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Analytical treatment for parity breaking in eutectic growth
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Using an ansatz for an asymmetric proale of the solidi6cation front in lamellar eutectic growth, the
von Neuman problem is solved. Imposing the Gibbs-Thomson condition, we derive a general expres-

sion for the tilt angle as a function of the control parameters. We 6nd that the front undergoes a su-

percritical parity-breaking bifurcation at a critical value of cr dol/X2 (do is the capillary length, l the
diff'usion length, and A, the wavelength of the pattern). We further find that parity-breaking causes a

reduction of the average front undercooling. All these features agree with previous numerical results.

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

During the past few years considerable experimental
and theoretical eff'orts [1] have been devoted to the under-
standing of secondary instabilities of pattern-forming sys-
tems. A particularly interesting example is the so-called
"solitary mode. " This is an inclusion of asymmetric cells
drifting along the interface. Soon after the discovery of
this growth mode by Simon, Bechhoefer, and Libchaber
[2], it became clear that this phenomenon is a robust
feature of a large variety of one-dimensional patterns
[2-6]. Coullet, Goldstein, and Gunaratne [7] put forward
the idea that this mode results from a loss of stability of
the initially symmetric state against antisymmetric fluc-
tuations. They built a phenomenological model that cap-
tures some interesting features seen in experiments. It
was shown later for both eutectic and liquid-crystal sys-
tems [8,9] that the "microscopic" models of growth
indeed support parity-broken solutions that move trans-
versely to the front.

Besides the case where interface dynamics can be
mapped onto that of two interacting resonant modes —a
situation which holds close to a codimension two bifurca-
tion of the structureless (e.g., planar) state [10,11]—all
the progress came from numerical calculations. Given the
large number of material and control parameters in the
eutectic system, and in the hope of guiding further
theoretical and experimental investigations, it is strongly
desirable to have analytical results at our disposal. The
aim of this Rapid Communication is to develop an analyt-
ical treatment for parity-breaking bifurcation in eutectic
growth. Let us first present the main lines that motivate
our strategy.

First we recall that the Jackson and Hunt [12] theory
has dealt with the existence of steady symmetric solutions.
The crux of their theory was to solve the diA'usion equa-
tion in the liquid phase subject to mass balance at the in-
terface by assuming it to be planar. Their next step is to
impose the Gibbs-Thomson condition consistent with the
diA'usion field calculated for the planar front. Emerging
from this analysis is a relationship between the periodicity
A, and the front undercooling h(X); there thus exists a con-
tinuous family of solutions parametrized by the periodici-

ty.
More recently numerical analysis [8,13] of the growth

equations of lamellar eutectic structures has revealed
three important results: (i) the existence, for a given
wavelength k, of a discrete set of symmetric solutions, and
not a unique solution as found by Jackson and Hunt [12];
this means that there exist many branches h(1L, ), (ii) as X

increases the branches coalesce by pairs to form fold
singularities where symmetric solutions cease to exist; and
(iii) slightly before the fold singularity takes place, a
branch of parity-broken solutions admix as a forward bi-
furcation. An important result [13,14] that emerged from
that analysis is that the Jackson and Hunt [12] theory
(which considers only the problem of symmetric growth),
although it misses the discrete set and the fold singularity,
describes remarkably well the lower branch of symmetric
solutions found numerically [14]. In particular this also
holds close to the critical point for the parity-breaking bi-
furcation. These results give a strong hint that the sim-
plest next step analysis beyond that of Jackson and Hunt
[121, which involves including an antisymmetric com-
ponent in the front profile, should capture the essential
features of the parity-breaking transition.

In order not to unnecessarily complicate the presenta-
tion in this Rapid Communication, we will use the follow-

ing simplifications. (i) We will confine ourselves to a eu-
tectic system with the two solid phases having exactly the
same physical properties; (ii) we will assume that the
liquid far ahead of the solidification front is maintained at
its eutectic composition; and (iii) we will consider that the
system evolves in an isothermal environment. Since in

standard directional solidification experiments the ther-
mal length is much larger than the wavelength of the pat-
tern the last assumption is, beyond any doubt, justified. It
is easy to convince oneself that relaxing all these assump-
tions would pose no specific cha11enge, and we are plan-
ning to report on the general situation in the future.

The model equations are by now standard [14]. Let
u (c —c )/Ac denote the dimensionless concentration,
where c c(z ~)=—c„c, being the eutectic concen-
tration and hc the usual concentration gap between the
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u, —(„u„=+[I+(„tan(y)],
u = ~(a —dpi').

(2)

(3)

Lengths are reduced by the diffusion length I 2D/V, D
being the diffusion constant, dp the capillary length,
x = —g,„/(I +g„) / the interface curvature, and
=(T, —Tp)/mac the dimensionless supercooling, where
T, is the eutectic temperature, To the temperature of the
environment, and m the absolute value of the liquidus
slope (in directional growth 6 is a measure of the average
front position). Finally p is the (unknown) tilt angle.
Note that the upper (lower) sign in Eqs. (2) and (3)
refers to the solid phase with the lower (higher) composi-
tion. Equations (1)-(3) should be supplemented by the
mechanical equilibrium conditions at the triple points:

two solid phases at the eutectic temperature. In the frame
of reference where the pattern is at rest, u obeys

V u+2u, +2tan(p)u„=0,

subject to the conservation and the Gibbs-Thomson condi-
tions at the interface [z =g(x )]

g„(0) tan(8 —P), g„(A,/2) = —tan(8+ p), (4)

where 0 is the contact angle at the triple point.
Let us recall that in order to calculate the diffusion field

Jackson and Hunt [12] assume a planar front. That is

they solve Eq. (1) subject to condition (2) at /=0,
u, (0) =+ 1. The simplest treatment that involves par-
ity-broken solutions consists of solving the von Neuman
problem by considering a small asymmetric deviation
from the planar interface. The ansatz consists of assum-

ing that the front consists of two straight segments defined

by

xtan(8 —p), 0~x ~xp(x = ~

(&/2 —x)tan(8+ P), xp ~ x ~ X/2,

(5)
(6)

where xo, the intersection point, is given by

xp=ktan(8+/)/2[tan(8+&)+tan(8 —p)] .

To leading order in the asymmetric front deviation, and in

the (standard) small Peclet number limit the diffusion
field is found at length to be given by

u = g B2„~sin (2n —1)x + g Dz„~cos (2n —1)x21r 2x

n t n 1

(7)

where

~2n-i = 2X + A, tan ~) H& ~+H&+&cos 2mxo(2n —1)
2r (2n —I) 2r (2n —I)

2xp ~+1 1 cos[(4n/A. )xpm] &+& "+' 1 —cos[(4z/A, )xpm]+ tan 8+y —2tH"'
2 3 2z(2n —1) ~-i 2rim[4m2 —(2n —1) ] m-i x m [2m —(2n —1)]

&+& sin[(2n/X)xp(2n —1)] ~+ & + (2n —1)sin[(42r/X)xpm]

n (2n —1) m-] rr m [4m —(2n —1) ]

(+) "~' sin[(42r/X)xpm]—XH"'
m - i n m [2m —(2n —1)]

(8)

Here H~ 1=tan(8+/) —+ tan(8 —p). It can be checked
that 82„~ and D2„—~ are even and odd analytic functions
of p respectively.

Note that the diffusion field given by Eq. (7) corre-
sponds to the solution of Eq. (1) subject to condition (2)
where the front profile ((x) is given by Eqs. (5) and (6).
We may mention, if need be, that once the geometry [i.e.,

g(x)] is fixed the von Neuman theorem ensures the unici-

ty of u.
Hitherto, we have made no assumption on p, so that the

present problem seems to be solved for each value of P.
An arbitrary value of P, however, will not in general en-
sure that the two ends of a given lamella are at the same
height, as they should be. We therefore have to impose
this condition, which leads generically to isolated values of
the tilt angle p for a given value of the control parameters.
In order to solve for the actual front profile, which is com-
patible with the calculated field, we should insert (7) into
(3). The determination of the profile then amounts to
solving a nonlinear differential equation [15] for g(x),
subject to mechanical boundary conditions (4). This is of
course a much simpler problem than the usual one where

I

one has to solve the full integrodifferential equation [8].
We can in fact go much farther in the analytical analysis
if we are only interested in determining the bifurcation
equation. Indeed Eq. (3) can be integrated once over x
[from 0 to x; where we make use of the mechanical equi-
librium condition at x 0 in Eq. (4)]. A second integra-
tion from x 0 to x A/2, taking into account the second
condition in Eq. (4), provides, after imposing that the two
ends of a lamella be at the same height, the following con-
dition

F(p,p) = dx =0,e A,/2 /'(x )
& p (1 f2) I/2

(10)

where f=sin(8 —p)+ fp(u —6)/dpdx and p stands for
the material and control parameters (e.g. , 8,X). Equation
(10) is a general expression for the tilt angle as a function

of the other parameters. We can mention at this level that
since Eq. (10) is formally an algebraic equation for the
unknown p, it can be satisfied, for a given p, by a discrete
set of p values. Before exploiting it, let us first derive the
equation that relates the undercooling to the other param-
eters. For that purpose we average (3) over a period (ac-
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tually over a half period because the two solid phases are
identical). The result is

(12)

with

dol
, , o, =0.2/tr', (i3)

where the variables with tildes refer to the physical ones.
Equation (12) shows that there exists a nontrivial solution

given by

~2n 8(o —cr)' (14)

subject to the condition cr (o, . This means that the pari-

ty symmetry spontaneously breaks supercritically at
cr cr, . Using the definition of o (13) we can restate this
result as follows: For a given growth velocity the initially
symmetric solution loses its stability against parity-broken
fluctuations for A, ) A,, (2doD/Va, ) '~ . Now we expand
Eq. (11)up to order p2 to obtain

[sin(8+/)+sin(8 —p)]+2 g,-& «(2n-1)
(ii)

Equations (10) and (11) are general expressions which

determine p and 6 as a function of the other parameters.
It can be checked that F(—p) —F(p) and 6( —p)

h(p), as they should be. In order to investigate the pos-
sibility for the front to undergo a parity-breaking instabil-

ity, and if so, to determine the nature (supercritical or
subcritical) of the bifurcation, it suffices to expand F up to
third order in p. This can be done in general. However, in

order to avoid long formulas in this paper, we confine our-
selves to small contact angles, where the expressions turn

out to be simple. The calculation involves evaluations of
numerical series, some of them can be evaluated exactly,
otherwise they are computed numerically. Equation (10)
yields

where a1=1.0 and ay=0. 12. For p 0 we recover the
Jackson and Hunt [12] result. Equation (15) shows that
parity-breaking results in a reduction of the front under-
cooling for a fixed velocity, or, equivalently, increases the
velocity for a given undercooling. All the features follow-

ing from Eqs. (12) and (15) are in qualitative agreement
with numerical solutions of the full problem [8,13].

Further results follow. First it can be shown that
A,,/A, m;„-5/J8, where A, m;„ is the (physical) wavelength
which corresponds to the symmetric front with the
minimum undercooling. This result means that the parity
symmetry is lost at a wavelength larger than k;„, that is
in a regime where the front dynamics is dominated by
diffusion rather than by capillary forces. This is also a
feature that agrees with previous numerical analysis
[8,13]. Second, the wavelength A,g where the symmetric
profile develops pockets (a wavelength which is close to
the fold singularity [13]) is close to A,„and the corre-
sponding value of o, cd, scales as rf„ that is to say they
are both numbers, independent of 8, in contrast to o;„
which scales (for small 8) as om;„-I/O. This result is
comforting since Am;„results from a compromise between
diffusion and capillarity [A, -(do8l)'~; if 8 is small the
boundary layer of the capillary action is small; as a conse-
quence diffusion will dominate at smaller wavelengths],
while parity-breaking is a diffusion-driven instability,
which should be present even for a zero-contact angle
(note that parity-breaking occurs for interfaces with a sin-

gle ordered phase where there is no notion of a pinning
contact at all).

In summary we have presented a successful analytical
treatment of parity-breaking transition in eutectic sys-
tems. Of course the restriction to the purely symmetric
case is unrealistic. It is, however, of great importance to
see that despite the oversimplification of the model, it still
captures all the essential features. Naturally we are keep-
ing in mind that in order to guide further experimental in-
vestigations it is necessary to extend our calculation to the
general case. We intend to report on this work and on an
extensive comparison with the full numerical calculations
in the near future.
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