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Generalization in a two-layer neural network
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Statistical mechanics is applied to study the generalization properties of a two-layer neural network
trained to implement a linearly separable problem. For a stochastic learning algorithm the generaliza-
tion error as a function of the training set size is calculated exactly. The network with three hidden
units experiences two first-order phase transitions due to an asymmetric freezing of the hidden units.
Compared to a simple perceptron the committee machine is found to generalize worse.

PACS number(s): 87. 10.+e, 05.20.—y, 02.50.+s

An interesting feature of neural networks is their ability
to solve classification tasks by learning from examples [1].
After a set of correctly classified input-output pairs has
been presented during a training phase they are able to
generalize, i.e., to predict correct classifications even for
novel input data.

Methods from statistical mechanics have been applied
to quantify the generalization performance of neural net-
works [2-13]. Especially for the simplest network, the
single-layer perceptron with one input layer and a single
output unit, this approach was successful [7-131. Howev-

er, perceptrons are known to classify only linearly separ-
able problems exactly [14], and additional layers of hid-
den units have to be added to implement more general
tasks. On the other hand, it has been shown that just one
hidden layer is suScient to realize any Boolean function
[2].

Usually in real applications the complexity of a
classification task is not known a priori. So the actual size
of a network required to obtain satisfying performance is
a crucial parameter of interest. A lot of work has been
done to understand how simple networks will perform on
complicated, not completely learnable tasks. A common
approach to the solution of a problem of unknown com-
plexity is, however, to initially choose a large network
which is believed to be able to learn the task. This choice
may not be the most efficient possible solution to the prob-
lem, and it is important to understand how well a complex
network will perform on an easy task. In this Rapid Com-
munication we calculate the generalization error of such a
problem exactly, namely, the generalization efficiency of a
multilayer network trained to solve an "easy, " linearly se-
parable problem. As an example we consider a two-layer
network with an odd number h of hidden units in addition
to an input layer consisting of N units and a single output
unit. Here we report results for binary couplings only, be-
cause this restriction allows a relatively easy comparison
with computer simulations. It is important to note that
without loss of generality the hidden-to-output couplings
can be fixed to + 1 in the binary case, hence the network
determines the majority decision of the hidden units. A
network of this type is called "committee machine'* [15].

The network output

h

tr(S, {J'j) =sgn g sgn(J' S)
a ]

is a function of the input vector S =(Sl, . . . , Stv) and the
input-to-hidden coupling vectors J' = (Ji, . . . , Jtv ), a
E {1,. . . , hj, where we have defined the scalar product

X Y =pi-iXt YI. The couplings are taken to be binary,
JJ'C {—1, +lj, throughout this paper, so each hidden
unit can be regarded as the output of a Boolean percep-
tron with discrete couplings and zero threshold. We study
the case, where the complex "student, "

namely, our com-
mittee machine, learns from examples given by a simple
"teacher, "

namely, a perceptron with binary weights
B E {—1,+ I j and an output given by

ap(S) =sgn(B S) . (1)
The student network is trained by using a set of P =a&
input vectors (", p C {1,. . . , Pj, and the corresponding
desired outputs cro(g") E {—1, + lj given by the teacher
(1).

A common learning strategy minimizes the training er-
ror, here defined as the number of incorrectly classified
training examples:

P
E({Jj) = pe[-~(g~, {J j)~,(g )],

p~]
where e[x] is the unit step function. The minimum of the
training error, however, does not necessarily correspond to
a minimal generalization error

.({J})=e[-~(s,{J'j)~,(s)l =—E({Jj)is) 1 , fs)

i.e., the probability that a randomly chosen input S is
misclassified [12].

It is often useful to explore large regions in phase space
of couplings by considering a stochastic learning algo-
rithm. In equilibrium such a Monte Carlo process yields a
Gibbs distribution of couplings exp[ pE({J'j)]charac-—
terized by a temperature T=1/p measuring the amount
of noise during training. In the limit of vanishing noise,
T 0, this is equivalent to minimizing the training error
E({J j).

Following an approach proposed by [121 we consider
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the high-temperature limit (T,a ~, aP finite). This
limit has several advantages. First, an exact solution is
easily derived. Second, for suSciently large temperatures
the Monte Carlo process gives a practical learning algo-
rithm which is not the case for zero temperatures, i.e.,
learning without errors. In addition, the high-tem-
perature limit has been shown in [12] to be a useful ap-
proximation revealing most of the qualitative features of
the learning model without noise.

Following [121 the average over the distribution of
training examples simply leads to the equilibrium distri-
bution

~([J'[)=—exp[ —aPNe([J [))
1

Z
with

Z = +exp[ —aPNe([J'I )l . (2)
U)

The training error E([J'f ) has simply been replaced by its
mean value aNe([J'[) neglecting any Iluctuations around
the mean value. Hence in this limit, training and general-
ization errors are equal. Nevertheless, most of the quali-
tative features of the learning model still exist. As will be
shown below, the generalization error e([J')) for a given
network can be expressed by two types of order parame-
ters, the overlaps R, =(I/N) J' B between the coupling
vectors and the teacher perceptron, and the mutual over-
laps q,//=(I/N)J' J~ between coupling vectors of dif-
ferent hidden units, e([J'[)=e([R„q,pf). In the thermo-
dynamic limit (N ~) (2) can be written as

Z = QdR, gdq, ~exp[ —PNf([R„q,pt )1
a ap

with a free energy per input unit f, which may be written

ture T/a of the system can be made small even in the
high-temperature limit. This allows for nontrivial behav-
ior due to a balance of the generalization error and the en-
tropic term. Minimizing f with respect to the R's and q's

yields the equilibrium value t. of the generalization error
as a function of the eff'ective load parameter a.

The generalization error for a given network can be cal-
culated by noting that the variables

xp= B S, x, = J'S, aC I, . . . , h
1 1

N N

for random uncorrelated inputs S; 6 [ —I, + 11 are, by vir-
tue of the multidimensional central limit theorem, corre-
lated Gaussian variables with zero means and

1 1
xo =X. =1, xox. =—8 J'=R., x.xp= —J'JP=q.p

To make further progress one is tempted to assume sym-
metry between the hidden units, R,—:R, q p=—q«&P
& [I, . . . , h[. Surprisingly, this simple ansatz was not in

accordance with our Monte Carlo simulations. There we
observed a successive freezing of single hidden units into
the teacher perceptron. If the majority of the hidden units
is frozen, i.e., yields the correct output for every input S,
the committee machine gives the right answer regardless
of the minority "opinion. " Thus, the lowest energy is

highly degenerate.
With this consideration in mind we make a more gen-

eral, partially asymmetric ansatz, which is consistent with
our computer simulations. We assume that c hidden units
are frozen into the teacher, R, = I Va C [h —c+ I, . . . , hI,
and assume symmetry between the remaining units, R,
=—R, q,p

——qVaWP 6 [I, . . . , h —cI. The generalization
error can now be written as

Pf([R„q,p[) =ae([R„q,/Jl) s([R„q,/j—)), a =—
, e([J'[)=Prob sgn(xp) g sgn(x. ) ( —c

a=1

s being an entropy term. Note that in the free energy the
product aP appears as the only temperature dependence.
For sufficiently large training sets the effective tempera-

I

Calculating the probability according to the joint (h
—c+ I )-dimensional Gaussian distribution of the vari-
ables xo, . . . , xh —,yields the generalization error as func-
tion of R and q; we obtain

(h-l)/2-~ g —
C

e(R q) 2 g 1
Dx

( o I vo

++ Rx &'(R q) r — Rx &'(R q)Dt4 q)h-c —I

(I q) I/2 (I )1/2

with the notations Dx =(dx/J22r)e " /, p(x) =I „Dr
The entropy s(R,q) of all network configurations de-

scribed by the parameters R and q can be calculated by
considering the volume of phase space accessible to
h =h —c correlated coupling vectors J'

h

V(R,q)=Q +b —J' B—R QB —J' J~ —
q

1 1

ja)a -l N (a,p)

Using the integral representation of the 6 function and ap-
plying the saddle-point method we obtain

s(R,q) =—In V(R, q)
1

N
h(h —I) - h .=hRR+ qq+ —q+ ln Zp(R, q )

2 2

1 A

where R,q are determined by the saddle-point equations

Z~(R, q) - - - Z2(R, q)hR=, h h —I q+h=
Zp(R, q) Zp(R, q)

Here the abbreviation

h

Z, (R,q) =g (h —2I) 'exp[(h —21)R —
—,
' (h —2l) q[(-o, I,

has been used.
%e now apply this formalism to the committee machine

with three hidden units. The equilibrium value of the gen-

eralization error as a function of a has to be determined at
the global minimum of the free energy (3). The global
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FIG. 1. High-temperature free energy for different numbers
of frozen hidden units. First-order phase transitions appear at
a~ 3.15 and a2 4.77. The metastable (c 0) state vanishes at
a' 8.60.

a/T
FIG. 2. High-temperature generalization error for the com-

mittee machine and Monte Carlo simulations (averaged over 50
samples). Dotted lines correspond to metastable states. The
dashed line shows the high-T generalization error of a simple
perceptron as calculated in [12].

minimum has been obtained by comparing the minimal
values of the free energy for different numbers of frozen
hidden units as shown in Fig. 1. With increasing size a of
the training set we find two first-order phase transitions.

For small training sets, a & a& =3.15, three symmetric
hidden units (c =0) correspond to the global minimum of
f(R,q); none of the hidden units is frozen. In the region
a~ & a & a2 4.77 the equilibrium situation is character-
ized by one hidden unit being frozen into the teacher per-
ceptron (c=l) but the remaining two units having an
overlap R &1 with the teacher. At the critical value
a a~ the generalization error discontinuously drops to a
lower but still finite value as shown in Fig. 2. The non-
frozen (c =0) state remains metastable up to a value of
a =a'=8.60 where it completely vanishes. At the second
critical value a =a2 a second hidden unit freezes and the
system reaches its ground state. The generalization error
falls discontinuously to zero and the third unit has a van-
ishing overlap with the teacher corresponding to the maxi-
mal entropy.

Contrary to the nonfrozen state, the (c =1) state does
not disappear with increasing a. The overlap R of the
nonfrozen units to the teacher approaches the limiting
value R =

3 exponentially fast and the generalization er-
ror remains finite. From a practical point of view this im-
plies the possibility that the learning process gets trapped
in a metastable state even for large training sets.

Compared to a simple perceptron (h =1), which has
been studied recently in [12], the committee machine
shows a lower generalization ability, as can be seen in Fig.
2. This behavior is in agreement with recent results [3,16]
and reflects the fact that the target function (1) can be
learned exactly by a simple perceptron. Adding hidden
units to construct a committee machine increases the pos-
sible number of networks consistent with the training set
and decreases the ability to find the correct generalization.
This is in contrast to a strategy [13], where each unit is
trained separately and the majority is taken afterwards.

We have performed Monte Carlo simulations for a
committee machine with N =75 input units and h =3 hid-

den units at a training temperature of T 5. As proposed
in [17] the simulations were started with a small number
of training examples. After the system was thermalized
additional examples were added allowing the network to
partially thermalize after each increasing of a. The gen-
eralization error, averaged over different sets of training
examples, is shown in Fig. 2. The regions of a decreasing
error are smeared out starting at the respective critical
values due to finite system size and finite number of
Monte Carlo steps. In these regions the generalization er-
rors for different training sets show a double-peak struc-
ture indicating a first-order phase transition. Starting the
simulation from high values of a and decreasing the num-
ber of training examples produces hysteresis loops at the
two transition points a~ and a2, respectively. Hence the
numerical data are in agreement with the theory.

In summarizing our findings, the two-layer binary net-
work experiences two first-order phase transitions with
discontinuous decreases of the generalization error. The
phase transitions occur due to a successive freezing of hid-
den units into the teacher perceptron implying a breaking
of the symmetry between the hidden units.

In the general case of h hidden units we expect a cas-
cade of phase transitions due to an increasing number of
frozen coupling vectors. The generalization error is ex-
pected to drop to increasingly smaller values until the
ground state is reached when more than half of the hidden
units are perfectly aligned with the teacher perceptron.

Our results imply, that in order to obtain a satisfying
generalization performance the size of the network should
correspond to the complexity of the given task. A large
network will suffer from a lower generalization ability due
to a large number of degrees of freedom. The appearance
of a number of first-order transitions furthermore causes
the general problem of metastable states in which a learn-
ing algorithm may get trapped.

This work has been supported by the Volkswagenstif-
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