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We study field-theoretic A +A S in a perturbative renormalization-group framework. We calcu-
late the reacted fraction and it is shown that, in addition to the reaction coupling constant, a second
"crossover" parameter must be treated to all orders to obtain meaningful long-time results for spatial
dimensions d &2. At d=2 the result is consistent with known rigorous long-time bounds, but the
short-time behavior remains inconsistent (trivial) analogously to the Landau ghost [V. Rivasseau,
From Perturbative to Constructive Renormalization (Princeton Univ. Press, Princeton, 1991)I of QED
and p4 theory. We argue that this inconsistency is true to all orders in the coupling constants.
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The model [1-4] A+A S describes an autocatalytic
chemical reaction in which diffusing particles in a solvent
react with each other and become chemically inert (an-
nihilate). It also provides a simplified description of a
number of aggregation processes [5]. More generally, it
represents any process involving diA'using localized excita-
tions which annihilate (with a certain probability) on con-
tact. This and related problems, in which interparticle re-
actions are mediated by fluctuations and their diAusive re-
laxations, have been the subject of a considerable body of
theoretical work [1-4,6-12].

In this Rapid Communication we present a renor-
malization-group analysis of the A +2 H problem.
Despite its status as the most basic of all many-body
diA'usion-reaction problems, a suitable renormalization
calculation of observables such as the reaction rate has not
yet been accomplished. We will calculate reaction rates in
two-dimensional space (details of these calculations, in-

eluding results for dimensions below two, will appear else-
where [13]). The most natural first approach is to develop
a theory in terms of the reaction coupling A,o alone, i.e., ex-
pand in powers of the "bare" Ao and then introduce a re-
normalized X in the standard fashion. Peliti [1] has shown
that, remarkably, the renormalization of the coupling con-
stant may be calculated to all orders. Now after introduc-
ing a phenomenological small time scale 8, the bare series
for, say, the reaction rate in d-dimensional space involves
the dimensionless combination ROB

" . However, there
is another dimensionless combination: Xo=—cotta, where
eo is the initial concentration. Indeed, on careful scrutiny
of the bare series one finds that powers of Xo appear in
combination with powers of A,o. This is a considerable
complication since (time being unrenormalized) one has
to deal with arbitrarily large values of Xp if one is interest-
ed in the long-time behavior; Lo must be treated to alI or-
ders. In the perturbative renormalization-group calcula-
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tion which we outline below, we have attempted to calcu-
late to all orders in Xp and to first order in the bare two-
body reaction rate Xo (that is, general terms of the form
A.OXO should be included). From the calculations present-
ed below, such a point of view appears to be consistent at
least from the standpoint of removal of divergences. The
appearance of a large expansion parameter in this manner
occurs analogously in the theory of sernidilute polymer
solutions [14].

Let us begin by noting some general features of this
reacting system. For d & 2 a "law of mass action"
(LMA) holds: the reaction rate is proportional to c (r)
where c(t) is the concentration of unreacted particles.
Thus c —1/t F.or d ( 2 spatial correlations dictate
"diff'u sion-controlled" behavior since particles explore
space compactly [11];at large enough times a given parti-
cle (even if weakly reactive) will have reacted with any
"target" in its exploration volume (-t ~ ). Thus in a sys-
tem of volume V the number of particles varies for large t
as V/r ~ (the "empty" volume between surviving parti-
cles scales as r ~ ). We conclude that c(t)/ca-1/
(car ~ ). To summarize, at long times, for d & 2 the sys-
tem is weakly coupled while for d & 2 the system is

strongly coupled at its dimension-dependent fixed point.
It seems inevitable that in a field-theoretic treatment such
behavior implies the "opposite" short-time behavior, i.e.,
strong coupling for d & 2 and weak coupling for d (2.
One would further anticipate "logarithmic�' behavior in

the upper critical dimension d =2, namely, c(t) -lnt/r for
long times. For A+A S this expectation can actually
be proven [8].

Given this phenomenology, it appears that field-
theoretic A+A S exhibits behavior similar to that of

theory, though in certain respects A+A ized is much
simpler (i.e., the renormalization is known to all orders
[1]). Both theories exhibit a nontrivial infrared fixed
point behavior below their upper critical dimensions and
asymptotic freedom in the infrared at the critical dimen-
sion. Furthermore, we will see that A+A 8 suff'ers

from the same ultraviolet problems (i.e., Landau ghost)
that attend infrared asymptotic freedom at the critical di-
mension in p theory. Thus it is not without interest to at-
tempt to carefully examine A+A S at all times in or-
der to gain insight into more complicated field theories.
In fact, resummation to zeroth order in Xp and to all or-
ders in Lp reproduces the result of mean-field theory
(LMA) which is well behaved at the shortest times; one
might hope, therefore, that a proper treatment of Lp could
remedy the short-time problems. The persistence of these
problems, which we demonstrate below, leads us to con-
sider carefully the two-body analog of A+A S wherein
we find the same short-time inconsistency.

We 1'ollow the formalism of Doi [6,7], choosing the
minimal sink function S(x) =8(x), and we work in 2 —e

dimensions (we use dimensional regularization). We con-
sider spatially random initial conditions with the total
number of particles chosen from a Poisson distribution.
We want to calculate N'(r), the average number of parti-
cles unreacted after a time t which, following Doi, is given

by the value of (coV+BP/6a)e~ at a =1. Here P(a, r)
=Kg:o ~ P~(r), P~(r) is the probability that N parti-

cles survive at time t, and

I

g=(a T exp —„Gx(x)dx
''

cx)
The subscript c refers to connected diagrams, T is a time-
ordering operator, and (a~ =&0~exp(aV' ao) and ~co)
=exp(coV' aJ)~0) are coherent states constructed from
the boson creation and annihilation operators, a and a~.
Finally, an explicit expression for GI is given by

Xp
y t Ap

Z rrl, + ak — akal, ' ga a-
2Vk k', q 2 q

At this point we expand the above expressions in terms
of kp. Doing this, one finds that the expressions are multi-
plied by factors X,pLp where Xp =cptA. p. Lp here is analo-
gous to the parameter Lp=vpcNp in the equilibrium
theory of semidilute polymer solutions [14] (Uo is the bare
excluded volume parameter). By analogy with semidilute
polymer solutions and for the reasons outlined previously
we attempt a double expansion in Lp and kp. That is, for a
given order in Xp, we attempt to include Lp to all orders.
The calculation to zeroth order in Xp consists in summing
all of the "open diagrams" [6] (see Fig. 1). By brute
force, we have been able to do this to third order in Lp.

N(t)/Np =1 —Xp+Xo —Xo+

where N p
—=cp V. This is suggestive of the LMA, mean-

field result N(t)/No=1/[1+Xo] and indeed Doi [6] has
an indirect argument to show that this is the case. Next
we define a dimensionless coupling constant yp—=kp8'
and we introduce Lp ——ypcpt. Performing the renormaliza-
tion Xo X (of course, to zeroth order this is trivial) and
assuming the all-orders LMA form we have

N($) 1

Np 1+L
%e now consult the renormalization group to improve

this perturbative result. For A+A S there is only one
parameter to renormalize, namely, yp

—Lp is renormal-
ized implicitly, i.e., via yp—and we know its renorrnaliza-
tion exactly (we shall discuss this later): yo = y/(1
—y/4m'). Therefore we know the P function and
renormalization-group equation exactly (although it is, in

fact, identical to the result at the one-loop level). Stan-
dard arguments [14] then tell us (d=2) that N(t)/

FIG. l. All "open diagrams" up to order Xo are shown.
When summed to all orders these diagrams appear to reproduce
the mean-field LMA result for c(t).
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yX+ yX
8z 8x

(2)

[The renormalization Xp =X(1+y/4ze) removes the
singularities that arise in the bare series. l A form con-
sistent with the renormalization-group equation and the
perturbative result is

N(t)/N(0) 1/[1+cpt/X, +cpt/8ttX, + (cpt) /8trX, ] .

The simplest form consistent with the perturbative calcu-
lation, the renormalization-group equation, and the
known long-time bound is

N(t)
Np

1

1+ (cpt/X, )+ (cpt/8', ) ll/(1 —cpt/X, )]
(3)

Np=F(X„ept) where X,=(1/8x)1ngtrt/6+ I/y and F is

an arbitrary function which we fix by perturbative calcu-
lation. A result consistent with the perturbative result and
the renormalization-group equation is

N(t) 1

Np I+ept/X, '

whose long-time behavior is well defined and agrees with
the known bound [8]. The very shortest-time behavior is

bad, however; when t is of the order of b, X, becomes neg-
ative and consequently there is a time for which N(t)
diverges (note that y is positive). We are thus confronted
with the analog of the Landau ghost of quantum electro-
dynamics and p theory. Higher-order corrections may
drastically affect this ghostly behavior. One of the un-

resolved issues of field theory is whether higher-order
corrections mollify this behavior, whether perturbation
theory is insufficient to correct the behavior, or whether
field theory, itself, is inconsistent (trivial) in these cases.

We next consider the first-order correction to this re-
sult, that is we attempt to calculate to order Ap and to all
orders in Xp. Unfortunately this is technically difficult.
We were able, however, to carry out this calculation to or-
der Xplp,' typical diagrams of this order are shown in Fig.
2. We obtain the following result for the renormalized
series:

N(t)
1 X+X2+ yX

I
8ttt yX

I
8ttt

This is our final expression for the reaction rate in two di-
mensions. It is well behaved for large times. The dora-
inant terms for short times are 1 cp—t/X, —cpt/X, which
for "intermediate" times is as one would anticipate on
physical grounds; the reacted fraction is small and scales
like the volume explored (-t in d=2) with the expected
logarithmic corrections. In fact, if one attempted to re-
normalize perturbatively in terms of y only, one would to
first order obtain a result close to this short-time form:
N(t)/Np =1 —cpt/X, ; clearly such a result is not sensible
at large times.

Though our result has good "long" and "intermediate"
behavior, it is clear that the behavior is pathological at the
shortest times [for example, when X, =0, N(t) vanishes].
The form of the dominant short-time terms suggests that
the very-short-time behavior is controlled by the two-body
terms, i.e., diagrams with two incoming boson lines (n
body terms have factors of cp to the n —

1 power and con-
sequently t to the n —

1 power). These diagrams can be
summed exactly:

N (p) I 1ipcp ~p ~
No p p2 V q p+2q2

where we Laplace transformed t p. From this expres-
sion one infers that 1/y=l/yp+ I/4+a, identically to the
previous result. Renormalizing this two-body series one
finds that the term proportional to I/p is positive at very
large p. If we assume the small t behavior controls the
large p behavior then we conclude that at short times
N(t)/Np=l+(positive term). That is, granted seemingly
innocuous assumptions, the "all order" very-short-time
behavior is nonsense. In order to study more carefully the
origin of this problem, we next consider the pure two-body
reaction problem. The two-body probability density P
obeys [8, —d, i

—&2 —wpB(xi —x2)]P =0 (we take a
periodic box of size L). The renormalization can be set by
looking at the long-time behavior. For a finite system
P(xi, x2, t ~)-e 'P(xi, x2) and we can thus consider
a d-dimensional Schrodinger equation with a 8-function
potential. Such a problem has been previously considered
by Berezin and Fadeev [15,161. These authors proved the
existence (independent of dimension) of a nontrivial re-
normalized solution. (We believe that when one considers
the full time dependence this is no longer possible. ) The
formal argument of Fadeev proceeds as follows. Expand-
ing the Schrodinger equation in terms of a Fourier series
one obtains

P(k) =( E+k ) '(w /V)QP—(k')
k'

and self-consistency demands that 1 =(wp/V)gt, [I/( E-
+k )]. Since the divergence comes from ~k~ ~, we
rewrite this self-consistency requirement as

1 1 1 1 1 1——X =—Z
wo V p k V p —E+k k

FIG. 2. Examples of order Xoi,o diagrams.

By choosing I/wp= I/w+Z where Z is the singular part
of (I/V)gq(1/k2) the divergence is eliminated. We can
thus renormalize this problem in any dimension using a
suitable regularization (i.e., a momentum cutoff). By us-
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ing dimensional regularization (about d=2) one finds
uo=u/[1+u/(2ne)] where uo=woB'I . The difference in

the renormalization compared with 2+2 H is only in

the choice of name for the parameter.
We next consider the full time dependence inherent in

the diffusion equation. A straightforward calculation us-

ing Laplace and Fourier transformed variables yields

I (o,p) =—1+l No Wo 1

p Vp V I p+g

for the Laplace transform of the probability that the par-
ticles survive at time t. Renormalizing this expression us-

ing the previously determined renormalization of uo, we

find that the term proportional to 1/p2 has the form

1/[p (A+8 ]np/po)] where A and 8 are constants, A (0
and B & 0. Let us assume that large p is determined by

short t. Since for large p the expression proportional to

1/p is positive we see that the correction to 1 at short

times is positive, i.e., the probability is greater than 1 at
short times. We thus observe the same pathological be-

havior in this simple model as in A+A 8 and we con-

clude that there is a fundamental inconsistency in both re-

normalized theories.
In conclusion, we have examined A +A ~ in two di-

mensions and attempted a calculation to order A, o where

Xo is included to all orders. Our result, Eq. (3), for the

number of surviving particles N(t) is well behaved at long

and intermediate times. It would be interesting to see if
this form can be distinguished by computer or laboratory

experiments from the order A, form. Physically, the
necessity to include Lo to all orders is related to the ex-
istence of an important time scale t, the time to diffuse the
initial mean distance between neighbors (-co I ). For
I & t ("intermediate" times) the reacted fraction in gen-
eral d (provided X, is small) scales as the volume explored
[13];for t & I ("long

' times) the surviving fraction scales
as the inverse volume explored. This crossover can only be
achieved by all-order summation of terms which are
powers of the volume explored.

The very-shortest-time behavior, however, is a difl'erent

story. To a certain extent, the problems of A +2
have the flavor of the Lee model [17]; however, the
many-body version of two-dimensional A+A 121 seems
to us far away from exactly solvable. The pathological
shortest-time behavior of the many-body problem stems
from the short-time behavior of the two-body annihilation
process and thus in both theories the renormalized series,
after improvement by the renormalization group, is non-
sensical on these scales. However, the fact that the "inter-
mediate" and "long"-time behaviors are good begs the
following question: At what time scales can the renormal-
ized theory be trusted?
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