ —8] 2.285[ —8] 2.292[ —8] 2.295[ — 8]
1-7 1.434[ —6] 1.684[ —6] 1.690[ — 6] 1.692[ — 6]
1-13 1.439[ —4] 1.261[ —4] 1.270[ —4] 1.271[ —4]
1-14 1.826[ —4] 1.759[ —4] 1.776] —4] 1.779[ — 4]
1-15 2.542[ —4] 2.321[ —4] 2.340[ —4] 2.344[ —4]
1-16 3.622[ —4] 3.842[ —4] 3.889[ —4] 3.893[ —4]
1-17 5.034[ —4] 4.676[ —4] 4.717[ —4] 4.725[ —4]
1-18 2.341[ —4] 2.411[ —4] 2.437[ —4] 2.439[ —4]
1-19 2.804[ —4] 3.059[ —4] 3.095[ —4] 3.097[ —4]
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Table VIII (Continued).

Transition C B GB GBI
2-4 1.608[ —5] 1.600[ —5] 1.619[ —5] 1.620[ —5]
2-5 3.251[—4] 3.241[ —4] 3.276[ —4] 3.280[ —4]
2-6 2.757[ —4] 2.527[—4] 2.548[ —4] 2.553[—4]
2-7 6.442[ —7] 6.399[ —7] 6.457[—7] 6.460[ —7]
2-8 1.923[ —4] 2.083[ —4] 2.107[ —4] 2.108[ —4]
2-9 5.146[ —4] 4.710[ —4] 4.749[ —4] 4.757[ —4]
2-10 2.708[ —7] 2.938[—7] 2.973[—7] 2.974[—17]
2-11 2.791[ —4] 3.046[ —4] 3.082[ —4] 3.084[ —4]
2-12 1.026[ —6] 1.121[ —6] 1.134[ —6] 1.134[ — 6]
2-13 7.223[—5] 7.727[ —5] 7.832[ —5] 7.854[ —5]
2-14 4.403[—4) 5.410[ —4] 5.401[ —4] 5.403[ —4]
2-15 1.908[ —6] 2.298[ —6] 2.299[ —6] 2.301[—6]
2-16 1.306[ —4] 1.374[ —4] 1.395[ —4] 1.400[ —4]
2-17 1.334[ —6] 1.402[ —6] 1.424[ —6] 1.428[ —6]
2-18 3.814[—7] 4.010[ —7] 4.073[—7] 4.085[—7]
3-4 1.073[ —6] 1.046[ — 6] 1.059[ —6] 1.060[ —6]
3-5 1.183[—6] 1.223[—6] 1.235[ —6] 1.235[ —6]
3-6 1.908[ —4] 2.014[ —4] 2.038[ —4] 2.041[ —4]
3-7 3.149[ —4] 3.086[ —4] 3.117[ —4] 3.121[ —4]
3-8 3.082[ —4] 2.850[ —4] 2.876[ —4] 2.878[ —4]
3-9 3.202[ —4] 2.954[ —4] 2.980[ —4] 2.983[ —4]
3-10 8.866[ —4] 8.275[ —4] 8.348[ —4] 8.361[ —4)
3-11 5.710[ —4] 6.031[ —4] 6.105[ —4] 6.112[ —4]
3-12 7.051[ —4] 7.320[ —4] 7.401[ —4] 7.407[ —4]
3-13 2.111[—7] 2.221[—17] 2.256[—7] 2.263[—17]
3-14 3.090[ —7] 3.251[—7] 3.301[—7] 3.312[—7]
3-15 6.564[ —5] 6.903[ —5] 7.011[—5] 7.033[—5]
3-16 2.368[ —6] 2.625[ —6] 2.650[ —6] 2.655[ —6]
3-17 1.727[ —4] 1.903[ —4] 1.922[ —4] 1.926[ —4]
3-18 8.533[—4] 1.048[ —3] 1.046[ —3] 1.046[ —3]
3-19 1.985[ —4] 2.088[ —4] 2.120[ —4] 2.127[ —4]
Z=92
1-4 1.998[ —4] 3.078[ —4] 3.117[ —4] 3.148[ —4]
1-5 4.989[—6] 7.688[ —6] 7.785[ —6] 7.863[ —6]
1-6 4.174[ —12] 6.438[ —12] 6.528[ —12] 6.593[ —12]
1-7 3.945[ —8] 6.090[ —8] 6.184[ —8] 6.246[ — 8]
1-13 7.320[ —5] 7.176[ —5] 7.747[ —5] 7.894[ —5]
1-14 7.390[ —5] 7.243[—5] 7.822[ —5] 7.975[—5]
1-15 7.552[—5] 6.306[ —5] 6.776[ —5] 7.079[ —5]
1-16 1.577[ —4] 2.387[—4] 2.596[ —4] 2.638[ —4]
1-17 1.266[ —4] 1.143[ —4) 1.235[ —4] 1.282[ —4]
1-18 7.768[ — 5] 8.641[ —5] 9.449[ —5] 9.648[ —5]
1-19 7.770[ — 5] 1.093[ —4] 1.208[ —4] 1.216] —4]
2-4 3.751[—6] 4.711[ —6] 5.108[ —6] 5.197[—6]
2-5 1.487[ —4] 1.868[ —4] 2.026[ —4] 2.061[ —4]
2-6 7.628[ —5] 6.391[ —5] 6.870[ —5] 7.177[ —5]
2-7 7.515[—9] 9.432[ —9] 1.020[ — 8] 1.033[ —8]
2-8 7.851[—5] 8.734[ —5] 9.551[—5] 9.754[ —5]
2-9 1.252[ —4] 1.126[ —4] 1.217[ —4] 1.263[ —4]
2-10 2.457[—9] 2.474[ —9] 2.686[ —9] 2.764[ —9]
2-11 7.771[ —5] 1.093[ —4] 1.208[ —4] 1.216] —4]
2-12 4.578[ —9] 6.513[—9] 7.201[ —9] 7.249[ —9]
2-13 5.463[ —5] 8.382[—5] 8.677[ —5] 8.836[ —5]
2-14 2.812[ —4] 4.348[ —4] 4.330[ —4] 4.346] —4]
2-15 6.074[ — 8] 9.412[ —8] 9.414[ —8] 9.464[ — 8]
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Table VIII (Continued).

Transition c B GB GBI

2-16 7.366[ —5] 1.125[ —4] 1.192[ —4] 1.224[ —4]
2-17 1.723[ —8] 2.613[ —8] 2.775[ — 8] 2.848[ —8]
2-18 8.373[ 9] 1.269[ —8] 1.348[ —8] 1.383[ —8]
3-4 1.710[ —8] 1.763[ —8] 1.915[ —8] 1.967[ —8]
3-5 8.801[ —9] 9.171[—9] 9.945[—9] 1.013[ —8]
3-6 7.903[ —5] 1.196[ —4] 1.301[ —4] 1.322[ —4]
3.7 8.922[ —5] 9.311[—5] 1.015[ —4] 1.041[ —4]
3-8 1.552[ —4] 2.143[ —4] 2.328[ —4] 2.367[ —4]
3-9 1.384[ —4] 7.328[ —5] 7.771[—5] 7.977[—5]
3-10 2.533[ —4] 2.267[ —4] 2.447[ —4] 2.541[ —4]
3-11 2.369] —4] 3.586[ —4] 3.900[ —4] 3.963[ —4]
3-12 1.934[ —4] 2.394[ — 4] 2.632[ —4] 2.670[ —4]
3-13 1.609[ —9] 2.478[ —9] 2.617[—9] 2.688[ —9]
3-14 9.813[—9] 1.510[ —8] 1.595[ —8] 1.639[ —8]
3-15 3.682[ —5] 5.622[ —5] 5.956[ —5] 6.114[ —5]
3-16 6.856[ —8] 1.056[ —7] 1.069] —7] 1.081[—7]
3-17 8.076[ —5] 1.235[ —4] 1.300[ —4] 1.332[ —4]
3-18 5.901[ —4] 9.126] —4] 9.085[ —4] 9.119[ —4]
3-19 1.105[ —4] 1.688[ —4] 1.788[ —4] 1.836[ —4]

ments. The code is completely general in that collision
strengths for any ion with any number of bound electrons
may be calculated. Of course, due to the approximations
associated with the Dirac-Fock-Slater and distorted-wave
approaches, the values obtained are expected to be highly
accurate only when the relationship Z >2N exists be-
tween the ionic atomic number and the number of bound
electrons.

Collision strengths using three different forms of the
Breit interaction were calculated with this code and
presented in this work. These three forms were the in-
teraction originally formulated by Breit, given in Eq. (1);
the generalized Breit interaction, given by Eq. (3), which
represents the lowest-order Feynman diagram for ex-
change of a single virtual photon between two electrons;
and the real part of the generalized Breit interaction. Re-
sults obtained from these three forms are labeled B, GBI,
and GB, respectively, in the tables.

Numerical results were reported for H-like, He-like,
and Li-like ions with Z values of 26, 54, and 92. These Z
values were chosen to explore the effective range of the
generalized Breit interaction when calculating excitation
collision strengths. The three ion types were chosen pri-
marily for their importance in high-temperature plasma
modeling and diagnostics and for their likelihood of un-
dergoing transitions involving tightly bound electrons
that are sensitive to the effects of the Breit interaction. A
number of transitions were also considered to ascertain
the scope of the interaction’s effect. Four different sets of
transitions were examined for hydrogenic ions, while the
1s2-1s21 transitions were considered for He-like ions, and
the 1s22/-1s521'21" transitions were considered for Li-like
ions.

For low Z values (Z $26) there appears to be not
much need to include any form of the Breit interaction in
excitation collision strength calculations, although the
generalized Breit interaction does produce effects as large

as 7% and 5% for He-like and Li-like ions with Z =26.
For larger Z values (Z =~ 54) the effect of the generalized
Breit interaction on collision strengths becomes apprecia-
ble (~20%) for certain transitions among tightly bound
electrons. Also, the other two forms of the interaction
are almost as good (within a couple of percent) at predict-
ing these collision strengths. For high Z values (Z =92)
there are significant effects in all collision strengths in-
volving transitions between 1s and higher electrons.
Many of these changes are in the range of 30-60 %.
Even the n =2-3 collision strengths involving less tightly
bound electrons mostly exhibit 5-10% changes for
Z =92. Collision strengths for n =2-2 transitions were
not appreciably affected by the generalized Breit interac-
tion for any Z value considered, at least for H-like ions.
The energy of the exchanged photon is apparently too
small for these transitions to make a significant contribu-
tion, even for high Z ions.

The real part of the generalized Breit interaction yields
collision strengths that are very close to those values ob-
tained with the full interaction for all transitions, Z
values, electron energies, and number of bound electrons
considered in this work. A maximum deviation of about
4.5% between the two calculations is observed for high Z
ions in a few transitions. Usually, these deviations are
less than 2%. This last result is of some practical impor-
tance since most of the computing time for calculating
the collision strengths is required for the evaluation of
the Breit radial integrals. Excluding the imaginary in-
tegrals amounts to a reduction in computing time by al-
most a factor of 2. Using the =0 limit of the general-
ized Breit interaction, however, resulted in greater than
10% discrepancies for some transitions in very high Z
ions.

Finally we mention the important and perhaps surpris-
ing conclusion that the inclusion of the generalized Breit
interaction in the scattering matrix elements appears to
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have a somewhat larger effect on collision strengths for
complex ions than for hydrogenic ions. For example, the
near-threshold results for the 1s-2p* and 1s-2p transitions
in H-like ions with Z =54 were found to be affected by
less than 1%. On the other hand, the collision strengths
for one of the four analogous transitions in He-like ions
with this Z value was decreased by 28% and those for the
remaining transitions were changed by +7% and 11%.
Of course, as one would expect must be true, results
summed over final target ion J values are very similar to
the corresponding results for hydrogenic ions. The ex-
planation is that the Breit interaction does affect some in-
dividual matrix elements appreciably, even for quite low
Z, but the effect is largely cancelled upon summation
over a significant number of quantum numbers. Along
this same line we note that even for Z =92 it was found
by Pindzola et al. [5] that for ionization, which is analo-
gous to excitation summed over many final nlj values, the
generalized Breit interaction has little effect on the cross
sections until very high impact-electron energies are con-
sidered.

In view of this fact that inclusion of the generalized
Breit interaction is more important for complex ions, and
also that even for H-like ions it was found to be of some
significance for the n =2-3 transitions, one would expect
that its inclusion might be important for excitation of
complex ions such as Ne-like and F-like ions for a fairly
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wide range of high Z values. We expect to investigate
this possibility in future work.

Due to the lack of experimental data for excitation col-
lision strengths of H-like, He-like, and Li-like ions with
28 <Z =92 it is impossible to check our calculated re-
sults with physical measurements for the regime in which
the Breit interaction has an appreciable effect. The best
comparison we can offer is with the few theoretical test
cases provided by Walker [6] and Moores and Pindzola
[8] for hydrogenic ions. The agreement with these results
is very good. In the future, the most likely source of high
Z collision strength measurements would appear to be
the EBIT experiments of Beiersdorfer et al. While no ex-
citation measurements have yet been reported for the
transitions in H-like, He-like, and Li-like ions for the
higher Z values explored in this work, it is expected that
such measurements by EBIT will be made in future work
[14].
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