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Strongly intermittent chaos and scaling in an earthquake model
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We discuss the relation between scaling laws and dynamical behavior for earthquakes in the frame-

work of a Burridge-Knopoff model. Due to the nontrivial interaction among many degrees of freedom,
a new type of strongly intermittent chaos is found. The dynamics is dominated by wild fluctuations,

implying exponential tails in the probability distributions. This is caused by very slow relaxation of
time correlations, which gives rise to an anomalous behavior for the effective Lyapunov exponent and

for the time signal of the earthquake magnitude.

PACS number(s): 05.45.+b, 91.30.Px, 05.40.+j

The comprehension of the fundamental mechanism un-

derlying the presence of scaling invariance in earthquakes
has led the introduction of toy models which reproduce
the power laws, such as the Gutenberg-Richter law [1] or
the Omori law [2], observed in experimental records. The
goal is twofold: The understanding of the origin of the
scaling laws in earthquakes and the individuation of pred-
ictability criteria in the analysis of time records. Both
these lines of research have been initiated in different
frameworks. The onset of deterministic chaos has been
found in a system of two coupled blocks damped by asym-
metric frictions [3], suggesting that chaotic phenomena
might play an important role in quakes. On the other
hand, Carlson and Langer [4] have introduced a simple
version of Burridge and Knopoff' model [5], consisting of a
one-dimensional chain of blocks and springs mimicking
the interactions of two faults. The presence of many de-
grees of freedom makes it possible to obtain the
Gutenberg-Richter law.

This Rapid Communication tries to establish a bridge
between these viewpoints. Our main result is that the
dynamical behavior of the Carlson-Langer model is so
strongly intermittent that it qualitatively diff'ers from the
one exhibited by systems with few degrees of freedom,
such as the two-block model of Huang and Turcotte [3].
In fact, scaling appears as a consequence of strong time
correlations in the response to a perturbation of the
dynamical state of the system originated by intermittency.
For this reason, our tool of investigation, as usual in
dynamical systems, is the effective Lyapunov exponent.
Its computation allows us to show that ~hen the number
of degrees of freedom is large enough, the dynamics is
dominated by wild fluctuations, implying exponential tails
in the probability distribution and anomalous behaviors
for both the eff'ective Lyapunov exponent and the time sig-
nal of the earthquake magnitude.

The model of Carlson and Langer is composed by a
chain of blocks which slide on a rough plane so that their
motions are damped by a homogeneous nonlinear friction
law. When a block is stuck the static friction is such that
it exactly balances the spring forces up to a certain thresh-

old. The blocks are coupled via nearest-neighbor springs
and, through a pulling spring, to a fault moving with con-
stant velocity. The dynamical evolution is thus given by a
sequence of stuck periods and quakes, consisting of sliding
of groups of blocks. The deterministic differential equa-
tions describing the system generate scaling behaviors,
such as the Gutenberg-Richter law, although peaks corre-
sponding to energetically very strong earthquakes are
much more frequent than expected by an extrapolation of
the smaller events.

If the number of blocks is large, the numerical study of
the evolution for long times is rather difficult. It is then
convenient to use a cellular-automaton version of the
model introduced by Nakanishi [6). Basically it is a
deterministic evolution mimicking the continuous (in
time) equations of Carlson and Langer. Both models ap-
pear to exhibit the same scaling behavior. Let us briefly
recall the rules defining the Nakanishi automaton. In ab-
sence of friction, the force f; acting on the ith block on po-
sition x; is

f; —k~(x; —vent)+k, (x;-i+x;+i —2x;),

where k, is the Hooke constant for the spring connecting a
block to its nearest neighbor, and kr is the Hooke constant
of the pulling spring, linked to the fault moving at con-
stant velocity v~. When a block is stuck, the static friction
balances the force as long as it is smaller than a threshold
value fih. Each f; increase as krv~t with time, and as soon
as one of the forces overwhelms the threshold, the corre-
sponding block slips and relaxes a certain amount of force
bf. During this elementary process all the other blocks
are assumed to be stuck and one has that if fj =f&h then
the strain relaxation between the jth block and its nearest
neighbors is given by a change of the forces from f to f'

fj frh ~f fj'+ i =fj+ i+ 2 ~~f.

where 5 2k, /(k~+2k, ) measures the stiffness of the sys-
tem. If f/~ i (f&s, the process stops until the next seismic
event. Otherwise a slip cascade starts. Suppose ft', —f,h~ 0 (with k j+1 or j—1), then we have a relaxation
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from k to its nearest neighbors by the rule

fk @(fk fth)~ fk ~ I fk ~ I + 2 t) (fk fk ) (3)

This process is repeated until all the forces are below the
threshold. The whole cascade of these elementary pro-
cesses is assumed to happen in zero time. This is sensible
since the slipping time is much smaller than the quiescent
time between two cascades. The function @measures how
much force is relaxed when f exceeds f,h and one should
have 4(0) =fth Bf—and i4(x) i (fth for x )0. Assum-
ing tt, =k~=fth=l, a simple form satisfying these con-
straints is (see Ref. [6])

(4)

' I/2

bf(n) = g [f;(t„)—f (t„)]' (5)

In order to have f' close to f after the event one takes for
f' the new vector with components

f; (t. ) f,"(t.)—
(6)

af(n)
where Bp is the distance between f and f' at the initial
time. A, is define by

@( ) (2 8f)'—/a
x+ [(2 —Sf)/a]

We have performed extended numerical computations on
this automaton with boundary conditions given by fixing
fp=fv+& =0. We look at it as a discrete (in time) sys-
tem, where we indicate by n =1 the first event at time t 1,

by n =2 the second event at time t2, and so on. Since we
cannot write the time evolution in terms of an explicit
map, it is not possible to use the standard method involv-
ing the linearized dynamics for the computation of the
Lyapunov exponents. However, one can easily follow the
divergence of nearby trajectories, and thus determine the
maximum Lyapunov exponent X [7]. One considers two
trajectories f and f' and their diA'erence after the event
[s]:

becomes small so that the stress transfer is more di%cult.
Then the maximum Lyapunov exponent vanishes and the
Gutenberg-Richter law becomes a pure power law without
a pronounced peak for big events. At this point the model
is "at the edge of chaos" [9]. It is an open problem to un-
derstand whether the strongly intermittent behavior can
survive in marginal situations.

A standard method to probe the intermittency is by
studying the probability distribution of the effective
Lyapunov exponent y, (z) [10] on a time interval z

y, (z) =—g ln
b (n)

(8)
z n i+I Bp

In a large class of intermittent dynamical systems one ob-
serves [11]that, for a large value of z, the probability dis-
tribution of y(z ) has the form

P(y(z ) ) -exp[ —S(y)z], (9)

p(z) =z[(y(z)') —(y(z ))'] (10)

is well defined and p(z) rapidly tends to an asymptotic
finite constant p . In such a case, one can apply standard
probabilistic arguments (central limit theorem) to show
that the small fluctuations of y around X are Gaussian,
i.e., S(y) =(y —X) /2p* for y=A, .

In the Nakanishi model (for d =0.95, a=1.0) the
Gaussian-like intermittency holds for a number of blocks
N roughly smaller than 100. At N larger than 100, the
asymptotic value of p diverges as a power of z

where we find w=0. 71 which does not depend on N or on
the observation time T. Figure 1 shows the behavior of p

where S(y) is an entropy function, quite similar to the
f(a) spectrum for multifractals [10]. S(y) is zero for
y=X and otherwise positive. Equation (9) holds if there
are no strong correlations among y, (z ) and y, (z ) at large
value of it —t'll In th.is case for large z the variance

X= lim lim —g In
af(n)

ho~0 T~~ T g~[ Bp
(7)

The maximum Lyapunov exponent X for the original map
can be written in terms of k and the average time (z)
=(t„+&—t„) between two subsequent events as ) =k/(z).
For a very long range of values of parameters, X, is found
to be positive, indicating that deterministic chaos is a gen-
eric feature of Burridge-Knopoff models. For the parame-
ters 5 =0.95, a =1.0 (which are used throughout the pa-
per) we obtain A. =7.22x10 . The dependence of X on
the parameters is beyond the purpose of the paper.

At first glance, a positive value of the Lyapunov ex-
ponent coexisting with the presence of power laws in a
wide range of scales could be seen as rather surprising,
since I/X introduces a characteristic time scale in the sys-
tem. However, I/A, is not the only possible characteristic
time, because the onset of wild fluctuations of the chaoti-
city degree introduces a hierarchy of characteristic times.

The model has indeed been considered as an example of
self-organized criticality. This is particularly apparent
when A (which is the measure of the force conservation)
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F16. 1. The scaling behavior, Eq. (11), with p vs z plotted
for various sizes of the system N 2S (crosses), 200 (squares),
400 (diamonds), and 800 (circles). The line corresponds to
w =0.71.
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vs z for different values of N. In our numerical simula-
tions we observe a T-dependent prefactor in (11) which,
however, saturates for large values of T. The scaling (11)
is incompatible with the form (9) of P(y(z)). It implies
that
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-4

P( ( )) e 6( ) (i2)

The peculiarity of the form (12) shows up by looking at
the moments of a response R(z) -exp[y, (z)z] to a small
perturbation acting at time t, after a delay z. If (9) holds,
the generalized Lyapunov exponents L(q) defined by
(R(z)v)-exp[L(q)z] are related to S(y) by the Legen-
dre transformation: L(q) =max„[qy —S(y)l. If S(y) in-

creases faster than y for y»1 then L(q) exists for any
value of q &0. However, when S(y)=cy+const for
y» 1, it follows

P(R) -R -""'
so that L(q) ~ for q & c. This means that a perturba-
tion may grow with exceptionally large y with relatively
large probability during a chaotic burst. Such an event
will then dominate the large moments. It is not difficult to
see that if (12) holds, then the generalized Lyapunov ex-
ponents are not defined, i.e., L(q) =~ for q & 0. For sake
of simplicity we discuss the case with G(y) =ay+const.
For y» 1, one has

P(R) -R -"+"" (i4)

so that L(q) ~ for q & c(z), where c(z) a/z van-
ishes for z ~. Scaling (11)has a simple explanation in

terms of the correlation of y, (1). Note that

z [(y(z) ') —(y(z))'1 =2 g ([yi+p(I ) —&] [y, (1)—&])
i[t I

so that (11) indicates that ([y,+,(1)—
A, ][y&(l) —

A, ]) is
not integrable and behaves as z t' )- z . As far
as we know such a strong intermittent behavior has not
been observed yet in deterministic dynamical systems.

In our context the transition from weak to strong inter-
mittency at N-100 seems to be the mechanism that al-
lows the onset of scaling laws, by introducing a hierarchy
of characteristic times, different from X . To put in rela-
tion the chaotic behavior with quantities of geophysical in-
terest, we study a time record of the magnitude of the
seismic events at time n:

jv

m(n) -ln g [x;(t„)—x;(t„ I)] (is)
i

where x;(t„) indicates the position of the ith block after
the cascade event at time t„The displace. ment x;(t„)

x;(t„I) is proportiona—l to the-sum of all the negative
increments of f; in the cascade at time t„. We thus have
computed the probability P(m)dm that an earthquake
has magnitude in the interval [m, m+dm]. Figure 2
shows that at N-100 there is a transition from an almost
flat P(m) to the Gutenberg-Richter law P(m) —Ae
(when m is below the pronounced peak) with b =0.7S in-
dependent of N. Strong time correlations of m(n) also
appear at N ~ 100. An even more impressive signature of
the connection between the strong intermittency of chaoti-
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FIG. 2. Transition to the Gutenberg-Richter law: In[P(m)/
P i, ] vs (m —m i, ) for N 25, 50, 200, 400, 800. The observa-
tion time is T 10, P ~ is the maximum of P(m) and m ~ is

the most probable value of the magnitude.
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FIG. 3. Correlation between earthquake magnitude and
effective Lyapunov exponent in a model with for N =400 blocks:
plot of y& (z 1) vs m(t) for 2x10 events.

city degree and scaling is provided by the fact that the sig-
nal m(n) exhibits coarse-grained properties similar to
those of y(z ). Consider the variables

t+i
M, (.)-—g m(n). (16)

& n t+1

In the absence of strong correlations one expects
z[(M(z) ) —(M(z)) 2] —v, with v constant, and a proba-
bility distribution P(M(z))-exp[ —Z(M)z]. This
feature holds only for small N, while for large N one finds
a situation very close to (11) and (12) for the effective
Lyapunov exponent, i.e., v- z with w'=0. 96 and
P(M(z ) ) -exp[ —NM) z ' ]. Here the scaling func-
tions Z(M) and I (M) play the same role as S(y) and
G(y) in (9) and (12), respectively. Moreover, the time
correlation of the magnitude m(t) has a very slow decay

, as it is for the effective Lyapunov
exponent yt.

Finally we discuss a rather surprising feature of the
correlations between m(t) and y, (1) and their possible
relevance for geophysics. Figure 3 shows that large posi-
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tive deviations of the effective Lyapunov exponent from its
mean value can occur during seismic events of small mag-
nitude. On the contrary, during big earthquakes, one al-
ways has a regular evolution, corresponding to rather
small y&. Though the heuristic power of Burridge-
KnopoA' models is questionable [12], the consequence of
such a behavior is rather surprising, since the predictabili-
ty time is roughly proportional to y . For this reason,
one is tempted to argue that the search for statistical pat-
terns in long-time records of a seismic signal should not be
useful for the prediction of the sudden occurrence of a
destructive earthquake. In a dynamical system language,
it means that two nearby trajectories in a quiescent nor-
mal period of activity can have a rate of divergence y very
large, because of the long tails of the distributions.

In conclusion, we have discussed the chaotic behavior of
simple models of earthquakes. We have found that scal-
ing laws in earthquake statistics appear as a nontrivial
consequence of the dramatical increasing of intermittency

due to a cooperative effect of many interacting degrees of
freedom. This is a somewhat exceptional form of deter-
ministic chaos with respect to the usual dynamical sys-
tems studied in the literature. Its most spectacular mani-
festation is that the increasing rates L (q) (the generalized
Lyapunov exponents) of the moments of the time response
to a small perturbation diverge, though the typical rate k
(the maximum Lyapunov exponent) is well defined.
Moreover, this strong intermittency phenomenon is relat-
ed to very slow relaxation of time correlations (power laws
with small exponents), and thus to the absence of a
characteristic time scale in the system.
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