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Planar ion microtraps
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Planar quadrupole ion traps have been analyzed through numerical and analytic solutions of
Laplace s equation. These involve either one or more conducting rings or their analogs, a hole in one
or more conducting sheets. The leading terms in the potential are harmonic, corresponding to the
Paul trap, but with coefficients that reduce their efficiency and for some traps, the anharmonic terms
can be suppressed to eighth order. Stable ion trapping is predicted for all electrode configurations

possessing radial and axial symmetry. A three-hole microtrap with an inner hole radius of 80
pm trapped from one to many (dense clouds) laser-cooled Ba+ ions where the two-ion distance is

compressed to 1 pm, allowing new experiments in quantum optics. Also, arrays of traps for optical
clocks are contemplated using photolithographic fabrication.

PACS numbers: 32.80.Pj, 42.50. Vk

Several fundamental atomic-physics experiments have
been performed recently [1,2] using a Paul trap [3]. Qne
or more ions can be stored for days under conditions
of ultrahigh vacuum and millikelvin or lower tempera
tures, making them almost motionless and free of per-
turbations. Hence, these systems are ideal candidates
for atomic clocks or other precision spectroscopic mea-
surements. In a Paul trap of radius r, the ions are stored
by virtue of a cylindrically symmetric electric quadrupole
potential

V = (Vd, + V„cosAt) [z —p /2]/rz (1)
that oscillates at an rf frequency A across hyperboloidal
electrodes, two end caps and a ring. A variation of the
Paul trap has been realized also in a one-ring trap [4], a
linear trap [5], and one with cones of revolution [6].

Current Paul traps, however, keep the ions sufficiently
far apart that interesting phenomena such as superradi-
ance cannot be observed. In the case of two ions, for
example, solutions to the modified Mathieu equations
of motion give an ion-ion distance R = 2[ez/(rnto2))
where e and m are the charge and mass of one ion,
the secular frequencies u, „=P, ,„A/2, the Floquet ex-
ponents Ps „=q, „/~2, and the dimensionless Math-
ieu parameter q—:q, = 2q„=4eV«/(mAzr2). Since
R oc A 2Is when q is fixed, increasing the rf frequency A
reduces R. This in turn requires that the trap dimension
r decrease so that (Ar)2 and thus q, remain essentially
constant.

In this article, we consider other variations of a Paul
trap where the electrodes are of a simple planar geome-
try that permits precise photolithographic fabrication of
a microtrap on a micrometer scale [7]. Clearly, the diffi-
culty of the precision machining of hyperboloidal surfaces
in small dimensions argues against a conventional Paul
trap. The simplest example is a one-hole trap, Fig. 1(a), a
metallic sheet with one circular hole dividing two uniform
electric fields. It is the analog of a one-ring trap, Fig.
1(b). A larger trapping volume and a deeper potential
well occur in the three-hole trap, Fig. 1(c), and its ana-
log, the three-ring configuration, Fig. 1(d). These traps
approximate the Paul trap near the trap origin where
they are harmonic; away from the origin, the first three

become increasingly anharmonic, whereas the three-ring
trap is easily compensated to eighth order. All of these
traps are optically accessible through a large solid an-
gle that improves the laser cooling of ions and detection
of ion-scattered laser light. Moreover, these traps can
be fabricated lithographically in micrometer dimensions,
either individually or in an array, the latter being par-
ticularly appealing in the case of an atomic clock where
the signal strength improves the accuracy over a one-ion
clock [8]. We thus foresee the possibility of ion-trap and
integrated-circuit technology merging with a single chip
containing the trap, diode lasers, and associated electron-
1cs.

One-hole trap. Assume an extended thin metal sheet
with a hole of radius p = a and bounded by a uniform
field Eo for z & 0 and Eq for z & 0 with E = Eo = Eq. —
This configuration is a quadrupole potential where the
two outer electrodes lie at z = koo with an oo potential.
An exact expression for the potential in terms of oblate
spherical coordinates [9] is

O(e, () = —aEe((tan (+ 1), (2)

(c)

/
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FIG. 1. Schematic of planar Paul traps made from con-
ducting rings or holes in conducting sheets. (a) One-hole trap.
(b) One-ring trap. (c) Three-hole trap. (d) Three-ring trap.
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z 2 z 3 p z—= 2q cos(2r) ——+ — — — +
a a 3 a a3 (4)

p p 1 p 3 pz—= q cos(2r) —+ — — —2 + . (5)
a a 2 a a3

Here, time r = At/2 and q = 8eEpa/(vrmAza2) are di-
mensionless. The linear terms of Eqs. (4) and (5) corre-
spond to the Paul trap, Eq. (1), and result in trapping
but with a slightly reduced force due to the efficiency
factor e:—q/qp«i = 2/m appearing in the q term. The
remaining anharmonic terms become important as an ion
moves away from the trap origin.

Three hole trap. -This trap consists of three thin par-
allel metal sheets with three concentric holes as in Fig.
1(c). The inner hole is of radius a, the outer two holes are
of radius a, and the spacing between adjacent sheets is b.
Application of a potential between the inner and the two
outer sheets produces a quadrupole. Clearly, as b ~ +oo,
the three-hole trap reduces to the one-hole trap. The con-
siderable advantage of the three-hole trap over the one-
hole trap is that it requires a lower applied voltage for
the same trap potential. Since analytic solutions are not
known for this case [see Eq. (10) for a partial solution],
numerical solutions of Laplace's equation were obtained
for the experimental configuration (a, a, b) = (50, 75, 50)
pm for metal sheets of 225-pm radius and 25-pm thick-
ness. The axial field for an applied voltage of 1 V is
shown in Fig. 2, where other traps are compared.

One-ring trap. The potential of an infinitely thin ring
of radius a and with a charge Q is given by the Legen-
dre series 4&(r, 8) = ~ gi(-')'Pi(0)P~(cos8) for r & a
and by O~(r, 8) = & Qi(-„)'P~(0)Pi(cos8) for r ) a
where cos8 = z/r and r2 = p2 + z2 [10]. This too is
a quadrupole potential with outer electrodes at z = +oo
but at zero potential. First, we relate the charge Q to an
applied potential P through the ring capacity C = Q/P.
Here, C = &„is &&1

[11],which is nonzero when the cross-

sectional ring radius d ) 0. Considering only the trap-
ping region, r & a, an oscillating potential P cos(2r)
generates the reduced force components

where 0 & e' & 1 and —oo & ( & oo. In terms of cylindri-
cal coordinates (p/a) = (1 —s )(1+( ) and z = a(s or
inversely, ( = ((r/a) —1+V [1 —(r/G) ] + 4(z/a) j/2
where r2 = p2 + z2. Alternatively, the potential can be
expressed as an integral [10] or in the trapping region
r & a as a Legendre series in spherical coordinates

(—1)"+i r
5(r, 6) = —Za ) (

—
) P2 (cosg)

-=0 2" 1

(3)
where cos 8=z/r. From Eq. (2) we see
that lim~ pO(p, z)=-Ea(1 —-'tan i

—,) + Ez and

lim, p C (p, z)=-EaV 1 —(p/a)s, so that the potential
at the origin is 4(0, 0)=—Ea and at the edge of the hole
is C(a, 0) = 0. Moreover, by expanding either Eq. (2)
or (3) and taking the gradient of —eC(p, z), we obtain
the leading terms in the axial and radial components of
the reduced force on an ion in the presence of a field

E(t) = Ep cos(At),

E
8

0
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FIG. 2. Electric field E, vs z at p = 0 numerically de-

rived from I aplace's equation for various all metal Paul mi-

crotraps. The inner and outer electrodes have a peak po-
tential of 1 and 0 V, respectively. (a) Paul trap with radius
r = 50 ILim and efficiency e = l. (b) Compensated three-
ring trap with (a, a, b, d) = (50, 19.0819,41.6712, 5) pm and
e = 0.55. (c) Three-hole trap with (a, a, b, thickness, width) =
(50, 75, 50, 25, 450) pm and e = 0.39. (d) One-ring trap
with (a, d) = (50, 5) ym and e = 0.36. (e) One-hole trap
with (a, a, b, thickness, width) = (50, 0, 300, 0, 1600) pm and
e = 0.1.
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z 3 z 3 9 zp~—= 2q cos(2r) ——— — +-
a a 2 a 4a3

p p 9 p 3 9pz—= q cos(2r) ———— — + — —,(7)
a a 8 a 2a3

where q = (C/2a)(4eg~)/(mA2a2). The linear trapping
terms in Eqs. (6) and (7) again emerge but with an ef-

ficiency factor e = C/2a =
2 i„is&&l

appearing in the q

term Comp. aring these equations with Eqs. (4) and (5),
we see that a one-ring trap is more anharmonic than a
one-hole trap. In addition, the Paul-Straubel trap of Ref.

[4] with dimensions (a, width, thickness) =(50,200,50) ym
is neither a thin one-ring trap nor a thin one-hole trap,
and requires numerical solutions of Laplace's equation,
the efficiency being e = 0.13.

Three ring trap -Conside. r Fig. 1(d) where a
quadrupole potential results from an inner ring of ra-
dius a and charge Q and two outer rings each of ra-

dius a and charge —Q/2, the spacing between adja-
cent rings being b The co. mbined potentials at a
point in space (r, 8) are given by the Legendre series

4&(r, 8) = & Q„paq„(—„") "Ps„(cos8)for r & rp and

by 4?&(r, 8) = C &(r &-+ rp) for r ) rp, where rp ——as+ b

and the odd order terms vanish. The coefficients aq„——
P2„(b/rp) —o. "+ Pq„(0)with n = rp/a. Proceeding as

in the one-ring trap, the leading terms in the reduced
force equations are

z a4 |' 2z 3zp—= 2q cos(2r) ——+ —
~

—
s + s +

ro rp G2 i Tp Tp

(8)

p—= q cos(2r) —+3—
~ s

—
s ~

+ . (9)p a4 f ps 3pz~1

To rp a2 (2rp rp

Here, q = (Cay/rp)(4eg/mA rp), and the linear terms
result in trapping with an efficiency e = Ca2/rp, where

C is the three-ring capacity and P cos(2r) the applied
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FIG. 3. (a) A three-hole
trap made of Be-Cu sheets, 25
pm thick and held together
with Be-Cu spacers in a ma-
cor clamp. The radius of
the inner and outer holes and
the spacing between sheets is

(a, a, 5) = (200, 300, 200) pm.
(b) and (c) A single laser-cooled

Ba+ ion at the center of
a three-hole trap, (a, a, b)
(80, 170, 100) pm, as observed
with an imaging photomulti-
plier. Scattered laser light at
493.4 nm shows (c), the inten-
sity profile in the x-y plane with
a half width —half maximum of
1.0 pm, and (b) an overexposed
ion image that reveals the edge
of the 80-pm radius hole where
the edge scattering intensity is
greatly reduced by an aperture
in the microscope.
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potential. When the trap dimensions are in the ratio
(a:b:a) = (1:0.833425:0.381629), the trap is harmonic to
eighth order with as = 1.160, a4 = —4 x 10, as =
—2 x 10 s, as = —0.5 [12]. As an example, assuming
the above ratio with a = 50 p,m, a numerical calculation
yields the three-ring capacity C = 21.8 pm, which implies
an eSciency e = 0.55.

Other simple configurations such as the two-ring and
two-hole traps also can exhibit compensation that im-
proves the harmonic content A.ssuming two rings at the
same potential, of the same radius a, and one above the
other with spacing b, we find that when b/a = 0.723 or
3.39 a trap is created at the symmetry point between the
rings, which is harmonically compensated to sixth order
Similarly, for the two-hole trap, assuming two sheets of
radius c at the same potential with spacing b and two
concentric holes of radius a, the compensation is to sixth
order for b/c = 0 25 and. b/a = 1.

Figure 2 compares numerical solutions of Laplace's
equation of the z component of the electric field

Z(z, p = 0) = —"('d'~= ) for the Paul and four pla-
nar microtraps. In each case, the central electrode has a
50-pm radius and an applied peak potential of 1 V, the
outer two eiec'.rodes being at 0 V. The three-ring trap
(b) is the most efficient approaching the Paul trap (a)
and is also superior because of its linearity up to eighth
order Of t. he planar traps, the three-hole trap (c) pos-
sesses the largest trapping volume and is more efficient
and linear than the one-ring trap (d). The one-hole trap
(e) is the least efficient when the infinite applied poten-
tial and interelectrode spacing b are replaced by finite
values, making e & 2/z'. The efFiciency of the one- and
three-ring configurations also decreases with decreasing
cross-sectional radius d due to a decreasing capacity.

The above ideas can be generalized in the following
way. First note that the Legendre series

C(r, 8) = ) (air'+ bt/r'+')Pi(cos8) (1o)
t=o

is a general solution to Laplace's equation in spherical
coordinates when cylindrical symmetry exists where the
coefficients a~ and bi depend on the boundary conditions
[10]. When the potential is also symmetric to reflec-
tion along the z axis, the at terms are of even order in
/. In addition, for an oscillating potential, the leading
term a2r P2(cos 8) is the quadrupole potential of a Paul
trap and is responsible for stable ion trapping. Analytic
and numerical solutions [13] reveal that the higher-order
terms generally play a perturbative role near the origin
and become significant only when the ion position ap-

proaches the characteristic trap dimension a, resulting in
a less stable trap. The bt terms correspond to the far field
where ion scattering rather than trapping occurs and are
of odd order. Hence, any electrode configuration that sat-
isfies cylindrical and axial symmetry can trap ions, the
Paul and linear traps and the configurations described
here being examples.

Experiment. Large clouds or single i sBa+ ions were
stored in three-hole traps with inner hole radii of a =
400, 200, and 80 pm. The 80-pm trap, which we exam-
ine here, was made of Be-Cu sheets of 25-pm thickness
x 1000-pm diameter, machine-drilled at its center with
80- (inner) or 170- (outer) pm radius holes, the spacing
between adjacent sheets being 100 pm. In a background
pressure of 10 is Torr, neutral Ba atoms vaporize from a
nearby oven and enter the trap where they are ionized by
an electron beam (400 nA at 500 V) focused to a 2-mm
diameter. Loading occurs in a few seconds.

The Ba+ ions are laser cooled by two resonant overlap-
ping dye laser beams (2 to 200 pW each) at 493.4- and
649.9-nm wavelength that are focused to a 40-pm beam
waist at trap center with a 64' angle of incidence to the
radial plane of the inner hole. Figure 3 shows the blue-
light scattering image (resolution: 2 pm) of a single Ba+
ion and the edge of the 80-pm hole as viewed through a
window using a 75x microscope and imaging photomul-
tiplier. The image elongates radially when an rf probe,
applied across the electrodes, resonates the radial secular
frequency, yielding, for example, u„/2vr = 8.15 MHz for
a 352-V,~s rf drive at 0/2n = 51.14 MHz. This secular
frequency corresponds to the stiKest spring constant ob-
served in a Paul-like trap as well as an efficiency relative
to a Paul trap of e = 0.41, where qr = 0.43. At q, =0.99,
a one-ion instability appears, being 10%%uo larger than the
Paul-trap instability due to the anharmonic terms, in
agreement with numerical one-ion-dynamics calculations
of a one-hole trap. For the case of two trapped Ba+ ions,
we calculate that the mean ion-ion distance compresses to
0.94 pm at this elevated micromotion frequency, which
will now permit superradiance studies, for example. A
dense Ba+ cloud of 10-pm radius is observed in the 80-
pm trap, but additional work is needed to characterize
its structure.

The planar structure of these traps suggests pho-
tolithographic fabrication with the advantages of design
fiexibility and precision in micrometer dimensions. In ad-
dition, arrays of traps can be generated easily, and with
one ion in each trap, an atomic clock superior to a one-ion
clock results. Photolithographic traps are being prepared
at this time.
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