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We analyze the relationship between the phase distribution for optical fields derived using phase-
operator techniques with that derived from the Wigner phase-space quantum quasiprobability. We
show that these two approaches agree for field states dominated by Fock states within a narrow distri-
bution, but differ for cases involving widely separated photon-number contributions. Dominance by
even Fock states can result in a negative Wigner phase distribution. An example of this is drawn from

the Jaynes-Cummings model.
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The phase dependence of quantum noise in squeezed
light has provided the motivation for a reanalysis of phase
in quantum optics. Nonclassical light fields are described
in terms of quasiprobabilities such as the Wigner or Q
(Husimi) functions, and the phase dependence of such
distribution functions is a useful parametrization of their
properties [1]. An alternative is to use the phase operators
developed by Pegg and Barnett [2] to construct a phase
distribution Ppg(6), and a number of authors have com-
pared the angular properties of both approaches (especial-
ly Tanas and co-workers [1,2] and Agarwal et al. [3]). In
much of this work the field states considered have had a
large mean occupation number, and semiclassical approxi-
mations have been suitable. If, however, states of small
mean photon number and states exhibiting substantial
quantum interference are considered, such approximation
schemes may be invalid and a purely quantum analysis
becomes necessary. In some cases the Wigner phase dis-
tribution can be negative, in contrast to the positivity of
the Pegg-Barnett distribution. In this paper we investi-
gate the relationship between these two approaches to
phase distributions. We show that the appropriate matrix
elements for the relevant normally ordered characteristic
function can be employed to write the Wigner phase dis-
tribution function in a number state form identical to that
of the Pegg-Barnett distribution function except for the
addition of a weight factor [4]. The variation of this
weight factor with photon number can then result in a
negative Wigner phase distribution. We illustrate the
utility of this approach for two fields: a superposition of
number states, and the field generated by an atom in the
Jaynes-Cummings model. We show that the Wigner
phase distribution is essentially identical to the Pegg-
Barnett distribution if the field is dominated by a narrow
range of Fock states.

The Wigner phase distribution function is written sim-

ply as
Pw@®) = [ "rarwe0) )

if the Wigner function is expressed in polar coordinates.
At first it seems that there is little connection with the
Pegg-Barnett phase distribution function. The Pegg-
Barnett phase distribution is found from the overlap of a
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quantum-mechanical state with the phase states. For a
“physical state” |y) we obtain the phase distribution [2]
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using the number basis
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In the phase distribution Ppg(@) above, we have set the
phase origin to zero for definiteness.

An illustration of the two types of phase distribution
has been made with a coherent state |a). The Pegg-
Barnett phase distribution has to be found by a numerical
summation of Eq. (2). However, for the Wigner phase
distribution we may take the Wigner function and in-
tegrate radially in the fashion of Eq. (1) to obtain an ana-
Iytic result [3]. A comparison of the two types of phase
distribution then shows that they agree for large |al. We
have also seen that they agree for a— 0 where both the
distributions become flat. The maximum difference be-
tween the distributions is approximately 11% of the peak
value when |a|2~1.46.

To determine the Wigner phase distribution for a more
general state such as that given in Eq. (3) we write the
Wigner characteristic function  for the state |y) as a sum
over matrix elements y,,;

2= 2 tm(&lanan, @
where
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The matrix elements g, can be expressed in Laguerre po-
lynomials L " [5]:

m!
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for m=n. The Wigner function follows as the complex
Fourier transform of the characteristic function (4). Per-
forming this Fourier transform in polar coordinates we
obtain the contribution ap,a, W, (r,0) to the full Wigner
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function from one term y,,, where

1/2
1 )
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n m!
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for m = n (in agreement with Ref. [6]).

The contribution to the Wigner phase dlstnbutlon is
now given by Eq. (1). With the substitution y =4r2 we
may write the radial integral of Eq. (7) as

1/2
AP (@) = (— ) [ L | gitm=mo
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We now use a table of integrals [7] to perform the in-
tegration over y in terms of a hypergeometric function
which in turn can be expressed as a series of gamma func-
tions:

APmn(B) -ZL'( —1D)"Vm!n! e’('” ")92 (m—n)/2
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The Wigner phase distribution for a general state can

then be written by analogy with the Pegg-Barnett phase
distribution (2) as

X
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Indeed, Eq. (10) goes over to Eq. (2) if F(m,n) =1. By
summing the series (9) we find that the factors F(m,n)
take the form
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provided m = n. For m < n the indices m and n should be
exchanged in Eq. (11). These results enable us to calcu-
late the Wigner phase distribution in the same way that
we find the Pegg-Barnett phase distribution. This has a
numerical advantage if the field state is expressed in terms
of Fock states.

We now consider two applications. First, we will look
at a superposition of two number states. This is not only
of academic interest, but may be realizable experimental-
ly by using techniques for producing number states out-
lined in Ref. [6]. We choose an equal superposition of
states to ensure the maximum modulation of the phase
distribution. The Pegg-Barnett phase distribution for |n)
and |n+2) immediately follows from Eq. (2) and is

Ppy(B)-—[1+c0529]. (12)
2n

However, if we use Egs. (10) and (11) to find the Wigner
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phase distribution we obtain

1/2
1 n+2
— 1+
Py [l e cosZO], n even
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It is clear from Eq. (13) that superpositions of even num-
ber states can produce a negative Wigner phase distribu-
tion, unlike the Pegg-Barnett phase distribution which
remains positive. The negativity is worst for the case n =0
(i.e., when |0) and |2) are superposed) and decreases as n
even increases. For odd n there is no negativity in the
Wigner phase distribution. If n— o we obtain the
Pegg-Barnett phase distribution (12) from the Wigner
phase distribution (13) and there is no negativity for odd
or even n.

The vacuum is especially good at producing negativity
in superposition. By using Stirling’s formula we can show
that for large n, F(0,n) — (nx/2)"* so that an equal su-
perposition of |0) and |n) gnves an increasing amount of
negativity as n increases. This is not the case for a super-
position of the states |1) and |n), for which the modula-
tion of the phase distribution is less than that found in the
Pegg-Barnett distribution, and so Py (0) is always posi-
tive.

If we have an equal superposition of the states |m) and
|n) we find negativity in the Wigner phase distribution
only if the smallest of m and n is even. This general rule is
illustrated in Table I which shows the asymptotic behavior
of F(m,n) when both m and n are large. We can see that
F(m,n) takes one of two values depending on whether or
not m or n are even or odd. Negativity of the Wigner
phase distribution follows if F(m,n)> 1. However, we
also see that if m ~n then the value of F(m,n) is close to
one and the contribution to the phase distribution is simi-
lar to the Pegg-Barnett case. In general, the Wigner
phase distribution will be close to the Pegg-Barnett phase
distribution if there are no significant contributions to the
phase distribution from widely differing Fock states (i.e.,
for peaked photon distributions, the coherent state pro-
vides a good example). Parts of the Wigner phase distri-
bution may be negative if even number states dominate.

We turn next to the Wigner phase distribution of the
field mode in the Jaynes-Cummings model which under-
lies recent micromaser experiments [8,9]. We calculate
the phase distributions of the cavity field using the Pegg-
Barnett method and the Wigner function [in the latter
case from Egs. (10) and (11)]. Results are shown in Figs.

TABLE 1. Here we show approximate values of F(m,n)
when both m and n are large. If F(m,n) is greater than 1 we
will find negativity in the Wigner phase distribution for an equal

superposition of |m) and |n).
n m=n n m=<n
m even odd m even odd
(mn/m)"*  even (n/m)"* (n/m)V*

even (m/n)'4
odd  (m/m)" (n/m)"* odd (m/m)"* (m/n)'*
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FIG. 1. This figure shows the Wigner phase distribution FIG. 2. This shows the two phase distributions for the same

(solid curve) and the Pegg-Barnett phase distribution (dotted
curve) when the resonant Jaynes-Cummings model has evolved
for half a revival time. The lower part of the figure is shown on
an expanded scale to display the negativity in the Wigner phase
distribution clearly. The phase distribution is double peaked at
half the revival time because of the splitting of the quasiproba-
bility distribution in phase space. The initial state of the field
was a coherent state with a mean photon number of 49. The
atom was initially in its excited state.

1 and 2. It is known that if the initial field is a coherent
state then during the evolution of the field the Wigner
function splits into two parts that rotate in different direc-
tions in phase space [10]. At the “revival time” these two
pieces overlap again, having traveled through an angle of
n. During the collapse region at half the revival time the
two pieces have a maximum separation in phase space.
We then find a two-peaked phase distribution reflecting
the separation of the distribution function into two parts.
For the example given in Fig. 1 the Wigner and Pegg-
Barnett phase distributions are found to be remarkably
close. The most significant difference is, however, the
presence of negative regions in the Wigner phase distribu-
tion.

The possibility of negativity might have been foreseen
in the following way. We know that the field at half of the
revival time is nearly a pure state [11] and similar to a su-
perposition of two coherent states. Such superpositions
yield a Wigner function with interferences near the origin
of phase space. These interferences contain negative re-
gions and it is seen in Fig. 1 that for certain angles the
negative interference regions dominate the phase distribu-
tion. We have found that if the mean photon number of
the initial coherent state is reduced from 49 (as in Fig. 1)
to 16 the negativity disappears.

In Fig. 2 we show that phase distributions after a con-
siderable interval of time has elapsed in the evolution of
the model. The two pieces we had in phase space have
now dispersed resulting in phase distributions that are nei-

parameters as in Fig. 1, but after a long evolution time (50 re-
vival times). The original two-peaked structure is lost, and there
is no negativity now. The two phase distributions are quite close
to each other.

ther simply peaked nor regular. It is interesting to note
that despite the long evolution time the Pegg-Barnett and
Wigner phase distributions remain quite close to each oth-
er. There is no longer any negativity.

We conclude that we have shown how to calculate the
Wigner phase distribution in a way similar to the Pegg-
Barnett phase distribution by using the expansion of a
state in the Fock basis. Because we do not need to calcu-
late explicitly the Wigner function we believe that this
method could have a wide application, especially to states
which are found by numerical means. Of course, in dissi-
pative systems it is easy to generalize to mixed density
matrices. We have illustrated the use of the method with
simple superpositions of number states and with the field
in the Jaynes-Cummings model. In both cases we have
compared the Wigner phase distribution with the Pegg-
Barnett phase distribution. It is significant that in both
cases the Wigner phase distribution can take negative
values. We regard this as an unphysical property of the
Wigner phase distribution, although it may be regarded
as a nonclassical signature. It also means that it cannot,
in general, be possible to construct ‘“Wigner phase states.”
This is because the overlap of such states with a physical
state would yield a Wigner phase distribution with posi-
tive values only.

In a future presentation we will report in more detail on
this work, and discuss the phase distribution that follows
from the Q function as well as the phase distributions of
other “cat”-like states such as the odd coherent states
(which do not exhibit negative Wigner phase probabili-
ties) and the even coherent states (which do show negative
Wigner phase). A study of the displaced number states of
Ref. [4] has not revealed any negative Wigner phase prob-
ability.
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