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Self-organization and a dynamical transition in trafBc-flow models
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A simple model that describes trafBc flow in two dimensions is studied. A sharp jamming transition
is found that separates between the low-density dynamical phase in which all cars move at maximal
speed and the high-density jammed phase in which they are all stopped. Self-organization effects in
both phases are studied and discussed.
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Traffic problems have been studied extensively in re-
cent years in order to help in the design of transportation
infrastructure and to optimize the allocation of resources.
Traffic simulations, based on various hydrodynamic mod-
els, have provided much insight and are in good agree-
ment with experiments for simple systems such as a free-
way, a tunnel, or a single junction [I]. However, the
simulation of traffic flow in a whole city is a formidable
task as it involves many degrees of freedom such as local
densities and speeds. The availability of powerful super-
computers is likely to make these simulations feasible in

the near future, but models that are simpler and more
flexible than hydrodynamic models will be needed in or-
der to achieve this task.

Cellular automaton (CA) models [2] are increasingly
used in simulations of complex physical systems such as
fluid dynamics [3], driven diKusive systems [4], sandpiles

[5], and chemical reactions [6]. In some of these sys-
tems the cellular automaton models provide only some
general qualitative features of the system while in other
cases useful quantitative information can be obtained.
For some problems involving complex geometries, such
as simulations of fluid dynamics in porous media, cellu-
lar automata are found to be superior to other methods.

In this paper we present three variants of a simple cel-
lular automaton model that describes traffic Bow in two
dimensions. The first two variants are three-state CA
models on a square lattice. Each site contains either an
arrow pointing upwards, an arrow pointing to the right,
or is empty. In the first variant (model I) the dynamics
is controlled by a traffic light, such that the right arrows
move only in even time steps and the up arrows move
in odd time steps. On even time steps, each right arrow
moves one step to the right unless the site on its right-
hand side is occupied by another arrow (which can be
either an up or a right arrow). If it is blocked by another
arrow it does not move, even if during the same time
step the blocking arrow moves out of that site. Similar
rules apply to the up arrows, which move upwards. Note
that this is a fully deterministic model; randomness en-
ters only through the initial conditions. In this model the

traffic problem is reduced to its simplest form while the
essential features are maintained. These features include
the simultaneous flow in two perpendicular directions of
objects that cannot overlap. No attempt is made here to
draw a more direct analogy between our model and real
traffic problems.

The model is defined on a square lattice of N x N sites
with periodic boundary conditions. Due to the periodic
boundary conditions the total number of arrows of each
type is conserved. Moreover, the total number of up ar-
rows in each column and the total number of right arrows
in each row are conserved, giving rise to 2N conservation
rules.

The density of right (up) arrows is given by p
n /N (pT = nT/N ), where n (nT) is the number
of right (up) arrows in the system. Here we examine the
case where p = p1 = p/2. The (average) velocity v of
an arrow in a time interval v is defined to be the number
of successful moves it makes in r divided by the number
of attempted moves in ~. It has maximal value v = 1,
indicating that the arrow was never blocked, while v = 0
means that the arrow was stopped for the entire dura-
tion r, and never moved at all. The average velocity U

for the system is then obtained by averaging v over all

the arrows in the system.
We have performed extensive simulations of the model

starting with an ensemble of random initial conditions.
After a transient period that depends on the system size,
on p, and on the random initial condition, the system
reaches its asymptotic state. We found two qualitatively
different asymptotic states, which are separated by a
sharp dynamical transition. Below the transition all the
arrows move freely in their turn and the average velocity
is v = 1, while above it they are all stuck and v = 0 with

very high probability. A typical configuration below the
transition is shown in Fig. 1, where the system is self or-

ganized into separate rows of right and up arrows along
the diagonals from the upper-left to the lower-right cor-
ners. This arrangement enables the arrows to achieve the
maximal speed. When a row of horizontal arrows moves,
it makes space for a row of vertical arrows to move in the
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FIG. 1. A typical dynamic configuration in the low-

density phase below the transition. The system is self-
organized into a pattern of lines of arrows from the upper-
left to the lower-right corners and v = 1. The system size is
32 x 32 and p = 0.25.

next step, such that they never collide. Above the transi-
tion all the arrows are stopped in a global cluster, shown
in Fig. 2 (by global cluster we mean a cluster that con-
nects one side of the system to the other). This global
cluster is oriented along the diagonal from the upper-
right to the lower-left corners. This way it blocks the
paths of all arrows which finally get stopped [7].

These two states are separated by a sharp jammin g
transition in which the ensemble-average velocity changes
rapidly from (v) = 1 to (V) = 0 as p is varied (see Fig.
3). Results for five system sizes from 16 x 16 to 512 x 512
are presented. Small-size systems (up to 128 x 128) have
been simulated on sequential machines, while the larger

FIG. 2. A typical static configuration in the high-density
phase above the transition. Here the global cluster is oriented
between the upper-right and the lower-left corners, and blocks
the paths of all the arrows until they get stopped. The system
size is 32 x 32 and p = 418/1024 0.4082.

FIG. 3. The ensemble average velocity (V) as a function of
the concentration p for five difFerent system sizes (model I). As
the system size increases the transition becomes sharper and
the ensemble-average velocity changes rapidly from (v) = 1
below p, (N) to (v) = 0 above it.

systems were simulated on a DECmpp parallel computer
with 8k processors. For small-size systems the transition
is not sharp but there is a range of densities in which both
asymptotically dynamic and asymptotically static states
are found with a non-negligible probability (depending
on the initial condition). We define p, (N) to be at the
center of this region, which is characterized by very long

to
transients. As the system size increases p (N) tend
o decrease while the coexistence region shrinks, giving

rise to a sharper transition. From our simulations we
have not been able to obtain conclusive results for
in the infinite system limit. We find that the transition
is very sharp for large systems. However, p, (N) keeps
decreasing as N increases, and we have not been able to
determine whether it converges to a finite p, or to zero
in the infinite system limit. The difficulty results from
t e long equilibration times near the transition ~see F'see 1g

) and from the slow convergence of p, (N) as the system
size increases.

Being a transition as a function of the concentration P)
between a state with no global cluster below p, to a state
with a global cluster above p„ it resembles the percola-
tion transition [8]. However, the percolation transition
is a second-order transition and has no dynamics. The
jamming transition can also be considered in the con-
text of pinning transitions that occur in extended systems
with quenched random impurities such as charge-density
waves [9]. In our model there is no quenched compo-
nent and the two sets of arrows pin each other when the
density increases above threshold.

In order to examine the robustness of the jamming
transition we have also studied a nondeterrninistic variant
of our model (model II). In model II the traffic light is
removed and all arrows move in ail time steps (unless
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FIG. 4. The median equilibration time T,p for model I
as a function of p for four different system sizes. The equili-
bration time is the number of time steps it takes to reach a
periodic cycle or to get stuck. The peak around p, becomes
higher and sharper as the system size increases up to 64 x 64,
and then becomes more flat for 128 x 128. It is not clear how
to interpret this behavior for 128 x 128, although it may be
that there is a very narrow peak that we have not been able
to resolve.

they are stopped). If both an up and a right arrow try
to move to the same site, one of them will be chosen
randomly, with equal probabilities [10]. For this model
we also find a sharp transition. The values of p, (N) are
smaller than for model I (approximately 0.10 for systems
of size 512 x 512). The value of p, in the infinite system
limit cannot be determined from our data.

By choosing a two-dimensional model that has only
right and up arrows, and does not have left and down
arrows, we simplify the problem without losing most of
its essential features. The essential problem that causes
traffic jams is the need of the right and up arrows to
cross each other's paths, while each site can be occupied
by only one arrow. There is no such problem between
the up and down, or between the right and left arrows,
as they can move in parallel paths that do not intersect.
In models that have both right, up, left, and down arrows
one can have a stable finite traffic jam. A simple example
is a set of four arrows in which an up arrow blocks a
left arrow, which blocks a down arrow, which blocks a

right arrow, which blocks the first up arrow. This is the
gridlock mechanism, which may occur at any density p.
In our model gridlocks are not possible, and the jamming
transition occurs only when a global cluster forms.

To obtain a better understanding of the model we now
describe the one-dimensional analog which can be solved
analytically. In one dimension there is only one type of
arrows (say right arrows) that move along a closed ring.
Every time step each arrow moves to the right unless it is
blocked by another arrow [11]. The asymptotic velocity
v is independent of initial conditions. It is v = 1 for p (
1/2, while for p ) 1/2 it decreases continuously to zero
according to V(p) = (1—p)/p [12]. We thus conclude that
the sharp first-order transition is indeed a result of the
interaction between the horizontal and vertical arrows
due to the excluded volume. To clarify this point further
we have performed preliminary simulations on a variant
(model III) in which a right and an up arrow are allowed
to occupy the same site. In this four-state model all
arrows try to move at every time step. If both an up
arrow and a right arrow try to move to an empty site at
the same time step they both move in and overlap. On
the other hand no arrow can move into a site which is
already occupied. This model is designed to have weaker
excluded volume effects between arrows of different types.
Indeed our simulations show that model III exhibits a
continuous transition which is qualitatively similar to the
one-dimensional case.

In summary, we have presented a cellular automaton
model that describes trafBc flow in two dimensions. Our
simulations of finite systems up to 512 x 512 show a sharp
transition that separates a low-density dynamical phase
in which all cars move at a maximum speed and a high-
density static phase in which they are all stuck in a global
traKc jam. Such behavior is found both in a determin-
istic and a nondeterministic variants of the model and
we thus believe that it is robust and represents a general
feature of traffic fiow in two dimensions. We believe that
cellular automata provide a useful framework for traf-
fic simulations that should be developed further. These
models are especially suitable for simulations on parallel
computers, and their flexibility is especially important in
the complex geometries of traKc networks.

This work was performed using the computational re-
sources of the Northeast Parallel Architectures Center
(NPAC) at Syracuse University.
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