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Statistical signatures of self-organization
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A simple method for testing whether broadband noise comes from driven dynamical effects (rather

than equilibrium fluctuations) is described. Asymmetrical higher-order time correlation functions can

violate detailed balance, providing a key signature of dynamical eAects. Simulations of a one-

dimensional sandpile model are used for an initial illustration. Also, a hitherto unreported

phenomenon —growth of the non-Gaussian nature of the statistics with system size—is found and at-

tributed to the presence of correlations on the scale of the whole system.

PACS number(s): 05.70.Ln, 05.40.+j

Nature is replete with examples of phenomena that
show extensive scaling behavior as a function of time (e.g.,
1/f noise) [1,2] or of distance (e.g. , fractal coastlines) [3].
Often such scaling behavior is found under conditions in

which it is not an obvious consequence of underlying laws.
The possibility has been raised that many such scaling
phenomena might be the result of "self-organized critical-
ity" (SOC) [4]. SOC is, loosely, the tendency of certain
nonlinear driven systems, over a range of parameters, to
reach marginally stable states [5] which can exhibit both
spatial and temporal scaling analogous to the scaling
found at critical points in equilibrium statistical mechan-
1cs.

In many cases it has been assumed that temporal sig-
nals exhibiting a scaling regime are prima facie examples
of SOC (e.g., [6]). However, the best studied such tem-

poral phenomenon, 1/f noise in condensed matter, ordi-
narily lacks the necessary spatial scaling to be connected
with SOC and usually has a 1/f form due to a relatively
trivial spread of activation energies in materials with

many defects in quasiequilibrium [1,2]. In this paper we

present techniques designed to answer a much simpler
question than many asked about SOC. We investigate
how to analyze a random-looking time series to see if
some nonequilibrium self-organization is needed to under-
stand its origin.

We shall illustrate in particular the distinction between
behavior that might be dubbed SOC and generic scaling
phenomena (see, e.g., [7,8]). The latter occur whenever
some random nonequilibrium force drives some linear, or
linearizable, dissipative system. Generic scaling reflects
no organization whatever (let alone self-organized criti-
cality) but simply results from the power-law form for the
Green's functions of elementary transport laws such as the
diffusion equation [7,8].

%e emphasize that while much of the motivation for
this work stems from interest in SOC, we will not present
here techniques designed to distinguish SOC from other
far-from-equilibrium driven dynamical systems which ex-
hibit scaling properties. In particular, the distinction be-
tween turbulence and SOC will either require a more sub-
tle exploration of the scaling properties of the statistical
features described here, or else simple prior knowledge of
the system of interest —e.g., whether it is driven weakly

(as in standard SOC) or very strongly. Thus, for our

present purposes, conventional turbulence would be con-
sidered self-organized in that its scaling laws arise from

the response to driving and are not present in equilibrium.
In the case of equilibrium 1/f noise sources, it has now

been established that although physically dissimilar mod-

els can give very similar spectra, analyses of higher-order
spectra (i.e., greater than two-point correlation functions)
can show qualitative differences between, for example,
hierarchical kinetics and superpositions of independent
two-state systems [1,2]. In the case of those driven sys-

tems in which individual events can be unambiguously

picked out from the time record, statistics of individual

event sizes and times can provide more important evidence

for or against the relevance of SOC than averaged spectra
can provide Here .we shall show that extension of the sta-
tistical techniques developed for equilibrium systems can
provide generic diagnostics for the possible presence of
SOC effects in a random time series without requiring the
identification of individual events.

In particular, we argue, and shall illustrate by simula-

tions, that a key feature of self-organization leads to a

property that cannot arise in equilibrium systems. The
general description of nontrivial self-organization requires
that events on one temporal scale set the stage for events

on another scale. (The clearest statement of this princi-

ple, in the context of SOC, lies in the earthquake models,
in which nonlinear friction causes large events to produce
inhomogeneities on all smaller scales, setting the stage for
small events, while collections of small events create the
uniformity which sets the stage for large events [9].) It is

precisely such flow of activity from one scale to another
that can produce scaling behavior.

Barring accidental symmetry such a flow between scales
will violate detailed balance. Any systematic measure of
such violations of detailed balance will provide an indica-
tion that self-organization may be present. A particular
example of such eAects can be found in the small precur-
sor quakes seen in simulations of earthquake models [10].
(In a related technique, systematic flows in Poincare maps
have recently been shown to help distinguish deterministic
chaos from ordinary stochastic processes [11].) We shall
also illustrate that in a very simple generic scaling model
this signature is absent, although there is no rigorous ar-
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gument that it is absent from all such models.
The principal statistical tools that we shall use to identi-

fy such nonequilibrium flow between different scales in-
clude a collection of fourth-order moments which have
been dubbed "second spectra" [1,12]. Second spectra are
obtained by repeatedly measuring the ordinary spectrum
S(f) of segments of the time series V(t) by standard
discrete transform techniques over a series of time inter-
vals. S(f) for each measurement is binned into con-
venient bands (e.g. , octaves for broadband noise). Thus
one obtains a time series ofnoise powers in a set of several
frequency bands. From the time series for any one such
band, centered at frequency f, Fourier transforming and
squaring gives a second spectrum, S2(f2,f). Here f2, with

fz& f, is the frequency at which S(f) is fluctuating.
From the time series for any two bands, centered at f, and

fb, one obtains two Fourier transforms. By multiplying
one by the complex conjugate of the other, one obtains a
cross second spectrum, Sz(f2,f„fb).It is convenient to
normalize these second spectra by dividing them by the
product of the mean powers in the octaves used, so that
f2S2 is dimensionless.

In addition, we introduce here a collection of third-
order moments which we call the three-halves (1.5) spec-
tra. These are the cross spectra of the fluctuating variable
itself and the time series for the band powers. Here we
normalize by dividing by the mean of the relevant octave
power and by the standard deviation of the time record of
the variable.

The Fourier transform of a cross second spectrum is the
cross correlation function for the two time series of noise
powers in the bands. In equilibrium systems the expecta-
tion value of any such cross correlation function between
variables (noise powers, here) which are even under time
reversal must itself be an even function of time, by time-
reversal symmetry (i.e., detailed balance). Equivalently,
the expected cross second spectra must be purely real.
Thus any systematic imaginary cross second spectra indi-
cate nonequilibriuin effects of the general type expected to
justify the designation "self-organized. " Since the imagi-
nary cross second spectrum is a direct measure of any
self-organizing flow between temporal scales, we antici-
pate that it should ultimately provide a more sensitive
measure of scaling properties of that flow than can be in-
ferred from ordinary spectra or event-size distributions.

Likewise the Fourier transform of a 1.5 spectrum is the
cross correlation function for the variable and its own
noise power (at a higher frequency band. ) If the measured
variable is even under time reversal, the 1.5 spectra have
no imaginary component. If the variable is odd under
time reversal (e.g., if it is the time derivative of some even
quantity) the real component of the 1.5 spectrum van-
ishes. Thus the 1.5 spectra are not as generically useful as
the cross second spectra in finding time asymmetries, since
one needs some prior knowledge of the symmetry proper-
ties the measured variable would show in equilibrium.

The magnitude and form of these time asymmetries for
a typical model taken as an example of SOC are not obvi-
ous a priori. We chose the simplest one-dimensional mod-
el (limited local slope) described in Kadanoff er a/. for
simulation, since its low-order temporal scaling properties
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F16. 1. First spectra S(f) taken for two different array sizes
with 1;= —,', are shown. The ranges of frequencies f and f2 used

in calculating S2(f2,f) are illustrated on the same scale.

have been established [7,13] and since it can be simulated
inexpensively.

This model obeys the following simple dynamical rules
[13]. A pile of size L is characterized by a height function
h, an L-component vector with integer components. The
integer h; represents the number of "grains" at the ith
site. The pile is periodically perturbed at a random loca-
tion, i, by the addition of a grain, which increases h; by 1.
The pile is described as locally unstable if h;+~ —h; & 3.
If the pile satisfies this criterion then a local rearrange-
ment is triggered, subtracting 2 from h;+ ~ and adding 2 to
h;. One Monte Carlo step (MCS) is defined as an update
of the entire vector. The periodic input rate, in units of
MCS, is called JI. The signal V(r) that we initially an-
alyzed was the output current, of grains falling off the end
at i =0, at which the boundary condition hp =0 is main-
tained.

S(f) is presented in Fig. 1. We shall not dwell on
describing S(f), which agrees with previous simulations
[7,13]. Three different regimes can be identified in S(f).
The highest is associated with weakly interacting ava-
lanches, the lowest with negatively correlated avalanches
reflecting the overall system memory, and the intermedi-
ate regime represents the interesting behavior of highly in-
teracting avalanches [7]. The finite-size scaling behavior
also agrees with previous results [7].

Very large non-Gaussian effects were found, again as
expected given that the noise mostly comes from intermit-
tent avalanches. An indication of the unusual behavior of
this model SOC system, sharply contrasting with typical
I/f noise sources [1,2], is that the fractional variance of
S(f) grew as the system size was increased (see Fig. 2).
For a fixed dynamical correlation length smaller than the
system size, adding spectra from uncorrelated regions al-
ways reduces the non-Gaussian effects, which approach
zero in the limit of large systems. Such behavior requires
that there be correlation lengths at least as large as the
size of the simulated system, supporting the analogy with
critical phenomena. The growth of the non-Gaussian
fractional variations in S(f) with system size also indi-
cates that statistical analysis of these non-Gaussian efl'ects
is likely to be generally useful for SOC systems, not con-
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FIG. 2. The fractional covariance, C2(f„fb),between the
power in two octaves centered at f, and fb is shown for different
lattice sizes. The fractional covariance exceeds one because the
noise is intermittent. The unmarked curve is proportional to
ln(f, /fb)/sinh[ln(f, /fb)], which gives the cross correlation for
noise made up of independent intermittent processes each of
which has a Lorentzian form. In this and subsequent figures the
data are from the average of 12 runs, each consisting of a set of
512 first spectra, each taken from a 512 point transform, from a
simulation with L 512, at a sampling rate of » MCS
Thus about 10 MCS were required.
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strained to specially selected mesoscopic systems. Howev-
er, we have not yet checked whether such behavior can be
found in higher dimensions.

As expected, the correlations in the fiuctuations of the
noise power in different octaves fell off for widely separat-
ed octaves (Fig. 2), but not as rapidly as would be found
for a collection of independent intermittent two-state sys-
tems. Such behavior is typical of systems with complicat-
ed coupled degrees of freedom, including equilibrium sys-
tems, and thus cannot be used to identify SOC effects
[1,12].

Striking time asymmetries appear in the 1.5 spectra of
the output current —a variable that would be odd under
time reversal in an equilibrium system (see Fig. 3). The
real part is positive, meaning (given the sign convention of
our program) that when the output current is high, the
noise level is high. The imaginary part is positive. Thus
when the output current is high, noisy events are expected
to follow, but are not likely to have recently occurred. We
checked that the corresponding statistics for the occupa-
tion number —an even variable under time reversal in an
equilibrium system —show the same behavior but with the
roles of the imaginary and real 1.5 spectra reversed. The
interpretation is almost trivial; the occupation builds up
slowly and quietly due to the steady influx of new grains,
but discharges in large, noisy bursts.

The real second spectra [Fig. 4(a)] are approximately
white at frequencies above and below the characteristic
finite-size frequency found in the spectrum. The real
second cross spectra fall off with increasing separation be-
tween the frequency bands, as can be most easily seen in
Fig. 2 which shows, in effect, the integral of the real cross
second spectra.
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FIG. 3. (a) The real part and (b) the imaginary part of some

of the 1.5 spectra of the output current are shown.

The imaginary cross second spectra, seen in Fig. 4(b)
are much smaller and less simple than the real second
spectra. Nevertheless, they are not random, since similar
results were found on many simulations.

At low frequencies, i.e., below the scaling regime, these
imaginary cross second spectra are very close to zero.
Thus the long-time integral of the cross correlation func-
tion for the noise in two separated bands must have equal
contributions from positive and negative time delays.
Knowing that there is noise in some given frequency range
conveys no information on whether, over time scales com-
parable to the longest characteristic time deduced from
the first spectrum, there is more likely to be or to have
been noise in another frequency range.

However, at frequencies f2 near the lower end of the in-
termediate regime, a distinct nonrandom imaginary cross
second spectrum emerged. Its sign indicates that the
high-frequency noise tends to precede the low-frequency
noise. Thus this technique systematically finds precursor
effects in noisy data in which such effects are not apparent
by inspection.

In contrast, simulations of a purely diffusive one-
dimensional sandpile, also constrained to have h 0 at the
edges and driven by a random rain of grains, found no
hint of a nonrandom imaginary cross second spectrum.
The absence of the imaginary cross second spectrum is
necessary, since the time course of the occupation number
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FIG. 4. (a) The real and (b) imaginary parts of some of the
cross second spectra are shown. The sign of the curve with the
open circles in (b) has been reversed in order to maintain a con-
sistent order for the higher and lower f, and fb in the picture.
Note that for f, =fb the imaginary part is small, as expected
since it is identically zero for f, fb.

of such a system consists of a superposition of independent
steplike pulses of varying lengths corresponding to single
grains. Each pulse is symmetric under time reversal and,
since they are independent, so is their sum.

This simple diffusion model with generic scaling helps
to clarify the ingredients needed to give violations of de-

tailed balance in the observable flow. If the input drops
consisted of many grains, which subsequently diffused in-
dependently, or of drops of a continuum diffusing fluid,
the independent events produced by each drop —an initial
sharp increase in occupation number followed by a slow
decay with a power-law tail —would each manifestly be
asymmetric under time reversal. V(t) would show viola-
tions of time-reversal symmetry because the initially
correlated behavior of the constituents of a drop is lost as
they diffuse independently after landing. This simple
model also shows a flow of scale of organization, although
only an uninteresting flow from organized to disorganized.
Thus we do not claim that all time records of broadband
noise which show violations of time-reversal symmetry, as
manifest in the imaginary cross second spectra, show self-
organization even in a broad sense. We do argue that
without such effects it is hard to make a case for self-
organization.

In conclusion, we have illustrated and presented argu-
ments for the use of time asymmetries in non-Gaussian
statistics to determine whether a generic time series with a
broadband spectrum shows effects expected for interesting
driven dynamical systems or obeys detailed balance, as re-
quired for equilibrium systems. This technique does not
require that the system be deterministic. The technique is
applicable without any algorithm for identifying events
and without any model-dependent decisions about how to
map a one-dimensional variable onto a mu]tidimensional
phase space [11]. The computational overhead required
to calculate the second spectra and 1.5 spectra is negligi-
ble compared with the computing required to generate the
random time series, and no reprogramming is required to
adapt these higher spectra to different noise sources.
Therefore we suggest computing these spectra would be
useful for anyone making extensive simulations of driven
dynamical systems with broadband noise, particularly
since many serious simulators generate much more exten-
sive data, and on more interesting models, than we used
for the illustrative calculations here.
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