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First-passage time, maximum displacement, and Kac s solution
of the telegrapher equation
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The distributions of the first-passage time for the Poisson random walk on a straight line (also
known as the telegrapher random process) subject to a given number of reversals in the walk are
obtained explicitly for both the starting directions. These distributions are then used to obtain,
again explicitly, the corresponding distributions of the maximum of the walk, proving the conjecture
by Orsingher [Stochastic Process. Appl. 84, 49 (1990)] for the one started moving to the right. The
latter distribution leads to a reinterpretation of Kac's solution of the telegrapher equation.

PACS number(s): 02.50.+s, 03.40.Kf, 05.40.+j

There has been continuing interest in the path-integral
solution of the telegrapher equation and the underlying
Poisson random walk, since the work of Goldstein [1] and
Kac [2. Recently, DeWitt-Morette and Foong [3], and
Foong [4] gave the solution in terms of an ordinary inte-
gral. An example solution in Ref. [4] was very recently
applied by Mugnai et aL [5] to a semiclassical analysis
of tunneling time. There are also other applications and
extensions; for example, application to polymers [6], and
extension to the case when the reversal intensity of the
random walk is time-dependent [7—9]. For more refer-
ences, see Ref. [9, 10]. These developments prompted the
current detailed study of the walk, which leads to a rein-
terpretion of Kac's solution of the telegrapher equation,
which is a wave equation with dissipation.

In this connection, it appears that in the literature
there is neither an exact evaluation of the distribution of
the first-passage time nor a general formula for the distri-
bution of the maximum displacement for this particular
walk, even though a related one has been considered [11].
For the distribution of the maximum displacement, Ors-
ingher [10] calculated the cases for which the walker has
undergone N & 5 reversals in a given time interval for
both the starting directions, and conjectured a formula
for the case of general value of 1V for only one of the
starting directions (to the right). In this Rapid Commu-
nication, the distributions of the first-passage time are
obtained with the help of Siegert's formula [13] and then
used in obtaining the distributions of the maximum of
the walk, for both the starting directions, thus providing
a proof of Orsingher's conjecture.

Let us now define the walk, first on the lattice, where
the sites are separated by Ax. Let a particle start at x =
0 with a constant velocity v, and let Et = Ex/v. At each
site, it may reverse its direction of travel instantaneously.
The probability of a reversal at a site is aLt, while the
probability of continuing its direction is 1 —an't. It is
to be understood that the particle is a sample out of an
ensemble.

The continuum limit of this lattice random walk, with
v held constant, is described by the Poisson distribution
[2], namely, the probability P for a path with k reversals
during the time interval Lt —= t —t' is given by

p(N(t) N(t ) k)
e ' '(an't)"/k!, k & 0;
0, k &0.

For convenience, we shall take N(0) = 0.
A quantity of interest to the telegrapher equa-

tion is S(t) defined by S(0) = rp and S(t) = Tp +
Vp f,'(—1)~&'& dr. It is the displacement of the particle
starting at rp with velocity Vp. If Vp = 1 and rp = 0, it is
also the "randomized time" of Kac. We shall now discuss
the case where the starting direction of the walk is to the
right (Vp = 1), and towards the end quote the results for
the other starting direction. Denoting the density distri-
bution of S(t) by g(t, r), its Laplace transform Zs, and

withri = Ti Tp ulk = t+Tl andui: gt —ri [where
the notations hold if the superscript prime, or subscript
1, or both (in which case rp = 0) are dropped], then

g(t, r'lrp) = e "b(u~)
+ —at

+ e(u )[Ip(au') + +, Ii(au')] (2)

(see, for instance, Refs. [4] and [12]) and [3]

(gs, r'lr )p= -[(1+2a/s) I + 1) exp[—r'(s2+ 2as)iI2],

t
g(t, rlro) = f(ri, tilro)g(t —ti, rlri)dti,

0
(4)

which is a convolution of the two densities. By the con-
volution theorem of the Laplace transform, Eq. (4) gives

Zs(s, rlrp)I-I(s, rilro) =

r' & 0 (3)

where I„are the modified Bessel functjons, e(t) = 1 for
t & 0, and e(t) = 0 for t ( 0.

Let the probability density that the particle passes the
point ri ) rp for the first time at time t be f(ri, tlrp).
Then, for r ) ri, Siegert's formula relating f and g is
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It follows from Eqs. (5) and (3) that

l.f (8, ri ~ro) = exp[ —ri(s + 2as) ]

whose inverse [4] gives the following density of the first-
passage time:

I

f(ri, t~ro) = e 'b(u'1 )+e, I1(aui)8(ui ).
Qy

In the remainder of the paper we shall set ro = 0, and
the case for ro g 0 is to be recovered by replacing ri by
r1. Also, unless otherwise stated, 8 denotes 8(u1 ).

We now deduce from Eq. (6) the distribution
l

f(ri, ti, N(t1) = 2k). Since f(ri, t, N(t)) = 0 for N(t)
odd, by expanding Ij we have

f(r1, t) = ) f(ri, t, N(t) = 2k)
k=O

, a r1 ) (au1/2) '
2, ; i'(i+1)'

Because each reversal associates with a factor a, as we
see in Eq. (1), and the factor e "is independent of the
number of reversals, Eq. (7) implies

2e "(a/2) ~riu1 !8/[(k —1)!k!], k & 1

from which the conditional probability is, where B denotes the P function,

.„tNt =2k = '("1-)
2[B(1/2, k)] (r1/tz)(u1/t) !" &8, k & 1.

This concludes our calculation of first-passage time, and we now turn to the calculation of the distribution of the
mmimum displacement to be denoted by S~(t), to the right of the origin, of the walk during the time interval [0, t],
namely, S~(t) = max(S(r), 0 (« t)

e smk the distribution of S (t) subject to a given number N(t) of reversals by time t. The probability that the
mmimum of a path is greater than or equal to ri is given by the sum of probabilities that it undergoes 2i (i & 0)
reversals by the first passag-e time r, and the remaining N(t) —2i reversals between r and t. That is,

[rs/2]

P(S (t) & ri, N(t) = n) = ) f(r1, r, N(r) = 2i)P(N(t —r) = n —2i)dr,
~=o

(10)

where [n/2] denotes the greatest integer not larger than n/2.
For N(t) odd, substituting for f(ri, r, N(7') = 2i) given by Eq. (8), and dividing by the probability of N(t) reversals,

we have the conditional probability

»+1 (2ky1)!r, " J'„' «(r'- 1)' '( -r)'"'" '
P(S (t) ~N(t) = 2k+1) = 8+ ) - 2 (~- )(; 1), [1+2(k —)]!i=1

The derivative with respect to r1, as outlined in the
Appendix, of the complement of this (namely, the con-
ditional probability that the maximum is less than r1)
gives the following density:

p(S (t) = r~N(t) = 2k+1)

@2A:=e B(1 k + 1) t»+1', k&0 ~12~

as conjectured by Orsingher [10]. For the case of N(t)
even, we similarly obtained, as remarked in the Ap-
pendix, that

p(S (t) = r~N(t) = 2k)

~2(A:—1)

B(1 k) t» —1

= p{S (t) = r]N(t) = 2k —1), k & 1.

By integrating the density p, the probability of con-
finement to less than r1 is easily obtained «be

P(S (t) (r1]N(t) = 2k) =P(S (t) «1IN(t) = 2k —1)

= B"('/' ")8= I„(1/2, k)8,
B(1/2, k)

where z = r1/t, B,2 is the incomplete p function, and
I,u is the regularized p»«ion.

The density of S (t) regardless of N(t) for t & r1 is
given by

(S (t) =")=). (S (t) =" N(t) = k)
k=0

= e 'b(u ) + Bae " Io(au) + —Ii(au) .

(14)

This formula has the same form as the distribution
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[3] of [S(t)[, if rq is taken to be the value of ]S(t)] in-
stead. This is remarkable because the two quantities
S (t) and ~S(t)[ are obviously different. An immediate
implication of this is that a different averaging process
could be adopted in Kac's solution to the following wave
equation with dissipation:

1= B(1/2, k) B,~ (1/2, k) + —(1 —z )" (20)

we have of course P(S (t) ( rq ~N(t) = 0, Vo = —1) = 1,
and for N(t) ) 1,

P(S (t) ( rq [N(t) = 2k, Vo = —1)

1 B~F 2a BF
u2 Btz vz Bt

F(x, 0) = P(x, 0),

=0,
Bt ~=o

and

(15) P(S (t) ( rg [N(t) = 2k + 1, Vo = —1)

= [(k + 1)B(l/2, k + 1)] kB,~ (1/2, k)

namely, averaging over S (t) or averaging over ~S(t)~ as
in Kac's original solution. In other words, Kac's origi-
nal prescription is not unique. However, it must be em-
phasized that the discussion here assumes the boundary
condition BF(x,t)/Bt = 0. Further considerations are
needed when this boundary condition is not satisfied.

We end this paper by quoting the corresponding results
for the other starting direction, namely to the left, which
may be similarly derived [14], except that we do not have
the benefit of a conjecture by Orsingher in this case. The
distributions of the first-passage time are given by

f(rg, t[Vp = —1)

and

&-at ) 1/2
= 8 ar&Io(aug) +

~Q]+ Eu&+ i Iy (aug) (18)

f(ri, t, Nt, = 2k + 1[Vp ———1)

D(t, k)
[t + (2k + 1)rg]ug u~, (19)

2(A:-Z)

where Eq. (19) follows from Eq. (18), just as Eq. (8)
follows from Eq. (7). As for the maximum of the walk,

I

where D„ is any well-behaved, linear, spatial operator
(for example, Tz or V x V), and P(x, t) is the solution
of the wave equation without dissipation

1BQ —D„P =0,
vz Btz

that is, the solution F(x, t) can be obtained by

F(„ t) (~(„S (t)))+1(4,(„S (t)))

+-B;(1/2, k+1)1

+(1 —z')", (21)

where z = rq/t. Notice that unlike the Vp = 1 case,
the probabilities for the N(t) even and odd cases dif-
fer. However, as k becomes large, and consequently
B,a(1/2, k) 1/~k, we see in these equations that this
difference and the difFerence due to the initial starting di-
rection become smaller, as one would expect intuitively.
Orsingher's conjecture can also be proved by a difFerent
method to be found in a more detailed and extended ver-
sion of this Rapid Communication [15].

Notes added

The first-passage time may also be used to evaluate,
besides the distribution of the maximum presented here,
the distribution of the displacement in the presence of
traps [15, 16] which was recently evaluated [17] by a dif-
ferent method, namely, via the difFerential equations sat-
isfied by the densities.

After this work was completed, I received a copy of
unpublished work by J. Masoliver and G. H. Weiss that
is closely related to this work. Two other related works,
Ref. [18], were also pointed out to me by P. Hanggi.

I thank my colleagues for a supportive environment in
which to work, and Professor S. Kanno for his interests
in this work.

A.PPENDIX

We outline the proof of Eqs. (12) and (13).
Eq. (11), the density is given by

p(S~(t) = r [N(t) = 2k + 1) = —P(S (r) ( r]N(t) = 2k + 1)
0

where

—P(S (r) & r~N—(t) = 2k+ 1)

1/t, k=0;
(2k+1) „„,+(2k+1)k",,"„, + '!„,+'& I(k), (Al)

f„dr[(2i —1)r —rz] (rz —rz)' z(t —r) ~+z'!"

2'&'- &(i —1)!i![1 + 2(k —i)]!i=2
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In other words, recalling Eq. (12), we need to prove for k ) 2

2 —1 2kt(k t r) = (2B(1/2 &+ 1) u ——(2k+1)(t —r) " (t+ (2k —1)r]) = 2(k t r), (A2)

which we will do by induction. It is easily checked that
I(2, t, r) = J(2, t, r). In order to show I(k+ l, t, r) =
J(k + 1, t, r), we note the following.

(1) B2I(k + 1)/Bt2 = B2J(k + I)/Btz.
(2) I(k) is a 2k-degree polynomial.
(3) I(k+ l, t, t) =0 = J(k+ 1, t, t).
(4) The density p given by BP/Bragi„, „, Eq. (Al) is

normalized for all k, namely J& p dr = 1, for all k because
the probability P(S (r) ( ri]N(t) = 2k+ 1) Eq. (11),
unlike Eq. (20) or Eq. (21), has no term independent of
ri by inspection.

Item (1) is established by a straightforward and not long
calculation, in which Eq. (A2) is used. The first three
items together imply

I(k+ 1, t, r) = J(k+ 1, t, r) + C(k)r "+ (t —r). (A3)

In order to show C(k) = 0, we substitute for I(k) in

Eq. (Al) giving

p(S (t) = r[N(t) = 2(k+ 1) + 1)

a(I +&)

B(l/2, k + 2) t'"+'

1 r2k+1 (t r)+-(2k+ 3)!C(k)

which by item (4) implies C(k) = 0, and hence the con-
jecture also holds for k k k+ 1. Consequently, we have
proved that Eq. (12) holds.

The proof for the N(t) = 2k case is similar but simpler,
because in this case one can make use of the result for
N(t) = 2k+ 1, and consequently only one differentiation
with respect to t is needed in order to carry out the proof
by induction.
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