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We report an observation of a smectic-4-smectic-C-smectic-F (4-C-F) meeting point in a binary
liquid-crystalline system. Detailed high-precision x-ray measurements enabled us to characterize the
meeting point as a triple point, a point at which the three phases coexist. A direct consequence of this
result is the existence of a tricritical point (TCP) on the A-C boundary. Contrary to the known re-
sults, the TCP appears despite a large temperature range for the 4 phase and the occurrence of a
nematic phase at a higher temperature. Bearing in mind that F is a tilted hexatic phase, it is suggest-
ed that a possible reason for this behavior is the molecular-tilt field arising from the coupling between

the tilt and the bond-orientational-order parameters.

PACS number(s): 61.30.—v, 64.70.Md

Smectic-4 (4) and smectic-C (C) liquid crystals are
characterized as orientationally ordered fluids with a one-
dimensional mass-density wave. In the former the wave
vector of this wave is along the director, while in the latter
it is tilted. Experimentally, the 4-C transition is general-
ly found to be second order. As the transition is governed
by a two-component order parameter it was proposed ini-
tially that the transition might exhibit heliumlike critical
behavior [1]. However, subsequent studies [2-7] showed
that, owing to a large bare correlation length [8], the tran-
sition is almost always mean-field-like with a relatively
large sixth-order term in the Landau free-energy expan-
sion. Based on heat-capacity results Lien and Huang [9]
postulated that this transition can be driven in a first-
order manner by fluctuations seen as a consequence of the
nearby isotropic-to-4 phase transition. Recent experi-
ments [10] have shown that the temperature range of the
A phase has a pronounced effect on the order of the 4-C
phase transition.

Extension of the two-dimensional melting theory to
liquid crystals led to the prediction [11] and subsequent
experimental observation [12] of bulk phases of matter re-
ferred to as hexatic phases which exhibit long-range bond
orientational order (BOO) as in a solid but a short-range
positional order like in a fluid. The tilted versions of this
phase, viz. smectic F (F) and smectic I (I) are described
by two order parameters, namely, sixfold-BOO and the
molecular-tilt order parameter. Studies on these have
been made all the more interesting since in the C phase
the existence of finite molecular tilt gives rise to an in-
duced BOO [13] although of a very small amplitude.
Thus both C and F phases have the same symmetry. Con-
sequently C phase transforms into F phase either through
a first-order transition or evolves continuously without a
transition. There are many theoretical studies [13,14] to
map out different phase diagrams involving hexatic
phases. However, no phase diagram with A4, C, and the
tilted hexatic phases has been studied so far. In this Rap-
id Communication we present phase diagram and x-ray
diffraction studies on a binary liquid-crystal system of
terephthal-bis-butylaniline (TBBA) and n-(4-n-nonyloxy
benzylidene)-4-n-butylaniline (90.4) which shows an A-
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C-F meeting point. High-precision layer-spacing mea-
surements performed on either side of the meeting point
enabled us to characterize it as a triple point, at which all
the three phases coexist. An interesting offshoot of these
studies is the observation of a tricritical point on the 4-C
boundary (and the concomitant first-order-transition
line). A notable feature is that for all the mixtures exhib-
iting the 4 -C transition, the A phase has a relatively large
temperature range and in addition is followed by a nemat-
ic phase. This is puzzling since the 4-C transition is ex-
pected [10] to become first order, in the absence of a
strong lateral dipole moment of the molecule, only when
the temperature range of the A phase is quite small.

The partial temperature-concentration (7-X) phase di-
agram, obtained by optical microscopy and x-ray diffrac-
tion studies, is shown in Fig. 1. It can be seen that for
X <0.28 (where X is the weight fraction of 90.4 in
TBBA) C phase goes to smectic-G (G) phase directly and
for X > 0.28 the F phase intervenes between the C and G
phases and with increasing X the range of the F phase
grows at the expense of the C phase. Finally, for
X > 0.585 the C phase ceases to exist resulting in an A4-
C-F meeting point.

The x-ray experiments have been conducted on aligned
samples obtained by slowly cooling the sample from the
nematic phase in the presence of a 2.4-T magnetic field.
The setup is essentially identical to the one described ear-
lier [15]. The precision in the determination of the wave
vector is 2x10 % A ™! while the resolution in the equa-
torial direction is 1x10 ™3 A ~! half-width at half max-
imum. The temperature was maintained to a constancy of
better than 10 mK during each measurement. The tem-
perature variation of the layer spacing for X =0.45 in the
neighborhood of the A4-C transition is shown in Fig. 2.
The most striking feature of this diagram is the existence
of the two-phase coexistence region wherein the modula-
tions corresponding to both the phases are present clearly
signifying the first-order A-C transition. This feature is
exactly as expected and indeed observed earlier for a first
order A-C transition [10]. Figure 3 shows the tilt angle
(®) variation for different concentrations in the tempera-
ture range very close to 4-C transition. [® was evaluated
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FIG. 1. Partial temperature-concentration phase diagram for
varying weight fraction (X) of n-(4-n-nonyloxy benzylidene)-
4-n-butylaniline (90.4) in terephthal-bis-butylaniline (TBBA).
The solid lines are guides to the eye. The A-C-F point is denot-
ed by the solid circle.

by using the expression ®=cos ~'(d./d4) where d. and
d 4 being the layer spacing corresponding to the C and A
phases, respectively.] It is observed that for X = 0.45, the
tilt angle jumps abruptly to zero indicating a first-order
transition while for X < 0.40 it goes continuously to zero
as for a second-order transition. Evidently there is a tri-
critical point in the concentration range 0.4 < X < 0.45.
The temperature variation of layer spacing near the C-
F transition is shown in Fig. 4. The abrupt jump in the
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FIG. 2. Temperature variation of the smectic-layer spacing
(d) in the vicinity of the A4-C transition for X =0.45. The verti-
cal dashed lines indicate the two-phase region where the data
are represented by the solid circles.
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FIG. 3. Smectic-C tilt-angle variation vs the reduced temper-
ature for X=0.54 (a), 0.51 (m), 0.45 (@), 0.4 (»), 0.36 (@),
and 0.32 (0).

layer spacing and the presence of the two-phase region
unambiguously show that this transition is first order for
all the concentrations studied. The inset shows the jump
in layer spacing across C-F transition for four different
mixtures. The jump in the layer spacing is observed to in-
crease with the increase in the temperature range of the F
phase. It may be noted that a similar feature [16] was ob-
served for the transition between C and I phases. Beyond
the triple point the 4 phase directly goes to the F phase.
The temperature variation of the layer spacing across the
A-F transition for X =0.6, a concentration which lies very
close to the 4-C-F meeting point is shown in Fig. 5.
Clearly, the transition is first order in nature.
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FIG. 4. Variation of the smectic-layer spacing (d) as a func-
tion of the reduced temperature in the vicinity of the C-F transi-
tion for x =0.56 (@), 0.44 (0), 0.36 (4), and 0.32 (O). For the
sake of clarity, the data in the two-phase region corresponding
to the C phase are not shown. The jump in the layer spacing
across the C-F transition for these mixtures is shown in the in-
set.
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FIG. 5. Temperature variation of the smectic-layer spacing
(d) in the vicinity of the 4-F transition for X =0.60. The solid
circles stand for the data in the two-phase region which is
marked by the vertical dashed lines.
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These results lead us to infer that 4-C-F meeting point
is a meeting point of three first-order phase boundaries
and hence is a triple point. To our knowledge this kind of
a phase diagram has not been envisaged by theory so far.
Furthermore, as mentioned earlier, in the vicinity of the
triple-point concentration, the A-C transition changes
from second order to first order even though the 4-phase
range is quite large. This is contrary to the known experi-
mental results that the 4-C transition becomes a first-
order one only when the strength of the transverse dipole
moment of the constituent molecules is large [17] and/or
the temperature range [10] of the A phase is very small.
But in the present system neither of these two conditions
is met and still the transition becomes a first-order one.
One possible cause for this behavior is the molecular-tilt
arising due to the coupling between the BOO and the
molecular-tilt order parameter. Such a possibility still
remains to be investigated theoretically.

The authors are indebted to Professor S. Chan-
drasekhar for many useful suggestions and valuable dis-
cussions.
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