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We study the multicritical behavior of a class of two-dimensional ice-type vertex models on diAerent
lattices using renorma)ization-group theory. The models are classified by an integer m, with m =2 cor-
responding to the known square lattice case. For m) 2, the specific-heat exponent is a=(m —2)t'
(m —I) with an upper critical dimensional coniluent (Int)'I divergence for m 3. The nature of the
transition is similar to the mth-order multicritical point, yet the exponents are not those known from
c &1 conformal invariance. The models are anisotropic with vIi=1 and v~ 2. A few special
features of the models are discussed.

PACS number(s): 64.60.Kw, 05.70.Jk, 64.60.Ak, 36.20.—r

The exact solutions of two-dimensional vertex models
are well known with far-reaching consequences for our
understanding of critical phenomena, and beyond [I].
These easy-to-define square-lattice (and a few triangular
and Kagome lattices [l(b),2]) models, with local geome-
tric constraints, encompass a huge class of known critical
behaviors, like the mth-order multicritical points [3,4],
Zq critical points [3,5], Kasteleyn-Pokrovsky-Talapov
type [6], F or Kosterlitz-Thouless type [7],etc. In this pa-
per we show that there is a generalization of the simple
five-vertex model on different lattices that show distinct
multicritical behavior. The first nontrivial one in this
series is a version of the triangular-lattice vertex model
(Fig. I) which is really a model at its upper critical di-
mension. The specific heat diverges near the critical point
T, on the hig. h-temperature side as c-t 'I-'(Int)'I,
where t = (T—T, ), T being the temperature. The square-
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FIG. I. (a) A few allowed vertices for m 3 on a triangular
lattice, (b) energies, and (c) equivalent directed walks (thick
lines), a horizontal bar indicating an additional stalker on the
edge. Vertex 0 with all arrows up constitutes a nondegenerate
ground state. Excited states are created by Aipping arrows and
maintaining the "ice rule. " The Aipped arrows can, however, be
on the same edge. Only one vertex of each type is shown; others
can be obtained by permutations of the arrows. For a vertex of
coordination number 2q, the number of arrows in equals the
number out which equals q ("ice rule" ). {d) Three stalker exci-
tations are not allowed (NA). They are allo~ed for e~ & 3.

root logarithmic contribution is actually the signature of
upper critical dimensionality. It is a coincidence that ex-
ponent a 2 is the same as for the K model, or the
square-lattice ferroelectric five- or six-vertex models
[I (a), I (b)]—the underlying physics is completely
different. The models are characterized by an integer m
such that the specific heat for m & 3 behaves like
c-t t"' -'it"' ". (m 3 corresponds to the triangular
lattice case; m 2, the square-lattice five-vertex model. )
These represent multicritical points in an extended pa-
rameter space, and the specific heat or the free-energy
singularity is identical to that of a conventional mean-
fteld multicritical point of order m (say, 4i-'"' theory), but
surprisingly in two dimensions and without any long-
range interaction. Hence, these are not the conventional
mth-order multicritical points as known from conformal
invariance with the central charge c ( I [3,4]. Further-
more, we show that these models are anisotropic in space
for all m. It seems that the multicriticality found here are
the anisotropic ("nonrelativistic") counterpart of the con-
ventional isotropic ("relativistic" ) multicritical points.

The genesis of the models is in the recent formulation of
the conventional ferroelectric five-vertex (m 2 in our
classification) model in continuum for arbitrary dimen-
sions through interacting directed walks [8-10]—a path-
integral approach borrowed from the flux-lattice-melting
(FLM) theory [11]. We showed that, using renormaliza-
tion-group (RG) theory with dimensional regularization
several quantities, like the fixed point, the second virial
coefficien, and even the exponents (both thermodynamic
and length scales), I'or the vertex model can be determined
exactly [9,10]. Generalizations of the two-body Hamil-
tonian can be studied as well [l2]. These were partly
motivated by the recent attempts to handle the impurity-
induced attraction in I.LM, whence, for stability, higher-
order repulsive interactions are required [l3]. It was
found, remarkably, that the generalized Hamiltonian with
pure m-body interaction yielded, in an RG approach, an
exact fixed point and an exact closed form mth-order viri-
al coe%cient [12]. These generalized many-body Hamil-
tonians, in turn, led to the models discussed in this paper
through the mapping between vertex models and directed
walks. After all, it is a truth universally acknowledged
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that a simple model in possession of good (rich) physics
must not be in dearth of applications [14].

Let us consider the triangular lattice with the diagonal
direction as the z axis. (This is a preferred direction be-

cause, e.g. , the vertex with all edges occupied is not al-
lowed. This vertex would correspond to a complete polar-
ization in the —z direction. ) We enforce the "ice rule" at
each vertex but relax the "one-edge-one-arrow" criterion.
There is a unique ground state with +z polarization, and
the excited states are obtained, as usual, by Aipping ar-
rows (see Fig. I). The important points to note are that in

the walk picture (i) the directed lines traverse the lattice
in the z direction, (ii) each point visited by a walker costs
an energy c, (iii) two walkers can meet without paying
any price, and continue their random walk, but (iv) three
walkers are not allowed to be at the same site. It is this
last restriction that makes it a three-body-interaction
(m =3) system without any two-body interaction. (The
square-lattice five-vertex model [1,8] forbids even two
walkers at the same site and corresponds to the m 2

case. See below for further generalization. ) It transpires
that, unlike the m =2 case, a free-fermion picture is not
suitable for this three-body interacting system. We might
add here that the m =2 case has been studied in various
forms in connection with the commensurate-incommen-
surate transition, and several types of rnulticritical
features have been discussed (see, e.g., [6(b),15]), the
models of this paper are not any of those.

Following the standard analysis for the five-vertex or
the K model (see Refs. [6,9] and references therein), we

conclude that the low-temperature phase of the model is

just the ground state up to T, =c/kln3. The transition
temperature is obtained by studying the stability of the
ground state with respect to the first excited state with

free energy F~/N =c—kT ln3 for a lattice of size N in the
z direction (JV ~). Our interest is, however, in the crit-
ical behavior and not in T„. The thermodynamics is ob-

tained by studying the excited states and noting that the
number of chains is a layer-to-layer conserved quantity
(i.e., a block-diagonal transfer matrix as for the conven-

tional vertex models [I]). If A,„ is the number of
configurations of n directed ~alks on the lattice, the free-

energy density can be written as
I

f(p) = at—p+s(p),

where s(p) =limN t kTL ' In(3 "/k,' ). This entro-
pylike function is nonzero because of the interaction of the
walkers and the problem is to evaluate the p dependence
of s(p). The thermodynamics is obtained by minimizing
f(p) with respect to p at a fixed t (i.e., finding the largest
eigenvalue among the blocks of the transfer matrix), so
that as t 0, the density p, and the specific heat c are
given by

as(p)/ap-t, e-8p/at . (3)

In case there is a simple power-law dependence s(p)-p
as p 0, then p-t~ with

P=(e-1)-', a=1-P. (4)

For m 2, p is known as the incommensuration exponent
[6,9]. These exponents are known for the five-vertex mod-
els for all dimensions, and in two dimensions 8=3 produc-
ing p=a

Once it is recognized that the entropy function s(p)
originates from the eA'ective repulsion among the walkers,
it is possible to obtain it through a path-integral approach
in the continuum. Since the directed walks are really ran-
dom walks in the transverse d'=d —

1 directions, the
walks are replaced by continuum Gaussian chains ("ran-
dom walks") interacting with a short-range &function po-
tential that contributes only if m (three here) chains have
the same z coordinate. (d'=I for the problem in hand,
but general d' will be required soon. ) Generalizing the
two-body Hamiltonian [9,11] to m-chain interaction
(m 3 here) we take [12]

F„/NL = a—(T —T„)n/L —kTL '
ln(A, „' +/3"),

where L( ~) is the transverse size of the lattice.
[Throughout the paper a (=kln3, here) will stand for
some unimportant constant, not necessarily the same
everywhere. ] In the thermodynamic limit (N, L,n

with p= n/L—a fixed value), free energy is to be a function
of p and T and, therefore, we write, suppressing the unim-
portant T dependence,

2
Br, piV

H= —g ' dz+ g v„, dz6 (r, (z) —r, (z)) 6 (r, (z) —r, (z)),2, 4o 8z Wg 0 al a2 al atrt
(5)

where r, (z) is the d' dimensional position of point z on
chain a each of length N (N ~). The v, term is the
repulsive m-body coupling constant (v3 will be considered
for the time being). We obtain s(p) of Eq. (2) from this
H by computing the v„, (v3 now) dependent part of the
free energy of n chains in the canonical ensemble, i.e.,
from the diAerence between the free energy of the in-
teracting system and that of the corresponding nonin-
teracting one.

A simple dirnengional analysis sho~s that v„, is dimen-
sionless at d'=2/(m —I) so that v3 is dimensionless at
d' =1. This shows that the two-dimensional vertex model
of Fig. 1 is at its upper critical dimension (UCD),
demanding special care for the interaction term. We will

study the problem through RG theory following the
methods of Refs. [9,10]. This is facilitated by introducing
the local-density variable p(r, z) =P,b(r(z) —r, (z)), in

terms of which the interaction term in Eq. (5) is

Jo dz fdrp"'(r, z).
In a mean-field (MF) approach, we ignore the fluctua-

tion in p, to get

s(p) =av„,p"' (6)

(a again a numerical constant). Note that the square-
lattice five-vertex model also has a p dependence [6], but,
as shown in Ref. [9], this is a pure fluctuation efl'ect of the
two-body interaction (UCD is 3) in contrast to the MF
three-body contribution here. On minimizing the free en-
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(7)

where e, =2 —(m —l)d'~0. It is shown in Ref. [12]
that this equation is exact, i.e., valid to all orders of per-
turbation, just like the m =2 case of Ref. [10],and has no
explicit m dependence —m is hidden in („, and e

For m 3 and d' I, as needed here, e3 0, and we
have L8/;„,/8L —2(;-„. Integrating this to L-p ', we

get the effective coupling as v3(p)- I/lnp. On substitu-
tion in Eq. (6), this gives, from Eq. (2), f(p) ——tp
+v &p'/Inp, yielding c—t '/'-(In/ ) '/-. The logarithm

factor is a pure UCD egect.
Let us now consider generalizations of the triangular-

lattice model. We restrict ourselves to lattices with points
of only even coordination numbers, maximum being 2m.
For example, one can take the union-jack lattice for
m =4, or may construct lattices by adding the appropriate
number of diagonals through neighboring squares of a
square lattice. The energies of the vertices are chosen
such that up to m —I lines can meet at a point but not m
lines. The models are, therefore, characterized by m
which is related to the highest coordination number of the
lattice and is the minimum number of lines that are not
allowed to intersect. The continuum Hamiltonian is again
given by Eq. (5) involving m —I b functions.

The upper critical dimension for the vertex model with
m chain interaction is d„, =1+2/(m —I) which is less
than 2 if m & 3. Hence, for the two-dimensional model,
an MF analysis suffices yielding s(p)-p"' with 8 m.
This gives [see Eq. (4)], for m ~ 3,

P=(m —I) ', a=(m —2)/(m —I). (8)
We now determine the length scale exponents through a

finite-size scaling (FSS) analysis. We just point out the
crucial steps in the arguments, for details see Ref. [9].
Since FSS in its simplest form is applicable for dimensions
below the UCD, we now take d & d .

Consider a finite lattice in the z direction. This implies
that the z integrations in Eqs. (5) are for finite lengths N.
Such interacting, large but finite polymers are described
by scaling equations for, say, the osmotic pressure l1 [16]

fI/k Tp =g(p/p*), (9)

ergy, Eq. (2), with this MF s(p) for m=3, we get c-t ', similar to the five-vertex problem.
To go beyond the MF result, we calculate the eAective

coupling constant on any arbitrary length scale and then
compute it on a correlation length scale —p

'
by in-

tegrating the P function or the RG recursion relation.
This effective interaction (renormalized but not rescaled)
can then be used for v3 in Eq. (6) with m =3.

Let us define a dimensionless coupling constant with an
arbitrary length scale L as

(2 ) (»t —
I )a'/2 —a'/2, L 2 —(m —

I )d'
Qnr &'n]

(m =3 for the present case). The P function for g„ is ob-
tained, in the dimensional regularization scheme, from the
mth (third for m =3) virial coefficient by absorbing the
divergences in the perturbation series [12]. The resulting
flow equation is

where p* is the overlap concentration determining the
concentration at which the mutual interaction is impor-
tant and g(x) is the scaling function. For polymers, this
scaled variable p/p* controls the crossover of any physical
quantity from zero density (dilute limit or single-chain be-
havior) to nonzero density. The scale of concentration,
p*, is quantitatively determined by the appropriate virial
coefficient as say the second virial coefficient for the two-
chain interaction [161. For the pure m-chain interaction,
the first nonzero virial coefficient is the m th virial
coefficient A„„and p =(A„,) '/("' ' . Since this vari-
able is a function of A', and the osmotic pressure or the po-
lymer free energy is related to the vertex-model free ener-
gy, Eq. (I), the N dependence should be what FSS dic-
tates. Therefore, A„, is needed.

For the Hamiltonian of Eq. (5), A can be computed
exactl~ at the RG fixed point g~ )re~, and we find a~-N" "' ' / [12]. This result follows from the observa-
tion that the transverse size of a walk is (R )-N and A„,
should have a dimension of L ~"' ' . This simplicity is a
consequence of the absence of any anomalous dimensions
mainly because of lack of any self-interaction [9,12].

Using the N dependence of A„„and p-t~, Eq. (4), the
scaled variable can be written as /N'/-'/'. According to
FSS, near a critical point, the FSS variable is tN
where v][ is the length-scale exponent in the z direction. A
comparison of the two variables yields v~~. The length-
scale exponent in the transverse direction is given by the
average distance between the lines, i.e., g&-p
Hence, we obtain (g;-t "'

with i parallel or perpendicu-
lar)

VI =2v~ =2p/d . (10)
The factor of 2 between v~~ and v& can be traced to the
differential treatment of r and z in Eq. (5).

We still have to calculate P for d (d„,. The procedure
is similar to that of the three-chain case. Integrate the ex-
act recursion relation for the m-chain interaction as given
by Eq. (7) up to the transverse correlation length (&, and
obtain v„,(p)-pl d("' ')I/". (Note again that there is
no anomalous dimension. ) Substituting this in the MF
expression, Eq. (6), and minimizing Eq. (2), we obtain
P=d'/2 which is identical to the two-chain problem [9]
but differs, as it should, from the MF result of Eq. (8).
With this P, we finally have

v~~ =2v& = l . (I I)
These results are independent of m and d and agree with
the exact result for the five-vertex model or the isomorphic
K model [17]. From d independence it follows that they
are also true for d & d„,.

For d & d„„one expects the exponents to be the same as
at d„,. This self-consistency is easily checked from the an-
isotropic hyperscaling, which gives a =2 —(d —I ) v& —

v~~

=(3—d)/2. At d=d„, =(m+ I)/(m —I) the highest d
for which hyperscaling is expected to be valid, we find
a=(m —2)/(m —I) agreeing with the result of Eq. (8)
(see Fig. 2).

The multicritical nature of these critical points follows
from the simple fact that all the lower-order interactions
are relevant at the transition. We do not elaborate on
this, but just point out the MF analysis for the m =3 case.
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Adding a two-body term in Eq. (I), we get f(p)——tp+v2p +i 3p . If vq&0, then the two-body term
dominates and the critical behavior corresponds to the
m =2 case. If vq & 0 then there is a first-order transition
[18]. The m =3 point is, therefore, analogous to a tricriti-
cal point. Generalizations follow suit.

We now point out a few special features of the models.
(I) The value of a is identical to that of a classical

mth-order multicritical point described by, say, a &-"'

theory, and has a few formal similarities as mentioned
earlier. However, a (I-'"' theory has UCD of 2m/(m —2),
and, therefore, possesses nontrivial exponents in two di-
mensions as given by conformal invariance with central
charge c & I or as found in the Andrews-Baxter-Forrester
model [3,4]. [n contrast, we are seeing this MF-like ex-
ponent in two dimensions. Moreover, the m 2 transition
corresponds to a conformal field theory with central
charge c I [19]. Also, the path-integral representation
of Eq. (5) ensures a Hermitian "quantum" Hamiltonian,
ensuring, in turn, unitarity of the models of this paper.
The question of conformal invariance requires further
studies.

(2) The models are anisotropic with two length-scale
exponents vt and v&, Eq. (11), which are independent of
m and d. As a consequence all of these models have iden-
tical exponents for d (d„„even though the exponents like
a and P are m dependent for d) d„, (see Fig. 2). The
fluctuation for d & d„, conspires with the p"' term, Eq.
(6), to wash out the m dependence.

(3) For m ~, d„, I, and a becomes I which indi-
cates a first-order transition. It is straightforward to see
that the transition is first order for all m in one dimension
[2O].

&14 +
21'
s /a

2
I

4

FIG. 2. Plot of a (specific-heat exponent) vs d. The numbers
indicate the m values. An extra logarithmic factor for an m
[(lnt) 'll 'I] appears at the corresponding UCD. These are in-

dicated by the arrows. The vertical line is the d 2 line.

In conclusion, we have studied a class of vertex models
classified by an integer m that is related to the highest
coordination number of the lattice and/or the minimum
number of lines that are not allowed to intersect. We used
exact RG equations in a continuum path-integral formu-
lation. The multicritical points found have similarities
with the ordinary mth-order multicritical points, and the
specific-heat exponent [Eq. (8)] is that of the MF p

"'

theory but in two dimensions There . is an additional loga-
rithmic factor for m =3. The models are anisotropic with
two length-scale exponents [see Eq. (11)],and are &here-
fore not a II

"' theory for which spatial anisotropy is ir-
relevant. The questions of conformal invariance and exact
solvability need further attention.
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