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Ionization rates of H2+ in an intense laser Seld by numerical integration
of the time-dependent Schrodinger equation
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A numerical method of integration of the time-dependent Schrodinger equation is presented for the
hydrogen atom and for the H2+ molecule. Cylindrical coordinates are used and the wave function is
expressed as a Bessel-Fourier series. This expansion allows one to eliminate singularities present in the
Hamiltonian and to use a unitary split operator to evaluate numerically multiphoton transitions.
Laser-induced ionization rates for H2+ are calculated and compared with rates for the hydrogen atom.
A strong dependence of the H2+ ionization rates on the initial vibrational excitation is found.

PACS number(s): 33.80.Rv, 42.50.Hz, 32.80.Rm, 33.90.+h

The interaction of intense laser pulses (intensity ) 10'
W/cm ) with atoms and molecules leads to many interest-
ing multiphoton phenomena such as above-threshold ion-
ization (ATI) and high-order harmonic generation. This
has been an area of active research in the past decade and
is well documented in several review papers [1-4]. The
topic is a challenge for theoreticians since standard per-
turbation theories are not valid for intensities approaching
the intensity atomic-unit value (=-3.5 x10' W/cm ). In
most existing theoretical models based on exact analytic
solutions of the Schrodinger equation the laser field is rep-
resented as a monochromatic wave. Since in most experi-
ments the electric-field amplitude can vary considerably
on a scale of several cycles during the turn-on of the pulse,
it is necessary to describe these high-intensity phenomena
by solving numerically the time-dependent Schrodinger
equation (TDSE) on recently available powerful comput-
ers [5-15].

In this paper we introduce a numerical technique for in-
tegration of the TDSE which holds some promise for im-

proving computational efficiency. The method is particu-
larly attractive for problems exhibiting cylindrical sym-
metry such as the problem of linearly polarized light in-
teracting with a H atom or a Hz+ molecule, the molecule
being collinear with the electric field. Calculations are
performed in cylindrical coordinates (p, z, p). The trans-
verse variable p is eliminated with the help of the Bessel-
Fourier series [16-18]. This allows us to eliminate the
singularities present in the Laplacian and in the potential
in order to use a split-operator technique together with
fast Fourier transform (FFT) [19-21]. It is well known
that this method allows one to use larger time and space
steps than the finite-difference methods and is particularly
useful for problems with short-range potentials [19,20].
Similar techniques for problems in which Coulomb poten-
tials are present were already used previously but with
different basis sets or different coordinates in Refs.
[14,21]. Elimination of the p variable with the help of the
Bessel-Fourier expansion yields a set of differential equa-
tions (with variables t and z only) with no singularity at
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z 0 and therefore techniques based on FFT will work
better in this basis than with the commonly used expan-
sion in spherical harmonics. The computational efficiency
of the method is related to the fact that the wave function
even at high intensities is well localized within a long and
thin cylinder. The method is particularly well suited for
the H2+ case for which expansion in spherical harmonics
may not work so well as for atoms since already the
ground state requires a considerable number of harmon-
ics, which is expected to increase considerably during the
interaction (absorption of photons).

We apply this technique for the case of the interaction
of a laser pulse with a hydrogen molecule ion H2+. We
calculate the ionization rates for the Hz+ and compare
with rates for the H atom. We are motivated by the fact
that there is general interest in resonant dissociation of
Hz+ by an intense laser pulse [22-24]. This process is
typically described by a model in which only the ground
electronic surface and the first repulsive surface are in-
cluded [22,24] (i.e., ionization and upper electronic sur-
faces are neglected). Therefore it is important to know up
to what intensities predictions of this model are correct.
One of the predictions by the two-electronic-state model is
the very interesting phenomenon of laser-induced molecu-
lar stabilization with respect to the dissociation at high
laser intensities. We wish to examine to what extent the
ionization may affect this stabilization.

In cylindrical coordinates and in atomic units the
TDSE describing the interaction of matter with linearly
polarized laser field has the following form (the z axis is
chosen along the electric-field E direction):
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v, (p, )- (p2+z 2) —i/2 foi H,
—[p +(z —R/2) ] ' —[p +(z+R/2) ] ' for H + (3)

and R is the internuclear separation of H2+. In the calcu-
lations we assumed R to be fixed and equal to either 2.0
a.u. (Hz+ in the ground state) or to 3.0 a.u. (Hz+ in an
excited vibrational state). Note that there are no terms
depending on angle p in (1). These terms can be omitted
due to the symmetry of this problem (the potentials and
wave function at t 0 do not depend on III) [5]. Numeri-
cal integration of Eq. (1) using a finite-difference scheme
requires special care near p 0 because of the singularity
in D~ and in the potential Vc(p, z) (usually smaller space
steps are required near a singularity). We propose here to
use the Bessel-Fourier series built from the functions
[16-18]
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where Jo and Ji are Bessel functions, x„are zeros of
Jo(x) and L is the maximal value of p used in our calcula-
tions. If the wave function is expanded in this series the
singularity 1/p present in D~ can be removed since the
functions v„(p) are eigenfunctions of this operator; i.e., we
have

Dpv„(p) -—(x„/1, ) 'v„(p) .

The series of functions v„(p) constitutes a complete basis
for functions f(p) defined on the interval (O,L) having
continuous second derivatives at the origin (p 0) and
satisfying the condition f(L) 0 [18]. These functions
form an orthonormal set of functions satisfying the rela-
tions

fL
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Thus after expanding the wave function in this basis ac-
cording to the formula

I

p(t+bt, z) exp(D, bt)exp[ —iE(t')zbt]

x exp[ —iA(z)bt]exp(D, bt)g(t, z), (10)

where D, (i/4) t)'/r)z and t' t+ bt/2. The operation
exp(D, bt)g is performed with the help of FFT and the
matrix 8(z) exp[ iA—(z)bt] was evaluated using the
formula (valid for any Hermitian matrix A )

8 Uexp( iAD—bt)U

where U is the diagonalizing matrix (it contains eigenvec-
tors of the matrix A as its columns) and AD is the diago-
nalized matrix A. The matrix exp( iAD—bt) is simply a
diagonal matrix containing the exponentials of the eigen-
values of A. Calculation of the matrix 8 for each z is time
consuming but needs to be done only once since 8 is time
independent. The propagation scheme (10) is always uni-
tary.

We calculated first the population of the ground state
Pi, (t) ((yri, ~y(t))[z of the hydrogen atom and obtained
full agreement with the published data [131 using only
M 16 functions in the expansion in Bessel functions
which shows that the technique is quite efficient. The
Schrodinger equation (1) for Hz was then integrated nu-
merically using the ground-state wave function of Hz+
yo(z, R), given in Ref. [25] (exact eigenfunction obtained
in parabolic coordinates, taken from the Table II-A of
Ref. [25]), as an initial condition. The size of the grid was
defined by (z~ & 128 a.u. , the spatial integration step hz
was —,

' a.u. , L 8 a.u. , and the time step bt was 0.01 a.u.
The electric field was described by the formula E(t)

EoU(t)sin(tot) where U(t) 1 for t & to, U(t) t/to
for 0&t &to, tv 0.2 a.u. , to 5 cycles =157 a.u. , and
Eo is the laser peak electric field in atomic units.

Typically the ground-state population Po(t )
[(yo(its(t))[ is an exponential-like function from which

the ionization rate A, can be calculated as —ln[Po(t)].
This formula cannot be used when resonant phenomena

inserting it into the Schrodinger equation (1), and elim-
inating the p variable with the help of Eq. (6) one gets the
following system of partial differential equations in z and t
only:

. t) 1 82
P+ A (z )P+eE (t )zP, (8)
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where p p(z, t) is a vector containing III„(z,t) defined by
(7) and A(z) is a M x M matrix with its elements defined
by the formula:
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[note that the matrix potential A(z) which replaces the
Coulomb potential is nonsingular at z 0].

This system of differential equations (8) is integrated
using the second-order split-operator technique [19-21],
i.e., the time-evolution algorithm is based on the relation

)p 12

)p 14
I I I I I I

~p 15

INTENSITY (W//cm )
FIG. 1. Ionization rates as functions of laser intensity for the

hydrogen atom (x), for H2+ in equilibrium position (R 2
a.u. ) (a), and for H2+ with R 3 a.u. (0).
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take place. Therefore we define the ionization rate in a
similar way as in Ref. [13],i.e., we apply a best exponen-
tial fit to the function

+s~ +L
Py(t) „,dz„dppIU/I (12)

which represents the probability of finding the electron in

a cylinder in which many bound states are contained. For
our purposes, we found to be sufficient zst 16 a.u. The
ionization rates as functions of laser intensity are
displayed in Fig. 1. The time dependence of the ground-
state population Po(t ) and of the function Py (t ) for an in-

tensity I 4X 10' W/cm, for R 2 a.u. (the equilibrium
separation) and for R 3 a.u. are shown in Figs. 2 and 3,
correspondingly. We observe a big difference (more than
2 orders of magnitude) between the rates of H and those
of Hz+ (R 2 a.u.) for intensities below 4&10'4 W/cmz
and nuclei at the equilibrium position. However, we see a
dramatic increase of the ionization rate of Hz+ when the
internuclear separation R is 3 a.u. (which roughly corre-
sponds to the fourth excited vibrational state). This
strong dependence of the rate on the internuclear separa-
tion is related to the very steep decrease of the Hz+ repul-
sive surface cr„as function of R [26]. For R equal to the
equilibrium separation (R 2 a.u.) one needs approxi-
mately two photons to reach the upper surface while for
R 3 a.u. one already is at one-photon resonance. (Thus
at the present wavelength, X, 228 nm, the right-hand
turning point of the v 3 level is degenerate, in the
dressed-molecule picture, with the nuclear turning point
on the repulsive surface [24].) This largely enhances the
ionization since in the upper repulsive (antibonding) sur-
face o„ the probability for the electron to stay between
the nuclei (where the attraction from nuclei is the strong-
est) becomes small (by symmetry) compared to that of
the bonding ground state [26]. The resonant behavior for
this case is seen in Fig. 3. One clearly sees the Rabi oscil-

TIME (a.u. 'I

FIG. 2. Time dependence of the population of the ground
state Po and of the function Py at intensity 3.94X 10'" W/cm2

for R 2 a.u. (equilibrium separation).

TIME (a.u. )

FIG. 3. Same as in Fig. 2 but for R 3 a.u.

lations of Po. Obviously for this case the rate must be cal-
culated from Py instead of Po.

In all our calculations the grid size was defined by the
inequality IzI & 128 a.u. In order to check whether our
results are affected by the reflections from the boundary
we repeated the calculation using the absorbing-mask
function introduced in Ref. [15]. We observed a consider-
able absorption when the ground-state population Po is
largely depleted. However, this had little influence on the
ionization rates calculated from either the Po or Py func-
tions.

In conclusion, we note that at intensities above 10'
W/cm for which the ionization rates exceed 2X10'3 s
the molecular stability with respect to the dissociation
may be affected by the ionization (at I 10' W/cm we
observed ionization probability equal to 0.2 at t 10 fs).
We also note that ionization rate is strongly dependent on
the initial vibrational excitation. In the present calcula-
tions the internuclear distance was kept fixed and the ki-
netic energy of nuclei omitted. It is plausible to think that
at the high intensities considered here the ionization pro-
cess is occurring so fast (r; =-10 's s) that the calcula-
tion in which the nuclei are frozen gives a reasonable esti-
mate of the ionization rate. A complete study of the effect
of nuclear motion on ionization rates, as well as the har-
monic generation by H2+ will be presented in a further
paper. Harmonic generation by a neutral hydrogen mole-
cule was recently discussed in Ref. [27] and compared
with that by atomic hydrogen. The authors observed little
molecular eA'ects, i.e., their H2 results were similar to
their hydrogen results. For the Hz+ and for frequencies
close to resonance we expect to encounter more molecular
vibrational eA'ects in harmonic generation in our calcula-
tions.
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