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Surface-directed spinodal decomposition: Phenomenology and numerical results
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%e present a phenomenological theory for surface eH'ects on spinodal decomposition in mixtures and

related phenomena such as the dynamics of surface segregation. Numerical solutions of our equations

show striking similarity to recent results from experiments on polymer mixtures with one component

preferentially attracted to a wall.
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There has been considerable interest in the dynamics of
segregation (e.g., spinodal decomposition) of binary mix-
tures quenched below their critical temperature T, [1].
Experiments and numerical simulations have now con-
clusively demonstrated that, in the absence of hydro-
dynamic effects, the segregation process is characterized
by a unique, time-dependent length scale !(t ) (where t is

time), which behaves asymptotically as l(t) -t 'I . Until
recently, the growth exponent (and even the existence of a
power-law behavior) has been the subject of some contro-
versy and much attention has focused on extracting this
exponent numerically. As a consequence, scant attention
has been paid to more intricate and physically important
problems, e.g. , the effect of surfaces on systems which un-

dergo segregation [2,3]. Typically, given a binary mixture
AB, it is possible that one of the components may be pref-
erentially attracted to or repelled from a surface. This
preference of the surface for a particular component is ex-
pected to produce strong effects near the surface at tem-

I

peratures both above and below T„ the critical tempera-
ture in the bulk. A recent experiment [4] has shown the
existence of surface-directed spinodal decomposition
waves in binary polymer mixtures when one of the poly-
mers is preferentially attracted to the surface. In this pa-
per, we present a numerical study (based on a phenome-
nological theory) of the rather dramatic effects which are
introduced by the presence of a surface.

The starting point for our numerical study is a variant
on a model proposed recently by Binder and Frisch [5].
Starting off from a semi-infinite Ising model with
Kawasaki spin exchange dynamics, Binder and Frisch [5]
apply the master equation approach [6] to derive the
Cahn-Hilliard (CH) equation in the bulk [7] with two
special boundary conditions which model the presence of
the surface. For the case of a system that is homogeneous
in directions parallel to the surface (assumed to lie on the
plane z 0), their bulk equation is the usual CH equation,
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where y(z, t) is the order parameter at the point z at time t [y(z, t)-p~(z, t) pit(z, t), whe—re p~(z, t) and pit(z, t) are
respectively the densities of the species A and 8]. In (1), z, is the time scale that characterizes the underlying microscop-
ic dynamics; T is the temperature; and T, (=qJ, where q is the coordination number and J is the bulk exchange interac-
tion of the underlying microscopic model) is the bulk critical temperature. The first boundary condition is
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where the parameter J, is the exchange interaction between sites on the surface in the underlying microscopic model and
H is a field on the surface which models the preference of the surface for one of the components. This boundary condition
describes the dynamics of the order parameter on the surface as a result of the surface field and the one-sided gradients
due to the absence of material in the —z direction. It has the physical effect of rapidly pinning the order-parameter value
on the surface to the value dictated by static requirements. For the second boundary condition, we use (differing from
Binder and Frisch [5]) the manifestly order-parameter-conserving condition
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By an appropriate rescaling of y(z, t ), z, and t [8],we can set (1)-(3) in the dimensionless form
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and R2(r) vs r. After an initial transient regime, both
R I (r ) and R2(r ) increase linearly in time but with slight-

ly different velocities. These provide a measure of the
growth of the enrichment domain (A-rich) at the surface
and the depletion domain (8-rich) adjacent to it.

It is also interesting to note that a degree of surface en-
richment can occur for T )T, if an appropriate field is

applied at the surface. Figure 2 shows the enrichment
profiles for an initially homogeneous state (III 0) with a
surface field h 4 turned on at time r 0. The mesh sizes
and parameters in this simulation are the same as those
for Fig. 1. Figure 2 shows that the surface rapidly be-
comes rich in the A component. Because of the conserva-
tion constraint, the system becomes rich in the other com-
ponent 8 beyond a time-dependent length scale RI(r)
and the profile decays off to 0 in the bulk. We have
confirmed that the time-dependent profile is well fitted by
the double exponential

II(x,r) 8 (r)e '~ ' —Bp(r)e ~+, (8)

where 8- (r ),8+(r ) )0. The functions 8 (r ) and
(r) rapidly saturate out to their static equilibrium

values whereas 8+(r )—r 'l2 and By (r )-r ' . It is in-

teresting to note that the various moments of the profile
show a power-law behavior in time as (x")-r "l2 but the
first zero of the profile behaves as RI(r )-lnr. This is
reminiscent of the logarithmic growth of the wetting layer
in the case with nonconserved order parameter [9].

To summarize, starting from a nonlinear diffusion
equation with suitable boundary conditions, we have been
able to describe the anisotropy that walls induce in struc-
tures forming via phase separation. Consistent with re-
cent experiments on polymer mixtures [4], we have found
that the surface acts like a pinning center for the max-
imum amplitude of a growing concentration wave, with
wave vector perpendicular to the wall. We feel that such

X

0.10—

0.05—

symbol
0 20
o 40

100

I i I i I i I i I i I i I i I i I i I i I ~ I i I i I i I i I i I

0 2 4 6 8 )0 12 &4 )6

FIG. 2. Enrichment profiles for dimensionless times 20, 40,
and 100 (denoted by the symbols indicated) for T) T,. Sur-
face enrichment is the result of a field h 4 applied at the sur-
face, other parameters being g —4 and y 4. The profiles are
well approximated by the double exponential form described in

the text.

phenomena should have widespread and important conse-
quences for the physical properties of surfaces of materi-
als. The effects described here should be particularly
relevant for the recently advancing technology of layered
materials with suitably "tailored" microstructures, recal-
ling that intermediate stages of phase separation can be
frozen in by quenching the system to very low tempera-
tures where the atomic mobility is small.
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