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Dynamic scaling and crossover analysis for the Kuramoto-Sivashinsky equation
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Extensive numerical simulations of the discretized one-dimensional Kuramoto-Sivashinsky interface
equation, in conjunction with a detailed crossover analysis, indicate that the large-scale fluctuations of
this deterministic chaotic system are described by the noisy Burgers equation. As a consequence of a
large effective interfacial tension, the asymptotic behavior is observed only after a long intermediate

scaling regime. The skewness of the interfacial fluctuations is found to be a useful probe of the cross-
over.

PACS number(s): 05.45.+b, 05.40.+j, 47.20.Tg, 82.40.Py

A central concept in the study of spatially extended
chaos is the use of effective stochastic models for the
large-scale properties of a chaotic system. This approach
is at the heart of Kolmogorov's theory of fully developed
turbulence and its ramifications [1],including more recent
work in which stochastic forces are explicitly added to the
equations of fluid dynamics [2,3]. Given the complexity of
three-dimensional fluid turbulence, there has been much
interest in finding simpler model systems where the emer-
gence of stochastic large-scale behavior can be studied in

some detail. A particularly promising candidate is the
Kuramoto-Sivashinsky (KS) phase equation, which arises
in various physical contexts such as chemical turbulence
[4], flame-front propagation [5], and the dynamics of
liquid films subject to gravity [6]. The scalar field h(x, t )
describing, e.g., the local phase of a cyclic chemical reac-
tion [4] or the position of a flame front [5],satisfies

at"
-= —V2h V4h+ (vh) '—

,

where all dimensionful parameters have been eliminated
by rescaling. The only remaining control parameter is
then the system size L, which governs the effective number
of degrees of freedom of the system, in analogy with the
Reynolds number in fluid turbulence. Due to the sign of
the Laplacian term in (I) the trivial solution h =0 is un-
stable, with perturbations of wave vector q growing at the
linear growth rate co(q) =q —

q . This leads to a cellular
local structure with a wavelength l =2tr J2 close to the
maximum qn=l/J2 of co(q). For large L a turbulent

steady state characterized by a finite density of positive
Lyapunov exponents [7] is established in which the fluc-
tuations generated by the instability are transferred by the
nonlinear term to smaller wavelengths, where they are dis-
sipated by the (stabilizing) fourth-order derivative.

It was suggested by Yakhot [8] that the large-scale
properties of the one-dimensional KS equation are de-
scribed by the stochastic model

h =vV h+ —(Vh) +rl,
8t 2

(2)

where v) 0 and ri(x, t) is Gaussian white noise with co-
variance

(ri(x, t)ri(x', t')& =Db(x x')b(t —t') .— (3)

Equation (2) was subsequently investigated by Kardar,
Parisi, and Zhang (KPZ) [9] in the context of stochastic
growth [10]. In the following we will interpret h(x, t) as
the height of a moving interface above a substrate point x
at time t. It should also be noted that Vh satisfies, accord-
ing to (2), a noisy Burgers equation, which is closely relat-
ed to fluid dynamics [2]. Comparing (I) to (2), it is ap-
parent that the equivalence of the two equations requires
the instability of the KS equation to have two rather
different consequences on large scales: It should give rise
to both a stochastic force with short-range correlations,
and a positive effective interface tension v.

The KPZ equation predicts a dynamic scaling form for
the long-time, large-scale behavior of the correlations of
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h, which is well understood in the case of one spatial di-
mension. The steady-state correlations of the discrete
Fourier components h(q, t), q =2'/L, n =+'1, . . . ,
~ L/2, are

(h(q, t)h( —q, s))=,g,.(q'It —sl),
Lq

(4)

where g„(0)=1 and lim„g„(x) =0, while the tran-
sient scaling form for an interface which is flat at time
t =0 reads

&i-0«)'=
42nv

is then compared to the asymptotic behavior of the non-
linear equation, which, from dimensional considerations,
takes the form [17]

(Kpz(t ) ' =c2(A Xt ) 't', (8)

where c2 is a universal number with a numerical value
close to 0.40 [17]. The crossover time estimate obtained
by equating (7) and (8) is

&lh(q, t) l') =,g,„(q't)
Lq

(5) 2' v' 252
tc nc DX, vg

with gt„(0) =0 and lim„g, „(x)=1. The 1/q scaling
of the equal time, steady-state correlations corresponds to
an equilibriumlike equipartition law for the "velocity"
field Vh, which has been verified in several numerical stud-
ies of the KS equation [11,12]. In fact, as a consequence
of a fluctuation-dissipation theorem for the KPZ equation
[2], the equal time correlations are given exactly by the
linear theory obtained by setting X=0 in (2), which im-

plies in particular that A =D/2v in (4) and (5).
In contrast, the nonlinearity has a crucial effect on the

dynamic exponent z in (4) and (5), which takes the anom-
alous value z =

2 for )i, WO. This prediction, which arises
both from dynamic renormalization-group treatments of
the KPZ equation [2,9] and a mode-coupling study of the
KS equation [13], has, despite some suggestive early re-
sults [14,15], so far eluded direct verification in numerical
simulations [12,16] of the KS equation. The discrepancy
between the predictions of the stochastic model and the
simulations has generally been attributed [12,16] to the
existence of an intermediate-scaling regime where the
linear term in (2) dominates the nonlinearity, but a quan-
titative study of the crossover behavior has not been car-
ried out.

I t is the purpose of this paper to provide such a study.
We present numerical simulations of the KS equation
which exceed previous work by several orders of magni-
tude in time and length scale, and combine them with pre-
cise estimates of the crossover scales predicted by the
KPZ theory. This necessitates the numerical determina-
tion of the effective parameters entering the KPZ equa-
tion. Our central result is the observation of the onset of
crossover to asymptotic KPZ scaling (z = —', ) on time
scales which are consistent with the theoretical predic-
tions, thus providing strong evidence that the dynamic
correlations of the one-dimensional KS equation are
indeed represented by the stochastic KPZ model.

We focus here on the transient behavior described by
(5). The dynamic scaling exponent is measured through
the interface width [9,10] which, in the large system limit
L ~, behaves as

(6)

where p = 1/2z. In the intermediate scaling regime, where

the nonlinearity in (2) can be neglected, z =2 and p = —,
' .

To estimate the time scale for the onset of the asymptotic
regime with P = —,', we first compute the width from the
linearized (k =0) KPZ equation. The result

Here we have introduced the KPZ coupling constant [9]

X D (10)

which, in one dimension, has the units of an inverse
length. While the fact that vt, —1/g follows from purely
dimensional arguments, the estimate of the prefactor
which, somewhat surprisingly, is not of order unity, re-
quires knowledge of the nontrivial amplitude c2.

In practice, the crossover to the asymptotic KPZ regime
will be observable only if t, is small compared to the satu-
ration time induced by the finite system size L. The satu-
ration time can be estimated by equating (7) or (8) to the
saturated width

obtained by summing over the t ~ limit of the Fourier
modes (5). The resulting criterion for the accessibility of
the asymptotic regime is L » L, = 152/g.

For cotnpleteness we note that analogous estimates can
be obtained for the steady-state dynamic correlations
governed by (4). In the steady state the width (6) is re-
placed by the correlation function

C(t) = lim ([h(x, t+s) —h(x, s)

(h (x,t+s) ——h (x,s))] ') . (12)

Following the procedure outlined above and using results
[17] for the asymptotic behavior of C(t) we find that the
crossover from t' to t behavior occurs at the time
scale t,"= 63/(vg ) which is observable in systems large
compared to L,"=108/g. In the following we only dis-
cuss the transient behavior [18].

Next we turn to the numerical simulations of the KS
equation. We have used a simple real-space scheme ob-
tained by replacing all spatial and temporal derivatives by
finite differences. The nonlinearity was discretized as
[(h;+~ —h; ~)/28x], where h; (t) =h(ibx, t) The results.
presented here were calculated using a spatial discretiza-
tion step Bx =1, corresponding to about eight lattice
points per cell wavelength I, and a time step 6t =0.1.
These parameters were chosen for reasons of numerical
efficiency. Runs with smaller values of Bt and 6'x indicat-
ed some changes in the effective KPZ parameters estimat-
ed below, but the qualitative behavior remained the same.
We consider only periodic boundary conditions on h. The
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initial values h(x, 0) were chosen at random from a uni-
form distribution on the unit interval.

The static amplitude A D/2v is estimated from the
saturated width (11) as a function of system size. The lo-
cal cellular structure of the KS interface leads to a large
intrinsic width (;„„,which obscures the asymptotic scal-
ing. To extract the large-scale contribution we fitted the
numerical data to the form ( (L) =(A/12)L+(;„„pro-
posed by Kertesz and Wolf [19] [Fig. 1(a)]. This yields
the estimates A =0.154 and g;„„=1.15, consistent with
the value A 0.158+ 0.009 obtained from the stationary
Fourier spectrum shown in Fig. 1(b).

In Fig. 2 we show the time dependence of the width for
two different system sizes. Here the intrinsic width has
been eliminated by defining a smoothed interface, with the
height at each grid point given by the mean of the hx =8
nearest points, and measuring the width of the smoothed
interface. In order to emphasize the intermediate scaling
regime where p- —,

' we plot g (t)/t '/z as a function of t

This quantity is constant for times 20 ( t ( 1000, taking
the value D/J2rrv 0.397 ~ 0.001 [cf. (7)]. Using the es-
timate for A =D/2v, we obtain the effective KPZ parame-
ters D 3.2~0. 1 and v=10.5+'0.6. The surprisingly
large number for v which, as we shall see below, is really
responsible for the slow crossover behavior, is consistent
with estimates obtained by Zaleski [12] through a com-
pletely different method.

It remains to estimate X,, which is quite generally
defined [20] through the expansion U(8) = Uo+(k/2)8
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FIG. I. (a) Stationary width of the KS interface as a func-
tion of system size. The dashed line indicates a linear least-
squares fit of g vs L used to extract the asymptotic prefactor
and the intrinsic width. (b) Fourier spectrum of the stationary
height Auctuations for a system of size L 4096. The dashed
line indicates the long-wavelength behavior A/q 2 with A

0.158. Note the peak at qa 1/J2 corresponding to the cell
wavelength l.
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+ of the ensemble averaged growth rate t =(8h/Bt)
at a fixed macroscopic inclination 8-(t)h/Bx). Compar-
ing (I) and (2) and noting that the linear terms in (1) are
invariant under an imposed tilt (h h+8x), one expects
that )j. 2 in the continuum limit. Measuring A, directly
for the discretized KS equation with an average inclina-
tion imposed through helical boundary conditions
h(x+L) h(x)+8L [20] (Fig. 3), we found a much
larger value lt, 4.65+ 0.15, indicating that A, is quite sen-
sitive to the spatial discretization [21]. The combination
A)t, can also be obtained [17] from the dependence of the
stationary growth rate at zero tilt on the system size L,
which the KPZ theory predicts to be of the form [22]
U = U

—A) /2L. Measurements for system sizes between
L 128 and 1024 yielded v =0.496 and AX=0.695, in
good agreement with the value Ak =0.716 obtained from
the previous estimates.

Taken together these numbers imply that the KPZ cou-
pling constant (10) is g=0.060~0.016. Thus system
sizes exceeding L, = 2500 are necessary to observe
asymptotic KPZ behavior, which explains the failure of
previous numerical work [12,16]. The crossover time is
estimated to be t, =7000, which is rather close to the
point where our data (Fig. 2) deviate significantly from
the P =

4 behavior. In Fig. 2 we also display the predic-
tion (8) for the asymptotic KPZ behavior, obtained from
the above parameter estimates. The numerical data ap-
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FIG. 3. Tilt dependence of the velocity of a KS interface of
size L 1024. The velocity was averaged over the time interval
4.19x10 (t ~1.26x10 . The statistical errors are smaller
than the symbol size.
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FIG. 2. Time dependence of the interface width. The data
for system size L 32768 (65536) constitute an average over
152 (70) independent runs. The dashed line indicates the esti-
mate D/42/rv 0.397 and the solid line shows the asymptotic
behavior ( (t) 0.092t ii predicted by the KPZ theory.
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pear to approach the KPZ behavior up to t = 10, where
the size dependence of the width becomes observable, in-

dicating the onset of saturation eff'ects.
This picture is confirmed by measuring the skewness

s =((h —(h)) )/(g) of the interface fluctuations. The
asymptotic KPZ regime is characterized by a universal
skewness of magnitude [is i =0.29 and a sign equal to the
sign of 1. [17], while the surface fluctuations in the inter-
mediate (X=0) scaling regime are Gaussian with s =0.
In Fig. 4 we show simulation results for the skewness in

the KS equation. The skewness is nonzero and positive,
consistent with the fact that X, & 0. After a peak associat-
ed with the initial exponential instability, it increases
roughly logarithmically in time and reaches a maximum
value of 0.26, close to the KPZ prediction. The sharp de-
crease of the skewness at the latest times is, again, indica-
tive of saturation effects, which are known to set in early
and abruptly for this quantity [17].

In summary, we have presented extensive numerical
simulations which strongly support Yakhot's conjecture
[8] that the one-dimensional deterministic KS equation
belongs to the universality class of noisy interface models
described by KPZ [9]. The existence of an extended in-

termediate scaling regime, which has hampered previous
numerical work, could be traced back to the large value of
the effective interfacial tension v [23]. We expect a study
similar to the present one to be very illuminating (though
much harder to carry out) in the two-dimensional case,
where the equivalence between the KS equation and the
noisy KPZ model was recently conjectured [24] to break
down.
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FIG. 4. Skewness of the KS interface as a function of time.
The system size is L =32768 and the data constitute an average
over 40 independent runs. The skewness s 0.29 characterizing
a KPZ interface is indicated by the dashed line.
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