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We investigate the synchronization between two systems consisting of coupled circle maps that have

a common drive, which may be chaotic or regular. We observe several new aspects of chaotic and reg-
ular synchronization. In the chaotic regime the transition from synchronization to nonsynchronization
corresponds to the transition from one to two positive Liapunov exponents. We find regions in the pa-
rameter space with periodic motion where synchronization is always achieved, never achieved, or, de-

pending on the initial conditions, sometimes achieved. The nonsynchronization or synchronization are
stable in the presence of a weak chaotic (or noisy) signal.

PACS number(s): 05.45.+b

This work concerns the study of synchronization of
chaotic and nonchaotic systems. Our motivation comes
from the recent publications on chaotic synchronization
[1-4].Pecora and Carroll [I] observed that it is possible
to synchronize two identical stable systems with a chaotic
drive, even if the initial conditions are different for the two
systems. They used a dynamical system of the type
u =g(u, w), w h(u, w), and asserted that a variable w'

governed by w' h(u, w') will synchronize with w only if
the sub-Liapunov exponents of the driven subsystem are
all negative. The sub-Liapunov exponents they defined
depend on the Jacobian matrix of the w subsystem, taking
derivatives with respect to w only. The synchronization
condition is also valid for discrete time systems, as was
found for the example in [4].

Here we show that the sub-Liapunov exponents as
defined in [ll are Liapunov exponents of the global system
consisting of driving and driven systems together. In a
simple system consisting of coupled sine-circle maps we
find that the regime of chaotic synchronization occurs
when one of the Liapunov exponents of the global system
is negative and the other positive. The synchronization is
lost when both exponents become positive, which has been
referred to as the hyperchaos regime [5].

In our studies of chaotic synchronization in coupled di-
gital phase-locked loops [4] we found that, depending on
the parameters and initial conditions used, chaotic syn-
chronization may sometimes occur, never occur, or always
occur between the driving and stable subsystem. This
may also be observed when the driving and driven systems
are completely stable, i.e., in the periodic or quasiperiodic
regime. Here we show that this phenomenon is caused by
the lack of symmetry between w and w'. In the driving
system there is a feedback between w and u, which does
not exist in the driven system. It turns out that w and w'

are in fact diferent subsystems, which may have different
orbits and distinct stability properties.

In our system of coupled sine-circle maps we will show
that synchronization between the driving and driven sys-
tem is never observed in most of the Arnold tongues,
where the systems are completely stable. There are re-

gions of periodic motion where synchronization is always
obtained, and in other regions synchronization may or
may not occur, depending on the initial conditions used.
In the latter case we study the basin of attraction and find
a nonfractal structure.

Consider the system of equations

=pl" + 0+ sin [2tr($2 —pl")],
2x

y2+' -y2+ n'+ sin[2~(y,"—y2)],

(la)

(lb)

as the driving system. Now consider a driven subsystem
of the above equations, identical to the first equation,

p3 f3+ 0+ sin[2tr($2 —ps)] .

81"+' =8)+0 ——sin(2tr8|"),k
7E'

gn+1 gn+ g

(3a)

(3b)

and

83 83+ 0 —— [sin(2tr8f) +sin(2tr83 )]

Thus the evolution of pl and p2 can be decomposed in two
motions: the circle map [Eq. (3a)] and a trivial linear
motion [Eq. (3b)]. Equation (4) is a driven circle map.
The motion of 82 is decoupled from the motion of 8~ and

The operation modulo 1 is assumed on the right-hand side
of the above equations. We show in Fig. 1(a) the phase
diagram for any of the variables pl, p2, or p3. The white
part represents periodic orbits and the shaded area repre-
sents chaotic or quasiperiodic motion. (In all the numeri-
cal calculations shown here we have neglected a transient
of 3000 iterations. ) The Arnold tongues [6] emanating
from k =0 are evident in the figure. The structure of the
phase diagram can be better understood if we make the
following change of coordinates: Define 81"=Pl"—Pq,
82=y,"+y2, 8,"=y3 y2,

—n —= n —n', —and n+=—n+n'.
In the new variables Eqs. (I) and (2) become
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ble. We also see regions where the motion is chaotic
(above the k =0.5 line) and synchronization is observed as
found previously [1,4]. In other chaotic regions synchron-
ization is not found.

All these features can be understood by studying the ei-
genvalues (or equivalently the Liapunov exponents) of the
global system consisting of the driving and driven systems
together.

The Jacobian matrix of the global system in the 0 coor-
dinates is given by

(b)
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[1 —2k cos(2z8i )], (6a)

X2 =1,
X3 = g [1 —k cos(2sr83)] .

n 1,N

(6b)

(6c)

[The eigenvalues are, of course, the same if calculated in

the III coordinate system. ] The Liapunov exponent associ-
ated with the eigenvalue X; is defined as

Now we calculate the product of the Jacobian matrices in
a given orbit of period N and find the eigenvalues of the
resulting matrix, which are

FIG. i. (a) Regions of periodic motion (white) for any of the
variables p[, IIII2, and III?3. We consider the motion periodic if
within 1000 iterations the system returns to the initial point
within a radius of IO . (b) Regions where synchronization
(white) and nonsynchronization (shaded) are observed for the
initial conditions p] 0.2, p2 0, and p3 0.5. We consider the
orbit synchronized if after the transient period (3000 iterations)

83. In the new coordinate system the period of a regular
orbit is not necessary the same as in the p coordinate sys-
tem. The border of invertibility for the circle map [Eq.
(3a)] is given by k =0.5. Below this line chaotic motion
does not exist; there are only periodic or quasiperiodic or-
bits.

We note that synchronization between fbi and II3 implies
synchronization between 0~ and 03, because the same
change of coordinate is made for fbi and p3. The concept
of synchronization is coordinate independent if and only if
one makes the same change of coordinate in both driving
and driven systems.

The region where synchronization between nfl~ and ffc3

(or 8i and 83) is observed (white) is shown in Fig. 1(b) for
the initial conditions ff i' =0.2, p2 =0.0, and f!3 =0.5.
Comparing Figs. 1(a) and 1(b) we see that synchroniza-
tion is generally not observed when the motion is periodic,
with the exception of the period one tongue, nor when the
motion is quasiperiodic. In fact, as we will show, syn-
chronization in most of the periodic tongues is never possi-

In our system one of the Liapunov exponents A2 is zero,
reflecting the fact that one of the variables has a trivial
motion. We calculate the two other Liapunov exponents
A~ and A3 and plot the region where they are positive
(shaded area) in Figs. 2(a) and 2(b), respectively. Com-
paring Figs. 1(b) and 2 we see that synchronization is pos-
sible only if A3 is nonpositive. The driven system is more
stable than the driving system, and when both Liapunov
exponents become positive chaotic synchronization is lost.
The presence of more than one positive Liapunov ex-
ponent in a given system has been called hyperchaos [5].
Using this nomenclature, it is the hyperchaos regime that
determines the region of nonsynchronization when the
system is chaotic.

Now we calculate the sub-Liapunov exponent as defined

by Pecora and Carroll [1]. The sub-Liapunov exponent
A3 for ctc3+' is a function of the Jacobian with respect to
ctc3 and is given by

A3= lim —g In(-8!l3+'/afl3[
1

~+n I,N

= lim —g In~I —kcos[2sr(&2 —cfl3)]~. (8)1

N n-i, w

It turns out that A3 is in fact A3, that is, the sub-Liapunov
exponent of the driven subsystem as defined in [I] is one
of the Liapunov exponents of the global system. This
occurs because 8~"+' and 82+' do not depend explicitly on

03 which makes the elements J t 3 and J23 of the Jacobian
matrix equal to zero. When one calculates the product of
the Jacobian matrices for a given orbit, these elements of
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FIG. 2. Regions with positive Liapunov exponents (a) Ac

(shaded) and (b) A3 (shaded). We considered the Liapunov ex-

ponents positive if A; ~ 10 for N 30000.

0.2

0 S

0.336 0.342 0.349 0.355 0.362 0.368
the product remain zero. This insures that one of the ei-
genvalues gives the sub-Liapunov exponent defined by
Pecora and Carroll. This result holds also for higher-
dimensional systems, in maps as well as in flows. The
sub-Liapunov exponents are Liapunov exponents of the
global system because also in these cases the Jacobian ma-
trix has the elements originated from the derivative of the
driving variable with respect to the driven variables equal
to zero The cor.responding elements are also zero in the
matrix resulting from the product of the Jacobian ina-
trices.

Now we turn our attention to phenomenon of nonsyn-
chronization in the periodic regions for the system
governed by Eqs. (I) and (2). The first case we consider
is the period-two tongue (in the 8 coordinate system),
which is the tongue situated in the middle of Figs. 1 and 2.
For k =0.5 the period two orbit is stable for
0.464 ~ 0 &0.535. There is only one stable attractor for
8~, whereas for 83 we find two attractors, one of them be-
ing the same as the attractor for 0~. %'e calculate the
nontrivial eigenvalues )i, i and li, 3 according to Eq. (6) with
N =2. In Fig. 3(a) we show A, i as a solid line and A, 3 as
dashed and dotted lines for the synchronizing and non-
synchronizing attractors, respectively. For 0.485 ~ 0—
~0.514, A, 3 is less than one for both synchronizing and

Q
FIG. 3. Eigenvalues k! (solid) and A, s (with the dashed and

dotted lines corresponding, respectively, to the synchronizing

and nonsynchronizing attractors) for k 0.5; (a) period-two and

(b) period-three orbits. The inset in (a) shows the basins of at-
traction for the synchronizing (white) and nonsynchronizing at-

tractors (shaded) for a period-two orbit (k 0.5, 0 — 0.49).

nonsynchronizing attractors. Thus synchronization may
or may not be observed depending on the initial condi-
tions. Outside this interval the eigenvalue corresponding
to the nonsynchronizing orbit (dotted curve) is greater
than one, and therefore unstable. This implies that in

these regions 8~ and 93 will always synchronize, since the
basin of the synchronizing attractor now constitutes the
entire phase space.

By analyzing the period-three orbit we identified re-
gions where synchronization never occurs (except if the
initial conditions for ei and 83 are completely identical).
For k =0.5 the period-three orbit is stable for 0.336
+ 0 — 0.367. In this case we also find one stable attrac-
tor for 8~ and two attractors for 03, one of them synchron-
izing with 0~. The nontrivial eigenvalue X~ is shown as a

SYNCHRONIZATION OF REGULAR AND CHAOTIC SYSTEMS
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solid line in Fig. 3(b). The eigenvalues )i.3 for the syn-

chronizing and nonsynchronizing attractors are the
dashed and dotted lines, respectively. At 0 +0.342 or
0 —~0.362, X,3 for the synchronizing attractor is greater
than one, consequently it is unstable. Therefore, in these
parameter ranges, the period-three orbits for the two sys-
tems are always diA'erent, independent of the initial condi-
tions (when they are not identical). For 0.359~ II

0.362 synchronization is always found, since in this re-
gion the nonsynchronizing attractor is unstable.

For periodic tongues with period greater than three
synchronization is never obtained. We find that the syn-

chronizing attractor is always unstable (that is, the corre-
sponding A, 3 is always greater than one) for the driven sys-
tem in these Arnold tongues. Synchronization in the
period-one tongue is always observed, because there is

only one (identical) stable attractor for both driving and
driven systems. In the quasiperiodic regime synchroniza-
tion is not observed, since there the Liapunov exponents
are zero and we start to evolve the system with different
initial conditions for 0~ and 03. For the system we study
here we did not find regions of chaotic motion where
synchronization may or may not occur depending on the
initial conditions.

The nonsynchronization we see in the periodic regime is
not related to the situation in which tH)i and p3 have the
same attractor, but are out of phase. For our system
where pt and p2 are coupled the attractors are always in

phase when they are stable and identical.
We studied the basin of attraction where synchroniza-

tion may or may not occur for the period-two and -three
orbits. In the inset in Fig. 3(a) we show the initial condi-
tions, in the 03 vs 8~ plane, which lead to synchronization
(white) and nonsynchronization (shaded) for a period-two
orbit (k =0.5 and fI —=0.49). The basins of attraction

are regular, and do not show a fractal structure. This im-
plies that the addition of a chaotic signal with small am-
plitude to the two subsystems does not cause their syn-
chronization, as can be the case if the basins are entirely
fractal. For the period-three orbit we also find nonfractal
basins of attraction.

We observe that the regions where synchronization is
always achieved, never achieved, or sometimes achieved
remain with the addition of a weak chaotic (or noisy) sig-
nal to both subsystems governed by pt and p3. Also, the
regions of positive sub-Liapunov exponent for p3 do not
change. In other words, Figs. 1(b) and 2(b) remain the
same. This shows that the necessary condition for chaotic
synchronization stated in [I], that is, negative sub-
Liapunov exponent for p3, is not sufficient.

In conclusion, we have observed several new aspects of
regular and chaotic synchronization. By considering driv-

ing and driven subsystems as a whole system we have
shown that the sub-Liapunov exponents defined by Pecora
and Carroll are Liapunov exponents of the global system.
This result holds for higher-dimensional systems in maps
and in flows. Chaotic synchronization is possible when the
driven subsystem is more stable than the driving system
and the synchronization is lost when the hyperchaos re-
gime appears. We verified that the lack of symmetry be-
tween the driving and driven subsystems may result in

nonsynchronization even when they are completely regu-
lar. We found that the eigenvalues of the global system
characterize the regions where regular synchronization is
al~ays achieved, never achieved or sometimes achieved
depending on the initial conditions.
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