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Phase-ordering dynamics of nematic liquid crystals
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We study phase ordering in nematic liquid crystals using cell-dynamics simulations for d=2, n =2
and d=3, n 3. The tail in the structure function decays as k ~, with @=4.0~0.1 for d=2 and

@=5.3~0.1 for d 3. We compare these values to results of Bray and Puri [Phys. Rev. Lett. 67,
2670 (1991)] for a vector order parameter and to experimental measurements. For the d=3 system

the characteristic length scale in the system varies as L(t)-t~, with &=0.44~ 0.01.

PACS number(s): 61.30.—v, 64.60.Cn, 64.60.My

The phase-ordering dynamics of systems with a con-
tinuous as opposed to a discrete symmetry has been a sub-

ject of theoretical interest for some time [1-8]. Attention
has focused on the O(n) model and in particular its con-
tinuum description by the time-dependent Ginzburg Lan-
dau equation [7,8]. A number of analytic predictions
have been made, both for the dynamics of individual de-
fects [9] and for the form of the correlation function and
structure factor [7,8]. The most striking of these is that
the structure function should exhibit a power-law tail of
the form S(k,t)-1(t) "k td+"1 for kl(t)»1, where
l(t) is the characteristic scale of the order at time t. This
result generalizes the familiar "Porod's law" [10] for sca-
lar systems, and is consistent with results from numerical
simulations [2,3,11].

More recently it has been recognized [4,5] that nematic
liquid crystals (NLC's) provide an experimentally accessi-
ble system with which to compare these predictions. Like
the O(n) model, they have a continuous symmetry, but
one that belongs to a different homotopy class. The rod-

like molecules that form a liquid crystal have an inversion

symmetry that the vector spins in the O(n) model lack.
The vacuum manifold for the bulk nematic is therefore
the projective two-sphere S2/Z2 instead of the simple
two-sphere 4' p. One consequence of this additional sym-

metry is to create topological defects not present in the
O(n) model, in particular the ~ —,

' string [12]. Consider-

able work has been devoted to understanding the dynam-

ics of these defects, both in isolation [13] and in the bulk

system [4].
The direct comparison of theoretical results derived for

the O(n) model and experimental data from NLC's is

difficult. The inversion symmetry of the "spins" in a
liquid crystal may lead to modifications of the phase or-

dering. Furthermore, the local energy density is not as
simple as that of the O(n) model. This too may affect the
behavior. We return to this point later.

The aim of the simulations was to investigate the effect
of the modified symmetry in NLC's on the ordering dy-
namics and, in particular, to compare the form of the
structure factor to a recent result for the O(n) model by
Bray and Puri [7]. We also make comparisons both with

experimental results for liquid crystals [14] and with pre-
vious simulations [2,3,11] and analytic work [7,8] for sys-
tems with O(n) symmetry.

which preserves the length of the spins. This equation is

invariant under a local transformation pk
—

tjtk at any
site k and so incorporates the eff'ect of a spin inversion

symmetry into the O(n) model. It is also invariant under
internal and spatial rotations separately, which is not in

general the case in a liquid crystal. The true equations of
motion for a liquid crystal are more complicated; the local

energy density is often written as [15]

8=
2 [K, (V tlt)'+K&(p Vxp)'

+K3[yx(Vxy)] +K4V [(y.V)y —y(V y)]j,

where the K; are constants characteristic of a particular
liquid crystal. This expression is now only invariant under

rigid rotations of the external and internal spaces together
but if the K; are all equal then, ignoring the last term
which is a surface term, the energy density can be written

in the more compact form

(t).tlt') ', — (4)

which now is invariant under spatial and internal rotations
independently. This is the frequently used "one-constant"
approximation [15]. As our model has the same symme-

try properties we expect it to produce dynamics equivalent
to those of a liquid crystal with equal K;. Using the direc-
tor field, rather than the full traceless, symmetric, tensor
order parameter a1so leads to a simpler and faster simula-
tion code, while losing none of the essential physics.

We have used a cell-dynamics scheme [16] to simulate
this model. We treat the p as "soft" spins and use the

The model we have used for the simulations is defined

by

H= —g (Pt P1) (I)
(i,j &

where p; is the usual O(n) vector spin. This model might
be a termed a "spin nematic. " There is an eff'ective field
h =Zz(i/tt P~)P~ at site i, and we consider the equation of
motion
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discrete-time updating relation
r

y. + i(t) =D —g[j.(i) j.(j)]y.(j) t—lt„(i)
Z J

+Ej„(i)tanh(~y„(i) ~), (5)

where z is the number of nearest neighbors of a site. It is
necessary to make two of the vectors in the first term unit
vectors otherwise the iteration process becomes unstable.
The arrangement above appears to be the best choice:
taking both the p(j) as unit vectors tends to lead to a
freezing of the spins in some metastable configuration. D
and E are adjustable parameters, usually taken to be
D=0.5 and E =1.3 for scalar fields [16]. We used these
values for the d =3 system. For the d =2 system however,
we found that to avoid freezing of the spins D 1.0 and
E =1.1 were a better choice. This corresponds to a larger
vortex core size, which allows the defects more freedom to
move. To simulate a quench from the isotropic to the
nematic phase we initially set all the p(i) to have random
orientations and unit length. We investigated the effect of
starting with vectors of random length as well as random
orientation, but this made no difference to the results.

We ran simulations of a two-component vector in two
dimensions and a three-component vector in three dimen-
sions corresponding to a thin film and a bulk nematic
liquid crystal, respectively. In both cases we calculated
the correlation function

C(r) =[1/(d —I)](d(j(0) j(r))'- »

and the structure function S(k) =QrC(r)exp( —ik r),
without spherically averaging (i.e., k was taken along lat-
tice axes only). The definition of C ensures that the local
inversion symmetry of the spins is respected; making the
spins unit vectors "hardens" them, eff'ectively reducing the
vortex core size to zero. We expect this to improve the
scaling for large kl(t) at early times [17]. Assuming dy-
namic scaling holds for the NLC, the correlation function
and structure factor have the scaling forms

C(r, t ) =f(r/I (t) ),
S(k,t) -l(t) dg(kl(t)) .

(6)

(7)

For the d =2 simulation, we used l (t) defined by
C(l(t), t) 0.2 to scale both C(r, t) and S(k, t) [18]. The
results are shown in Figs. 1 and 2. We used a lattice of
500 spins with periodic boundary conditions, averaging
over 20 sets of initial conditions and running for up to
5120 lattice updates. For the time scales investigated the
data are not consistent with a simple power-law depen-
dence l(t) -t~ (see inset, Fig. 1). We have also tried to fit
l(t) to a function of the form ln(t)/ts, but again without
success. However, the quality of the scaling collapse for
the C(r, t) data is quite acceptable.

Figures 3 and 4 show the results for the d 3, n 3 s s-
tem. Here we were able to scale the data using l(t) -t
over time scales between 40 and 1200 updates (inset, Fig.
3). Comparison of data for L 64 and L 90 shows no
evidence of any finite-size effects.

Bray and Puri (BP) [7] have recently shown that, for
systems with an n-component vector order parameter, the
structure function decays for large kl as S(k)-l "k
with g=d+n Asim. pie derivation of this result has re-
cently been given by Bray [19],based on the observation
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FIG. 1. Scaling plot of the correlation function C(r, t)

against r/l(t) for a 2D nematic liquid crystal. The data were
taken from a 500 lattice, averaged over 20 initial conditions.
The symbols correspond to times 160 (O), 320 (C3), 640 (&),
1280 (0), 2560 (e ), and 5120 (+) cell dynamics steps. The
length scale l(t) is defined by C(l(t), t) =0.2. The solid curve is
the Bray-Puri function [7] for n =2. The inset shows a plot of
Inl(t) vs Int. The straight line has a slope 0.4.
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FIG. 2. Log-log scaling plot for the structure function of the

2D nematic liquid crystal. Only k values up to 3 of the zone
boundary are included. The symbols have the same meanings as
in Fig. 1. The straight line has a slope —4.
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FIG. 3. Scaling plot of the correlation function C(r, t)
against r/t~ for a 3D nematic liquid crystal, with &=0.44. The
data were taken from a 90' lattice and averaged over 20 initial
conditions. The symbols correspond to times 40 (0), 119 (&),
260 (0 ), 570 (o ), and 1200 (+) cell dynamics steps. The solid

curve is the Bray-Puri function [7] for n 2. Inset: A plot of
lnl(t) vs lnt, with l(t) defined by C(l(t), t) 0.5. The straight
line is the least-squares fit, with a slope 0.44.

that for kl(t) » I the structure factor should be propor-
tional to the total defect density. The latter scales as
l(t) " for the (d —n)-dimensional defects occurring in

n-dimensional vector fields. Demanding a factor l(t)
from (7) requires the tail behavior g(x)-x +" for
x ~. This argument, focusing directly on the defects,
generalizes to NLC's, so for d =3 we expect g=5 or 6 de-

pending on whether strings or monopoles dominate.
For the d =2, n =2 system both +

2 and + 1 defects
have pointlike vortex cores, so we would expect the same
result g=d+n =4 for the two-dimensional (2D) NLC
and the O(2) system. A least-squares fit to the structure
function tail (Fig. 2) gives the value @=4.0~ 0. 1, in good
agreement with this prediction. For amusement, we in-

clude in Fig. I the BP prediction [7] for the scaling func-
tion of the O(2) system, with the abscissa scaled to
give the best fit by eye. Note that C(r) for the O(2) sys-

tem is simply (p(r) p(0)), diA'erent from the function
(d(P(r) P(0)) —I)/(d —I ) appropriate to the NLC.
However, with the representation p =(cosO, sinO), the two
functions are related through the transformation 0 20
of the angles, the same transformation that maps the +

2

vortices of the NLC into the ~ I vortices of the O(2)
model. Seen in this light, the comparison with the BP
function is quite natural. In fact, it is possible to show

that the dynamics of the O(2) model and the d =2 nemat-
ic become isomorphic after this change of variable [20].

In the bulk NLC the situation is less clear. In the d =3,
O(3) model the only stable defect is the monopole. The
spins in a string defect can be continously moved towards
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FIG. 4. Log-log scaling plot for the structure function of the
3D nematic liquid crystal, with & =0.44. Only k values up to 3

of the zone boundary are included. The symbols have the same

meanings as in Fig. 3. The straight line has slope —5.3,

the direction parallel to the string axis without creating
discontinuities ("escape in the third dimension"). Any
strings present after the quench therefore quickly disap-
pear. This process is not possible with a +

2 string:
Such a deformation would lead to a line of discontinuities
in the plane perpendicular to the string axis. The presence
of +

2 strings would suggest the value @=5, analogous
to an O(2) system, rather than the naive @=6 which
would be obtained by simply putting n=3 in the BP re-
sult.

Indeed we measure (Fig. 4) @=5.3+ 0. 1, closer to the
value of @=5 which would be expected if strings rather
than monopoles were the dominant topological defect on

the time scales considered. A value of g between 5 and 6
suggests that both types of defect are playing a significant
role. If there were a single characteristic length scale l(t),
however, the string contribution would dominate for
kl(t) » I, giving a k tail. It is possible, therefore, that
the predominance of strings is a transient eff'ect, and that
the string density decreases proportionately more rapidly
than the monopole density. However, we find no evidence
for any change in g up to the latest times observed.

For completeness, we also include the BP function for
n =2 in Fig. 3, with the abscissa again scaled to give the
best fit by eye, although the justification for this compar-
ison is not as clear as for d=2. The fit is again quite
good. It should be noted, however, that the n =3 BP func-
tion does not fit perceptibly worse.

Wong et al. have measured S(k) experimentally in

caesium perAuoro-octanoate in both two and three dimen-
sions [14]. For d =2, they find good agreement with both
the BP prediction and our simulation data, measuring

g =4. l ~ 0.3. For d=3, however, they find g =6.0 ~0.3,
in accord with the BP prediction for n = 3 but clearly
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different from our simulation result, which is closer to the
BP result for n =2. The discrepancy may possibly be due
to the inadequacy of the equal constant approximation to
describe monopoles in real NLC's. Goldhaber [21] has
shown that, in the equal constant approximation, the
monopole can deform into a thin "Aux tube" with all the
Aux out of a monopole concentrated in it. Such processes
are not observed experimentally. Indeed it is found in [5]
that with a small perturbation away from the equal con-
stant approximation the monopoles become stable. In ad-
dition, they find that such monopoles have a cylindrical
rather than a spherical symmetry, suggesting that the
equal constant approximation may alter the properties of
the monopoles and hence their role in the phase ordering.

We now discuss the results for the growth exponent p.
As we noted above, the data from the d =2 system do not
fit the form l(t)-t~ for any II (inset, Fig. I). This may
again be a transient effect or could be caused by a gradual
freezing of the system into a metastable configuration, as
was observed to happen for D =0.5, E =1.3. It has been
suggested [20] that such freezing could be caused by a
weak pinning of the vortices to favorable locations at
centers of plaquettes. Similar simulations of a 2D vector
model [2], however, achieved an approximate power-law
scaling, although the value of the exponent p increased
from around —', at early times to 0.50 later. We have run
our simulations for a similar number of updates but find
no evidence for this type of behavior. On the contrary, we
find the effective value of p decreases at later times. Simi-
lar behavior has been observed by Desai and Somoza [20].

For the 1=3 system we found that the data scaled ex-
cellently with l(t)-t over a wide range of times
(t =40 to t =1200; the t =40 data, however, lie slightly
outside the main scaling curve). From a log-log plot of
l(t) against t (inset, Fig. 3) we determine /=0. 44+ 0.01.
Mondello and Goldenfeld [3] and Toyoki [22] found
&=0.45+'0.01 for the d=3, O(2) model using a cell-
dynamics simulation. These results are at variance with a
number of analytic treatments [7,8] suggesting p= 2 .
However, we cannot be sure the system is in the asymptot-
ic regime in our simulation and longer runs may eventual-

ly reach an exponent value of 2 .
To summarize, we have simulated a spin model corre-

sponding to a nematic liquid crystal in the equal constant
approximation. We observe the tail in the structure func-
tion to decay as S(k)-k —' in d=2 and as S(k)
-k —' in d=3. For d=3 this differs from the re-
sult derived by BP for the O(3) model and with the exper-
imental result @=6~0.3 [14]. We believe this is due to
the presence of nonintegrally charged topological defects
(~ —,

' strings) in the nematic which are absent from the
O(3) model and which dominate at the times scales of the
simulation, giving results closer to the BP prediction for
n =2. We find a growth exponent /=0. 44~ 0. 1 in d =3,
consistent with earlier simulation results [3,22] for O(2)
models.
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