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Dynamics of the globally coupled complex Ginzburg-Landau equation
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A discrete version of the complex Ginzburg-Landau equation is studied on a completely connected
lattice of N sites. This can equivalently be described as a model of N identical globally coupled limit-

cycle oscillators. The phase diagram is obtained by a combination of numerical and analytical tech-
niques. A surprising variety of dynamical behaviors is found in the thermodynamic limit (Ã»1).
Depending on the region of parameter space, one gets the following: (1) a simple homogeneous limit

cycle; (2) a state with complete frequency locking but with no phase locking so that the global forcing
term vanishes; (3) a breaking of the system into a few macroscopic clusters which can exhibit periodic
or quasiperiodic dynamics; or (4) surprisingly complex states where an individual oscillator behaves in

a chaotic way but in a sufficiently coherent manner so that the average complex amplitude does not

vanish in the thermodynamic limit. Moreover, in this last region, the dynamics of this natural order
parameter is itself chaotic.

PACS number(s): 05.45.+b, 05.90.+m, 47.20.Tg

A general understanding of the different dynamical re-
gimes of dissipative systems with many active degrees of
freedom is still lacking despite its importance in a wide
range of fields. Nevertheless, in recent years, many
specific models of spatiotemporal chaos have been the sub-
ject of intense investigations [1-10]. In particular,
Ginzburg-Landau equations have been used to describe a
large range of phenomena [I I]. The complex Ginzburg-
Landau equation (CGLE) in its simplest version reads as

8&A = (I +iP)V A +pA —(I + ia) ~A ~
A .

It displays a variety of dynamical regimes in different re-
gions of parameter space. In particular, all plane-wave
solutions are unstable for aP+ I (0 [12]. The complicat-
ed behavior of the CGLE in this Benjamin-Feir unstable
regime has been numerically investigated both in one [9]
and in two spatial dimensions [10] and different phases
have been numerically characterized. Our aim in this
Rapid Communication is to introduce and study a simpler
but related model which can be viewed as a mean-field-
like version [3,5,8] of Eq. (I). We choose to discretize the
CGLE on a fully connected lattice of N sites (i.e., where
each point is connected to all the other points). Taking
the discrete version of the Laplacian on such a lattice, we
obtain, instead of Eq. (I),

8,Aq =g (A. I, Aq)+pA~ —(I+—ia) ~AJ~ Aq
I+i

]

j=l, . . . , N. (2)

This is a system of N identical globally coupled limit-cycle
oscillators. Related models of coupled oscillators and cou-
pled maps have already been studied by a number of au-
thors, partially motivated by their connection to such
different topics as Josephson-junction arrays [61,oscillato-
ry dynamics of neuronal systems [7,13,14), or synchron-
ized behavior of assemblies of fireflies [8,15). The present
model [Eq. (2)] difl'ers from these previous studies by the

fact that all oscillators are identical (in contrast to [5,8]).
Also, they have simple oscillatory dynamics in the absence
of interaction (i.e., they cannot exhibit chaotic motion in
the absence of coupling like in [3]). Finally, the ampli-
tude dynamical mode is not frozen like in pure-phase
models [6,7] and this plays a crucial role in the coherent
chaotic dynamical regime that we have found.

Our goal is to determine the asymptotic behavior of (2)
in the thermodynamic limit (N » I ) as a function of the
parameters a, P, and p. We first describe our numerical
results. Equation (2) was integrated numerically, using
both a fourth-order Runge-Kutta model and an explicit
method, with a time step that was generally taken to be
dt =0.01 but, if necessary, reduced to dr =0.001 (see
below). Lattices of 50 to 5000 sites were used but, in gen-
eral, reliable results were already obtained with the small-
er numbers. Several different initial conditions were test-
ed, such as random initial conditions in a square or circle
of variable size.

Four main qualitatively diA'erent types of behavior were
observed. We restrict ourselves here to the description of
the two-parameter space a= —P,p which appears to be
sufficient to describe the qualitatively different phases.
They are delimited in Fig. I as a function of P and p. We
describe the four different types of behavior in order of in-
creasing complexity.

Region I is the simplest. All the oscillators are in the
same state [i.e., A~(r) =A(t)]. Therefore, the coupling
term in Eq. (2) vanishes and the oscillators follow the lim-
it cycle of the uncoupled system

A(t) =Jpexp( —iapt) .

This region can be found below and to the left of the line
denoted BF (for Benjamin-Feir) in Fig. l.

Region II is also quite simple. There, all the oscillators
are rotating with the same frequency. However, their
phases are distributed on the limit circle of radius v'p —I
in such a way that the forcing mean amplitude
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FIG. l. The phase diagram for the case a = —P. The line BF
is the line at which the homogeneous limit cycle becomes unsta-
ble. The line Bo limits the stability of the solution where all the
oscillators are distributed uniformly on a circle of radius v'p —I.
The line B] is the limit of stability of the nonuniform locked
states. The analytical equations of these lines are given in the
main text. The squares are numerically obtained values for the
limit of existence of the complex state characteristic of region
IV. The thin line is a guide to the eye. For further explanation
we refer to the text.

=(1/N)+~A, vanishes:

A, =Jp —
1 exp Ii [(a —

P
—ap ) t + i', ]j,

N

with —g e' '=0. (4)N)-)
For phases distributed uniformly on the circle (sometimes
called "splay-phase" states in the literature [6]), the sta-
bility limit is the line Bo in Fig. 1. However, states distri-
buted unevenly on the limit circle (but still with A =0)
also exist and have a slightly larger domain of stability.
The configuration of this type which has the larger
domain of stability is formed by two populations of oscil-
lators, having opposite phases. The boundary of stability
of this last configuration is denoted Bi in Fig. 1. Howev-

er, in the parameter region between the lines Bp and B~,
when the oscillator phases were initially distributed uni-

formly on the limit cycle, we never observed restabiliza-
tion to a state with an uneven distribution of phases but
always a transition towards the chaotic state of region IV
described below. In fact, special care was needed in order
to observe the stability of the uniform state up to the line

8p and we found it necessary to reduce the time step to
dt =0.001.

In region III, i.e., to the right of the line connecting the
open squares and the line BF, the system breaks into a
small number N, of diA'erent macroscopic clusters. All

the oscillators that belong to a given cluster have the same
complex amplitude but it diAers from one cluster to the
other. Generally, N, was found to be 2 or 3. Within re-

gion III, the dynamics electively reduces to that of a low

number of coupled oscillators (with diA'erent weights) and

it was found to be periodic or quasiperiodic depending on

the parameter subregion.

The behaviors found in regions I, II, and III have al-
ready been observed in a number of previous models. In
particular, the clustering in region III appears similar to
what has been reported for globally coupled logistic or cir-
cle maps [3] or homogeneous pure-phase oscillators [7].

In contrast to the first three regions, the behavior in re-
gion IV appears surprisingly complex and new. DiA'erent
oscillators follow diff'erent erratic motions but in a
sufficiently coherent way so that the mean amplitude,
A = (1/N)+~A~, remains of order 1 in the thermodynamic
limit. Moreover, the dynamics of 3 appears to be chaotic.
Although a similar chaotic behavior has been found in [6],
we were surprised to observe it with identical oscillators.
In order to illustrate and support these assertions diA'erent

types of numerical evidence are now described. First, in

Fig. 2 the position of all the oscillators are shown as dots
at two diA'erent times, together with the position of the
mean (the crosses in Fig. 2). The parameters values are
given in the caption. These two times have been chosen to
be large enough to be representative of what is observed in
the long-time limit, at least with our numerical capabili-
ties. At a given time instant, different oscillators are lo-
cated at diff'erent position in the complex plane, along a
shape that has roughly the form of a p. The whole shape
rotates and also deforms in time, especially in the tail
part. Individual oscillators move along this shape, fast
motion around the loop of the p alternating with slow
motion in the tail part. The time evolution of the real part
of the mean complex amplitude A(t) is represented in

Fig. 3(a) together with the power spectrum for this time
series [Fig. 3(b)]. The power spectrum is peaked around
a definite frequency but appears to be broadband. More-
over, its width does not decrease when the number of os-
cillators is enlarged from 50 to 5000.

In order to get additional evidence on the chaotic nature
of the dynamics the spectrum of Lyapunov exponents for
the whole dynamical system has been computed. The
number of positive Lyapunov exponents has been found to
increase with the number of oscillators. In contrast to this
high-dimensional dynamics, we believe that the reduced
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FIG. 2. The positions of the 500 individual oscillators (dots)
and their mean (crosses) in the complex plane at two different
times. The parameter values are p =2.0 and P =1.5.
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FIG 3. . (a) The time series of the mean for the parameter
values of Fig. 2. (b) The power spectrum corresponding to this
time series.

Pp(k) -k' —) (3 2@+—iP) —(p —1)(I+iP)(I —fa) .

The large symmetry of the associated 2N x 2N real stabili-
ty matrix is again very helpful in diagonalizing it. %e

Q
—1 find N —2 negative eigenvalues equal to —2(p —1) and

N —2 zero eigenvalues, reflecting the dimensions of the
manifold of locked fixed points (i.e., N arbitrary real
phases subject to the condition A =0 which gives two real
constraints [19]). The four remaining eigenvalues depend
on the particular locked state under consideration but only
through the real parameter 6=[(I/N)+~exp(2i&J)[,
0 & 6 & 1, which characterizes the repartition of the oscil-
lator phases on the limit cycle. For 6=0 the degree-4

Frequency f characteristic polynomial P4(k) whose roots are then
searched for eigenvalues, factorizes into two degree-2 po-
lynomials with complex conjugate coefficients P2(X) and
P2 (x),

dynamics of the average amplitude A(t ) is low dimension-
al, in the thermodynamic limit. We have tried to get nu-
merical evidence for that by computing the correlation di-
mension of the corresponding time series [16,17]. Al-
though our data seems to saturate for embedding dimen-
sions larger than four for not-too-small correlation balls,
the scaling window was found to be too small to get a reli-
able estimate of the correlation dimension. The difficulty
seems similar to what would be obtained for the nonin-
teracting product dynamics of a low-dimensional dynami-
cal system and a high-dimensional noise signal of smaller
amplitude (see [17] for a discussion).

We now summarize our analytical calculations of the
boundaries of the different dynamical regimes. Our cal-
culation of the homogeneous limit-cycle stability (regime
I) is very similar to the classical calculation of the
Benjamin-Feir instability in the envelope equation frame-
work [12,181. Equation (2) is linearized into a linear
dynamical system of N coupled equations for N complex
coefficients aj by writing AJ (Wp+ aj )exp( —i

apt�

),
(aj(((1. The associated real stability matrix of size
2N &2N is easily diagonalized due to its large symmetry.
One obtains one zero eigenvalue coming from the invari-
ance of Eq. (2) under a global phase change, one negative
eigenvalue —2p and N —

1 sets of two eigenvalues k1 and
k2, solutions of the real second-order equation

O.O

CO —0.5-
I ~

g ~

I

'~

—10

(7)
When a root of Eq. (7) has a positive real part all the
states with 6 0 are unstable. The corresponding Bo line
is plotted in Fig. 1. When 5~0 the 4&4 stability matrix
no longer splits into two 2&2 matrices and its characteris-
tic polynomial is given by

P ()1.) P ()1,)P ()I,) —8 (p —1)2(1+a )(I+p ). (8)

For a = —P we have checked that the larger 5, the wid-
er is the stability domain of the corresponding locked
states. In this case, P4(A, ) also factorizes for the d, =l
most stable state which corresponds to a population of os-
cillators evenly split between two clusters of opposite
phases:

A, +2(p+1)A, +2p(I+aP)+I+P =0. (s)

The condition of instability of the homogeneous limit cy-
cle, which is that some eigenvalues have a real positive
part, is therefore equivalent to the condition A, ]k2 & 0
(since the sum lj.~+X2 is negative). In our case, the
Benjamin-Feir instability line is thus given by 2p (1
+aP)+(1+P ) =0. This is the line denoted BF in Fig 1.
for the case a = —P.

The calculation of the stability of the locked states
characteristic of region II is similar but slightly more tedi-
ous. Equation (2) is linearized around an arbitrary locked
state [Eq. (4)] by writing

—1.5
—1.0 —0.5 0.0 0.5 1.0 1.5
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FIG. 4. The phase space of one oscillator driven by a purely
periodic force [Eq. (10)] for a = —1.5, 0 = —4. 1, and F =2.11.
DifFerent individual trajectories have been plotted in order to
show the existence of an attractive limit cycle and the presence
of a couple of fixed points, one stable and one unstable. %'hen
the amplitude of the driving force is slightly reduced the two
fixed points collide and disappear, leaving only the stable limit
cycle.
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P4(X) =k[X+2(p —I )] [A. +2(p —2)1+3

—P +2p(P —1)l . (9)

with

t),B =(I +i ft)B —(I+la) ~B~ B+F (10)

2 +P
~ ~

(1+P )'
(p I ) 3/2

A rescaled time r =(p —1)t has also been introduced in

order to show explicitly that the dynamics of B(t) in the

The domain of stability of the 3, = 1 state is thus the re-
gion p ~ 2, P ~ 4(2p —3)/(2p —1) whose boundary is
denoted by 8 ~ in Fig. 1 .

The complex states characteristic of region IV appear
as one of our most intriguing numerical findings. A first
simple approach has been followed in order to gain some
understanding of the dynamics in this phase. As can
be seen in Fig. 3, the dynamics of A (t ) is strongly
peaked around a well-defined frequency v, A(t) =R(t)
&&exp(i2zvt), where R(t) varies slowly compared to the
exponential factor. This suggests to consider the dynam-
ics of a single oscillator 3 (t ) driven by a periodic force of
frequency v and constant amplitude R close to the average
amplitude (R(t)). This is conveniently done by going to a
frame rotating at frequency v. Defining A(t) =v p —I

& B(t)exp(i2nvt) one gets the simple evolution equation
for B(t)

rotating frame depends only on the two eff'ective parame-
ters II and ~FI. In the parameter range corresponding to
the complex chaotic state of region IV the phase space of
Eq. (10) seems to be close to a bifurcation between two
topologies. For example, simulation of the full system
[Eq. (2)] with P = —a =1.5 and p =2 gives for the main
frequency v=041 and (~A(t)~)=1.1. The corresponding
eff'ective parameters for the reduced system are 0 = —4. 1

and ~F~ =2.0. Fixing Q to this latter value, the topology
of the phase space of Eq. (10) changes for F, =2.08. As
shown in Fig. 4, for ~F~ ~ F„ there is an attractive limit
cycle and a pair of fixed points outside the limit cycle, one
stable and one unstable. However, as F decreases toward
F„ these two fixed points move toward each other and
they disappear at ~F~ =F, in a usual saddle-node bifurca-
tion [20]. For the full system, neither of these two cases
appears to be realizable in a stable self-consistent way. It
then evolves continuously between the two situations, the
operating point remaining close to ~F~ =F,. This gives
rise to the p-shaped distribution of oscillators observed in

region IV. A precise characterization of this dynamics
will hopefully be possible to obtain by refining the present
approach to take into account a slow evolution of R (t ).
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