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The ground state of an electrorheological fluid is examined for high dielectric contrast (e~/ef ~ ~).
In contrast to the result of Tao and Sun [Phys. Rev. Lett. 67, 398 (1991)] for the dipole limit, three
structures are found to be degenerate: face-centered cubic, hexagonal close packed, and body-centered
tetragonal. However, particle column surface energy favors the body-centered tetragonal structure,
which has a lower surface energy per particle at the critical volume fraction of particles.

PACS number(s): 62.15.+i, 82.70.—y

Tao and Sun [1,2) have predicted that the ground state
of an electrorheological (ER) fluid is a body-centered
tetragonal (bct) lattice. Recent experiments appear to
confirm this prediction [3]. Since the theory is based upon
a dipole approximation and is applied to particles that are
touching, where such an approximation may not be valid,
it is of interest to reexamine the ground state from a
diff'erent perspective. Letting e~ and ef be the dielectric
constants of the particles and fluid, respectively, we expect
the dipole approximation to break down when P (e~

Ef)/(e'@+2') is near unity. (The analysis of Tao and
Sun is valid for small P; however P = 1 may be more real-
istic for many ER fluids of interest. ) Thus in this paper
we consider the limiting case where e~/ef oe, since the
failure of the dipole limit should be largest in this limit.

The most convenient method to determine the ground
state is to consider the effective dielectric constant for the
composite Quid, e,g. The lattice structure with the largest
(e,r —ef)/p„where p, is the volume fraction of particles
at touching for a given lattice, should be the equilibrium
structure. Batchelor and O' Brien [4] have shown how to

calculate the dielectric constant under these conditions.
Here we assume that conductivity effects can be neglect-
ed, that is, the applied electric field is at high enough fre-
quency that o/rp«e for each phase. (Typically, f) 10
Hz, see Ref. [Sl.) Let us consider Fig. 1, where the small
gap between two adjacent particles (taken to be spheres of
radius R) is depicted. The upper sphere is at potential @~
and the lower at @p with the diff'erence given by

4) —4p —8pd,

where Ep is the applied field and d is the vertical separa-
tion of the sphere centers. The electrostatic energy in the
gap is given by (minimum gap is w «R)
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where we have taken the cutoff to be R. Equation (2) can
be evaluated easily:

U 2 ef«(4~ —4p) Rln(R/w) . (3)

To find the effective dielectric constant, we must equate
the energy in a unit volume to the gap energy times the
number of gaps, i.e.,
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TABLE I. Value of K~ [for e,«, see Eq. (5)l, critical volume
fraction (p, ), and ratio K~/p, .

p Lattice Ki Ratio

FIG. 1. Gap region between two spherical particles of radius
R. The minimum gap is w&&R. The spheres are at potentials
@& and ~, whose difference is determined by the applied elec-
tric field.
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TABLE II. Surface energy per unit area e, in units of
efEJR ln (R/w ) for several faces and lattices.
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where n is the number of particles in a unit cell, vo. (This
must be generalized in an obvious way for structures with
two or more different types of gaps. ) Hence, for a simple
cubic lattice where n 1 and vo d, we have (taking
d 2R)

fuf efK~ ln(R/w), Kj x/2 . (5)

The effective dielectric constant for all lattices can be
expressed in the form equation (5) with K& depending
upon the structure. We list K~ for various lattices in
Table I (simple cubic, face-centered cubic, and body-
centered cubic were determined in Ref. [4]; also see Ref.
[6] for further discussion). The bct lattice is of particular
interest and is analyzed here. The lattice vectors are
a~ v6ax, a2 E6ay, and as=2az [1,2] with R a at
touching. There are two types of gaps: the first is be-
tween vertically adjacent spheres where the potential
difference is @~—@o —2Eoa and the second is between
particles displaced along the body diagonal where the po-
tential difference is half as much, @I—@o Eoa T—here.
is one gap of the first type per particle [energy U, which is
given by Eq. (3)] and four of the second type (energy
U' U/4). Hence,

Eo = (U+4U') .
12a

(6)

Making use of Eq. (3), we find the resulting effective
dielectric constant to be given by Eq. (5) with

Ki 4n/3. (7)

The remaining entries in Table I can be found by similar
arguments.

The free energy per particle is the negative of the elec-
trostatic energy per particle. The latter is proportional to
K&/Pc [only terms which diverge as ln(R/w) are retained].
Thus, the larger this ratio, the lower the free energy. We
see that three structures have the same ratio, namely,
face-centered cubic (fcc), body-centered tetragonal, and
hexagonal close packed (hcp). There might be other
structures that are degenerate with these three, but none
have been found so far.

The implication of these findings is that for high con-
trast ratio (large e~/ef), structures such as fcc and hcp
may form instead of or along with bct. Two eAects, one of
which is beyond the scope of the present study, may be
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FIG. 2. Electrostatic energy per particle in a column of ra-
dius R, for various lattices with each having a surface energy
representative of low-index faces. The unit of energy is

ef ln(R/w)E J/2.
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important in determining the structure. The first is the
dynamics of structure formation [7]. Simulations of par-
ticle ordering have only been reported for dipole interac-
tions [8,9] or for two-dimensional (2D) (monolayer) films

[10],so they shed no light on this question. At this point,
possible modifications of the dynamics of structure forma-
tion are unknown. The other factor is the surface energy,
which can be calculated (Table II) following the pro-
cedure of Toor and Halsey [11]. For a column of radius

R„the energy per particle is

K) 2e,R
Ep,~ Eo ln(R/w)

Pc PcRc,

This relationship is plotted in Fig. 2 for fcc, hcp, and bct
lattices, each with a surface energy representative of low
index faces [an average of (100) and (110) for fcc and
bct, (1000) for hcp]. It appears that at all column radii
R„ the bct lattice is preferred since the electrostatic ener-

gy per particle is the highest for this lattice (recall the free
energy is the negative of the electrostatic energy). Unless
dynamical considerations (or perhaps entropic effects
which could be investigated with Monte Carlo simulations
[2]) somehow favor fcc or hcp, one must conclude that the
ground state is bct in the high contrast ratio limit as well

as in the dipole limit. For intermediate contrast, there is

no reason to suspect the ground state is other than bct.
The observation of the ground-state structure may be

subtle. The simulations of Melrose [12] indicate that for

Eo larger than the solidification field particles aggregate
into a gel-like structure in three dimensions (within the di-

pole approximation).
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