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Spanning trees in two dimensions
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We describe the results of an analytical and numerical study of the geometrical properties of ran-
dom spanning trees on a square lattice. We determine exactly the probability distribution of the coor-
dination number at a site on a random spanning tree. We argue that the probability that s sites get
disconnected from the tree on deleting a bond at random from the tree varies as s " for large s.
The probability that a loop of perimeter I is formed on adding an additional link at random varies as
I for large l. These distributions are also determined numerically in a Monte Carlo simulation on
random spanning trees generated by using Broder's algorithm. The numerical results are in complete
agreement with the theoretical predictions.

PACS number(s): 05.40.+j, 05.20.—y

The problem of spanning trees is well known in statisti-
cal physics. It was shown by Kirchhoff that the spanning
trees problem is related to the problem of determining the
effective resistance between two nodes of a resistor net-
work [1]. Fortuin and Kasteleyn showed that it is related
to the q 0 limit of the q-state Potts model [2]. More re-
cent work on this problem has been reviewed by Wu [3].
Most of these results are related to the number of span-
ning trees on different graphs. However, the geometrical
structure of the spanning trees has not been studied much
so far. Recently we have established equivalence of the
Abelian sandpile model [4] and the loop-erased self-
avoiding walk problem [5] to the problem of spanning
trees.

In this paper, we determine the exact probabilities of
different coordination numbers at a given site on a ran-
dom spanning tree on a square lattice. Let l denote the
perimeter, and s denote the area of the loop formed on
adding an extra link at a random position on the spanning
tree. The corresponding probability distributions are
denoted by Prob(l lo) and Prob(s su), respectively.
The spanning tree problem on a square lattice is self-dual.
Adding a link at random to a tree corresponds to deleting
a link at random from the dual tree. Thus the probability
Prob(s sti) also equals the probability that on deleting a
link at random from a spanning tree, exactly so sites get
disconnected. We determine exactly Prob(s =su) for
so=1,2, 3 and Prob(i=le) for le=4 and 6. We argue
that Prob(s =su) varies as se "I for large su, and
Prob(i=le) varies as lu I for large lu. These conclusions
are verified in a Monte Carlo simulation of the random
spanning trees using Broder's algorithm [6].

A spanning tree on a graph of N sites is a set of N —l
bonds which form a single connected cluster (see Fig. 1).
The total number of distinct spanning trees on a finite
graph is given by the well-known matrix tree theorem [7].
In the random spanning tree problem, all possible span-
ning trees are assumed to be equally likely. The coordina-

tion number of a site on a tree is the number of occupied
edges meeting at that site. For a square lattice, it takes
integer values from 1 to 4. The chemical path between
two sites of a spanning tree is the unique path connecting
them along the edges of the tree and is known to have
fractal dimension 5/4 for random spanning trees in two di-
mensions [8,9]. For a given configuration of a spanning
tree, we use a parallel-update burning process in which all
sites having only one edge to an unburnt neighbor at the
tth update are burnt (deleted) at the (t+1)th update.
The burning time of a site is defined as the number of up-
dates needed for the site to be burnt in this burning pro-
cess. The sites corresponding to burning time I are called
the leaves, and the site(s) corresponding to maximum
burning time is (are) called the root(s) of the tree. A site
i is said to be the descendent of site j, and j is called a
predecessor of i, if and only if the unique path to i along
the tree from a root site goes through j.

For definiteness, let us consider an L XL square lattice
with periodic boundary conditions. The sites are labeled
1,2, 3, . . . , L2. For this lattice, we construct an L2XL
matrix 6 as follows:

FIG. 1. A spanning tree on a 15X15 square lattice.
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h,;;=4, for alii =1, . . . , L

h,;j = —1, if i and j are nearest neighbors,

h, ;J =0, otherwise.

Then by the matrix tree theorem [7], the number of span-
ning trees N, on the lattice is given by any of the cofactors
of matrix 5 (all are equal)

N, =Cof(A) .

It is straightforward to calculate the marginal probabili-
ties of occurrence of given subgraphs in a randomly select-
ed spanning tree by using the break-collapse method [2]
and the matrix tree theorem. For example, to find the
probability that in a random tree, all the edges of a given
set A occur, and none of the edges of a given set B occur
[to be denoted by Prob(AB) in the following], we simply
construct a new graph L' from the original graph L by de-
leting the edges 8 and collapsing the edges A. Then if 5'
is the matrix associated to L', we get

P ob(Wa)
Ns

For example, in Fig. 2, the probability fi, that a randomly
chosen site 0' has coordination number 1, is the sum of
four terms of the type Prob(e4esese7). By symmetry
these are equal. Hence

f i 4 Prob(e4esese7) .

But Prob(e4esese7) has been shown to be equal to the
concentration of sites with sandpile height 1 in the Abeli-
an sandpile model on the square lattice, and is known
[10]. Using this result, we get

ep
4L
$F

Oi
I

I

leg
I

eq

I

'eg
I

1 e6
0'~

1

I

I

, e7
I

FIG. 2. A part of a large spanning tree. On deleting the edge
et, the two sites 0 and 0' get disconnected from the rest of the
tree.

f3 4 Prob(eie2e3e4) 2 — + — =0.222 39,16 48 48
x ir2 X3

f4 1 —fi —f2 —f3 —I+—— + =003608.8 20 16
X ir2 Ã3

Note that unlike fi, the probabilities f2, f3, and f4 are not
related directly to the concentrations of sites with heights
2, 3, or 4 in the sandpile model on the square lattice. The
probabilities of some larger subgraphs can be calculated
similarly. For example, the probability that on deleting a
randomly selected edge ei of the tree, only two sites get
disconnected from the tree, is seen to be a sum of six equal
terms of the form Prob(eie4e2e3esese7)/Prob(ei) (Fig.
2). Evaluating the corresponding determinant we get

numbers 2, 3, and 4, respectively, are similarly calculated

fq 4 Prob(e ie2e3e4) +2 Prob(e ie3e2e4)

36 48+
3

0.446 99

f i
= 1 ——=0.29454.8 2

Z2

The probabilities f2, f3, and f4 that 0 has coordination

Prob(s 2) 12
9
32

=0.12409.

9 + 47 48 + 32
2 ~3 ~4

(b)

1 = 100, T = 10 L =- 30.3. I =- 40

FIG. 3. Self-similarity of spanning trees under decimation. Only sites whose burning times are exact multiples of an integer i are
kept. (a) A decimated tree on a 100x100 lattice for r 10. (b) Decimated tree on a 303x303 lattice for r 40. The magnification
of (b) has been reduced by a factor 4 ~ compared to (a).



SPANNING TREES IN TWO DIMENSIONS R4473

In a similar way, Prob(s 3) can be exactly computed as
a rational polynomial of degree 7 in x ' and we find (the
determinants involved here also have been computed in

Ref. [10], again in the context of the Abelian sandpile
model, where details of calculation may be found)

Prob(s =3) =0.065 75 .

From the geometry of square lattice, it is clear that
Prob(l 4) is equal to Prob(s-1) f&, and Prob(I=6)
is the same as Prob(s 2).

The calculation of these probabilities for larger s or I is

straightforward, but tedious. These distributions are ex-
pected to have power-law tails: Prob(l )-I ' and
Prob(s)-s ~ for large I and s. The values of the ex-
ponents x and y can be deduced from the following renor-

malization argument: For any spanning tree configura-
tion r, we may construct a decimated tree T', where the
burning times are rescaled by an integer factor z by delet-
ing all sites whose burning times are not exact multiples of

The remaining sites are connected to each other to
form a spanning tree T' on the undeleted sites such that
for all sitesi and j, i is a predecessor of j on T'if and only
if i is a predecessor of j on T. As the distribution of burn-
ing times has power-law tails, the decimated trees corre-
sponding to different values of z are expected to be statist-
ically similar to each other for large z except for an
overall scale factor. In Fig. 3, we show two decimated
trees corresponding to z 10 on a 100&100 lattice, and
z 40 on a 303 X 303 lattice. The pictures are consistent
with the assumed statistical self-similarity of spanning
trees under decimation.
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FIG. 4. The distribution of loop sizes on adding a bond at random to a spanning tree. (a) Double-logarithmic plot of the probabili-
ty D(l ) of forming a loop of perimeter I vs I. (b) Double-logarithmic plot of the probability D(A ) of forming a loop of area A vs A.
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Let b be the linear rescaling factor corresponding to re-
scaling of burning time by ~. There are i links between
two adjacent undecimated notes. As the fractal dimension
of chemical paths on spanning trees in 5/4, the average
Euclidean distance between undecimated nodes scales as

But this must equal the rescaling factor, giving us
b —r . The set of sites whose burning time ~ r consists
of the undecimated sites and those which lie on links be-
tween undecimated sites. Hence the fractional number of
such sites is b r —r I . Once this burning time distri-
bution is known, it is easy to compute the perimeter distri-
bution of the loop formed on adding an extra link on the
spanning tree. We notice that the perimeter of the loop is
also the perimeter of the connected cluster of sites that get
disconnected from the dual tree on deleting the dual link.
This cluster is compact and its perimeter typically scales
as the burning time, on the dual tree, of the site in the
disconnected cluster at the end of the deleted edge. Hence
we conclude that

Prob(l ~ lp) -Ip (1)
A typical loop of perimeter / has linear size r -I . Since
it is compact, its area -r . This implies that s-I
From Eq. (1), this implies that

Prob(s ~ sp) -sp ' ' (2)

so that we get x =
5 andy = '8' .

These results have been verified numerically by study-
ing the statistics of spanning trees generated in a Monte
Carlo simulation using Broder's algorithm [61. We used
an L & L square lattice closed in all directions using helical
boundary conditions. A random walker starts at the ori-
gin and performs an unbiased nearest-neighbor random
walk. The walk is continued until all the sites of the lat-
tice are visited at least once. We construct a tree by keep-
ing only the bonds that correspond to the last exit of the
walker from different lattice sites. There are L —

1 such

bonds as no exit bond from the end point of the walk is in-
cluded. These occupied bonds form a spanning tree called
the backward spanning tree. We treat spanning trees at
time separated by 3L time steps as essentially indepen-
dent as this time interval for L-10 corresponds to up-
dating more than 3 of the sites on the average. In our
simulations, we generated 1530, 1479, 382, and 85 dis-
tinct spanning trees for L =256, 512, 1024, and 2048, re-
spectively. The whole calculation took about 10 days of
CPU on an IBM 6000 computer.

For each tree so generated, we determined the fraction-
al number of sites having coordination numbers from 1 to
4. These fractions vary very little between different reali-
zations of trees, and do not depend on L to the accuracy of
our simulations. We get f t =0.294 54, f2 =0.44700,
f3 0.222 39, and f4 =0.03607. The numerically deter-
mined values of Prob(s =sp) for sp =1, 2, 3, are 0.29454,
0.12411, and 0.06576. These are averages over approxi-
mately 3.8 x 10 sites and the statistical error is less than I

part in 10 . Clearly the agreement with theoretical pre-
dictions is excellent. For each tree generated, we calculat-
ed the distribution function Prob(s) by determining the
number of sites that get disconnected on deleting an occu-
pied bond, for all L —

1 possible choices of the bond to be
deleted. Similarly, we calculated Prob(l), by determining
the perimeter of the loop formed on adding an extra bond
for all the L +1 possible choices of the bond to be added.
These results are shown in Figs. 4(a) and 4(b). From the
numerically determined slopes of these curves, we esti-
mate that x =1.600+ 0.002 and y =1.374 ~ 0.002.
These values are in perfect agreement with our theoretical
predictions.

Note added. After completion of this work, we received
a copy of unpublished work from Burton and Pemantle in

which they also have calculated the distribution of the
coordination numbers of sites in spanning trees on the
square lattice [11].
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