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Criticality in the one-dimensional Kohonen neural map
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In the marginally stable ordered state of Kohonen's feature-map neural-network model the dis-
tribution of fluctuating distances between neighboring cells is found to be a self-similar Weierstrass-
Mandelbrot-type function with a nontrivial scaling exponent. The relationship among the quantities
describing the distribution is discussed in terms of a balance between a deterministic multiplicative
and a stochastic additive process, described by a Perron-Frobenius operator. Two regions of the
Kohonen learning parameter 0, , separated by a, —0.63, differ in the character of both fluctuation
and ordering, the latter being fastest close to a, .
PACS number(s): 87.10.+e, 05.40.+j, 05.45.+b, 05.70.Jk

Kohonen's feature map [1] is an adaptable quasineural
mapping of a continuous vectorial input x onto a discrete
output i', interpreted as the index vector of one (the
"winner") of a set of neurons, labeled by index i. Each
neuron carries a continuous vectorial "weight" w;, and
the winner is selected by having its weight closest (e.g. ,
in Euclidean distance) to the input. The mapping can
be adapted to a particular task by changing the weights.
Biological motivation for discretizing through winner se-
lection comes from the existence of layers of neurons do-
ing parallel feed-forward processing and competing by
mutual lateral inhibition, present in various parts of the
brain processing sensory information, e.g. , in the visual
cortex. In what follows we restrict ourselves to the one-
dimensional model.

The particular task posed for Kohonen's feature map-
motivated by the way an infant learns to se" is to make
the mapping topologically correct, i.e., to assign neigh-
boring outputs to nearby inputs. This global aim is
achieved by a self-organizing process that consists in it-
erating the following steps of adaptation [1]:

(i) Generate a random input z out of a given distri-
bution [in our case: uniform on interval (0, 1)] and select
the corresponding winner i', as stated above, by

[ x —m;* /= min
/
z —tv, [ .

(ii) Modify the weights of the winner and its index
neighbors through

ur, (t + 1) = m, (t) + Q, (i —i') [x —m, (t)].

The function n(d) is the amplitude of the adaptation.
It is usually a bell-shaped function of the distance ]i
i'[ In practical .applications its range and amplitude
decrease with the discrete time t, for reasons analogous to
simulated annealing [2]. In the present work we restrict
ourselves to nearest-neighbor interaction [o.(d) = 0 for
[d~ & 1], constant in time.

It is easy to see that the above learning rule orders
the weights into one of two spontaneously symmetry-
breaking states: either monotonously increasing,

& mug,

or monotonously decreasing,

QJy + Vg + ~ ~ ~ ) 'W~

(3)

(4)

s' = N
I urt+& u) (5)

which is independent of ¹ Disregarding boundary ef-
fects, this density function is the same for all i' s. Our
simulations show that it is not a simple bell-shape func-
tion around the mean distance S = 1 [Figs. 1(a) and
1(b)]. For large distances, the distribution decays expo-
nentially, due to the 'thermal' fluctuations of a quantity
obeying a local conservation law (distance is exchanged
between neighbors).

For small s the distribution shows scaling behavior.
Its envelope is a power function s ( ) with its expo-
nent depending on the amplitude of adaptation n. For
cz ( n, = 0.63 the exponent D(cz) is positive [Fig. 1(a)],
describing two neighboring weights that repel each other,
while for n & rz, it is negative [Figs. 1(b) and 2], corre-
sponding to an effective attraction between neighboring

The ordered states are stable after the system reached
one of them [3], under the condition [4] that o.(d) should
decrease monotonously with the distance [d~. In this
sense n(0) = a(kl) = n is a one-parameter boundary
of stability, along which one expects critical Huctuations.
That motivated the present study, directed at that criti-
cal line.

After the ordering process is completed, the distances

[ tu;+q —tv; [ between the weights still fluctuate due to the
local dynamics. In the following we focus our attention
on this stationary behavior.

The fluctuations can be characterized by the distribu-
tion g(s, ) of the rescaled distances
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weights. In the second case the distribution g(s) has
an inherent Weierstrass-Mandelbrot-type structure [5, 6]
consisting of a self-similar sequence of Poissonian-shaped
peaks pII(s) embedded in the power singularity:

I I I I I I 1lj I I I I I Ii) I I I I I lllj I I I lj

g(s) ) c2 gp (cl s)
t=O

where cq and c~ are stretching factors.
The emergence of the self-similar distribution can be

traced back to the random alteration of multiplicative
shrinking by a fixed ratio, and additive stretching by
a stochastic increment. Indeed, the distance between
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FIG. 2. The same as Fig. 1(b) on log-log scale. The
repetition of peaks on smaller and smaller scales shows the
Weierstrass-Mandelbrot structure of the distribution.

two given weights m, and m, q can change according to
Eq. (2) in two different cases: if one of them is the winner,
or one of their neighbors tu, +i and m, s is. From Eq. (2)
one can derive the respective changes of the distances
and we get in the first case

(7)

whereas in the second case we obtain

4 ~ 0
j

I I I I I I I I I I I I I I I I I I I I I I I I

s(t+1) = s(t) + a(, (8)
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FIG. 1. The distribution of the distance between the
weights of tvro neighboring neurons. The number of itera-
tion steps was 2 x 10, starting from an initially ordered state
of W = 20 ce11s. The amplitude of adaptation was (a) n = 0.2
and (b) n = 0.8. The small-s behavior is highly different
below (a) and above (b) the critical value n, = 0.63.

where ( is the distance between the stochastic input and
the winner. Its distribution P(() is also "Poissonian-
like" since it is generated by a process similar to the
dynamics of the spacings. The presence of a deterministic
component (7) and a stochastic one (8) in the Kohonen
map can be demonstrated directly by plotting s(t + 1)
against s(t) when a distance is updated (Fig. 3).

The relative probabilities of the two kinds of events
(7) and (8) depend slightly on the distance s and are
denoted by p(s) and 1 —p(s), respectively. In the small-s
limit the value of p(s) is near to 1/3 since the ratio of
the intervals where m, or m, i and m, +~ or m, 2 is the
winner is approximately 1:2.

The approximation p(s) —p = 1/3, valid for s ~ 0, de-
couples the dynamics of the first-neighbor distance from
the rest of the system. The distribution generated by
iterating Eqs. (7) and (8) taken in random alteration
with the respective probabilities 1/3 and 2/3 is an effi-
cient mean-field-like model reflecting the main properties
of the original system: the shape of the distribution, and
the exponential decay of the large-s tail.

In what follows we consider that simplified model, open
to analytical description by means of a self-consistent
Perron-Frobenius (PF) equation that already proved use-
ful for spatially extended models decoupled in an analo-
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FIG. 3. s(t + 1) vs s(t) for one pair of neighboring cells
in the full Kohonen model at a = 0.8 after 5000 iteration
steps. The coexistence of a pure deterministic and a stochastic
component of the dynamics is apparent.

gous way [7]. The PF equation for the one-body distri-
bution reads

(s) = &(s/(I —a))

+(1 —p) f g(s —a()ps)d(

That allows us to extract the power singularity of the
distribution in s = 0, Indeed, in that limit we can neglect
the second term on the right-hand side; then we get

FIG. 4. The measured exponent (squares} D as the func-
tion of 1/ln(l —a}. The slope of the linear fit (solid line)
gives ln(p} = —0.98.

So far we have concentrated on critical fluctuations
in the marginally stable topologically ordered state. A
clarification of the ordering process itself can be of use
for practical applications of the Kohonen map. Along
the stability boundary of the one-dimensional, nearest-
neighbor Kohonen map studied in the present paper, Fig.
5 shows the ordering time T«d (number of steps needed to
reach an ordered state from a random one) as a function
of a. The fastest ordering is observed close to a„which
seems to separate two regions of difFerent mechanisms of
ordering. For a ( a, we observe T„doc a, which is

I I I I I I ! I I I I ! I I I I I I I I I I I

This equation is apparently solved by a self-similar func-
tion of the form of Eq. (6) (apart from the t = 0 term),
with ci = 1/(1 —a) and c2 ——p/(1 —a). An independent
solution is the envelope g(s) = sD(~&, where the exponent
D(a) is fixed by Eq. (10) through

D(a) = —1.
ln(l —a)

Equation (11) is our main result obtained from the ef-
fective dynamics of the decoupled model. Now we com-
pare it with the original Kohonen map. In Fig. 4 we plot-
ted D(a) versus 1/ ln(1 —a), measured in the Kohonen
model. We find excellent agreement with formula (11) if
we set p = 0.37+0.01, which is not far from our rough es-
timate 1/3. Equation (11) also tells us the critical value
of o,, where the first-neighbor repulsion-attraction tran-
sition occurs. The equation
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D(a, ) = 0 (12)

yields a, = 1 —p 0.63 + 0.01 in accordance with the
simulations (see above).

FIG. 5. The time needed for ordering from a random ini-
tial condition (average over 1000 runs). A const/n line fits
well for e ( n, . The minimum of T,g is close to a .
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the "normal" behavior expected for a systematic, nondif-
fusive drift of topological defects towards the boundary
of the sample [4]. On the other hand, for n ) n, a local-
izationlike behavior seems to set in and T,d increases as
0. —+ 1. Let us mention that the corresponding clustering
of neurons may give rise to a hierarchical classification of
data sets not having that structure.

The practical implications, perhaps relevant to oK-

criticality, for several dimensions too, may be the exis-
tence of optimal values of the Kohonen updating param-

eters to assure fastest topological ordering. In the final
stage of a practical calculation the amplitude of adap-
tation is commonly reduced in time anyway, in order to
reach a smooth final state.
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