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Hexagonal patterns in optical bistability
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The mean-field model of optical bistability in a ring cavity is extended to include diffraction in two

transverse dimensions. Nonlinear analysis in the neighborhood of the instability of the homogeneous

solution indicates the formation of stable hexagonal patterns, and this is confirmed by numerical simu-

lation, with reasonable quantitative agreement. Simulations with higher excitation show defect struc-

tures.

PACS number(s): 42.65.Jx, 42.65.Pc

I. INTRODUCTION

Transverse effects in nonlinear ring-cavity systems have
been extensively analyzed from 1982 by Moloney and oth-
ers [1,2]. Analytical investigations with diffractive cou-

pling in one transverse dimension have demonstrated that
static and dynamic transverse structures occur in this sys-
tem. Extension of the mean-field model developed from
optical bistability to include diffraction [3] independently
demonstrated qualitatively similar features, again in one
transverse dimension.

Investigations in two transverse dimensions have been

largely confined to numerical studies by Moloney et al.
[1], showing for Gaussian beam illumination ring struc-
tures which develop through azimuthal instability to a
pattern of spots which typically execute a slow chaotic
dance.

Here we have undertaken numerical investigations of
the equation describing the mean-field model of optical bi-
stability [3], showing that roll patterns are unstable to
hexagon formation. Thus one-dimensional simplifications
of pattern-forming systems of this kind are qualitatively
as well as quantitatively inadequate to describe experi-
ments, except where one transverse dimension is
suppressed, for example, by a wave-guide structure. The
numerical investigations indicate that hexagons are stable
over a range below the instability threshold of the plane-
wave solution. Defect structures in the patterns are also
observed.

II. HEXAGON FORMATION AND

SIMPLIFIED MODELS

In cavityless counterpropagating beam configurations
hexagonal structures have recently been experimentally
observed [4] and subjected to intensive numerical and an-
alytic study [5,6]. Hexagons typically arise from a quad-

I

ratic nonlinear coupling in a system with an unstable
transverse wave vector. In optical media with third-order
nonlinearity, a quadratic type of nonlinearity arises when

an external driving field provides a phase reference and
lowers the symmetry. Physically, forward four-wave mix-

ing has these characteristics [4]. All these considerations
suggest that not only the bidirectional Fabry-Perot cavity
geometry, but also the unidirectional ring-cavity geometry
ought to be suitable for hexagonal pattern formation, and
we present here a combination of analytical and numerical
evidence that this is indeed the case.

We start from the two-dimensional extension of the
model of [3], which describes a Kerr medium in a cavity
with flat mirrors driven by a coherent plane-wave field:

BE = —E+Et+i ri((E (
—8)E+iaV ~Et

wherein the input field Et breaks the phase-rotational
symmetry for E. The parameter ri equals +1 ( —1) for
self-focusing (self-defocusing) Kerr media. The symbol 8
denotes the detuning parameter. The time z is defined as

t/t~h, where t~h is the mean lifetime of photons in the cavi-

ty which is given by cT/L for a unidirectional ring cavity
and by eT/2L for a Fabry-Perot cavity (where L is the
cavity length and T is the transmission coefficient of the
cavity mirrors). The transverse Laplacian is defined as

B /Bx' +B /By', x'=x/b, y' y/b where b is an ar-
bitrary length, introduced in order to make the parameter
a dimensionless; a is defined as c),t~h//4tzb

2
(A, is the wave-

length). The relevance of (1) as a simplification of full

counterpropagation equations with mirror boundary con-
ditions is underlined by an alternative derivation, using a
pole analysis, to describe the field within a Fabry-Perot
resonator [7].

Model (I) is transformed into an equation for the devi-
ation A (not necessarily small) of the circulating field
from its plane-wave steady-state value E,:

[I+tq(B (E,—(')]A+tg(—E,('(A+A'+A'+2(A('+A(A(') i+aV2~A

where E =E,(1+A).
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The quadratically nonlinear terms in (2) give the cou-
pling expected to lead to hexagons, while these and the
complex conjugate terms betray the phase symmetry
breaking of (1) and (2) as compared to, for example, the
laser Ginzburg-Landau equation [8].

Equation (2) can be seen as a generalization and rein-
terpretation of an equation proposed by Courtois and
Grynberg [9] as a simplified model for counterpropagat-
ing beams in a cavityless Kerr medium [3,4]. If their
equation is generalized to the case of a complex parameter
y= yR+iyI, it reads

(yR—+iyi)A+ V~A
1 2

i' g2

+i~'(A+A*+A'+2IA I'+A IA I'), (3)

III. LINEAR AND NONLINEAR ANALYSIS

In this section we give a preliminary analysis of (4),
along the lines of that given by Courtois and Grynberg
[9], primarily to enable comparison with our numerical
results. A more complete analysis, considering more gen-
eral cases than pure hexagonal patterns, will be published
elsewhere.

Assuming that any instability has a dependence on the
transverse coordinates described by the function 6(x,y)
where

V'V = —K2V (5)

and carrying out a linear stability analysis of the A =0
solution of (4), the following expression for the threshold
curves is obtained [3]:

I + (~+ aK') '
2g(8+aK )

For a given value of b each curve has a minimum in the
(aK, x ) plane at the point (aK, , K, ) given by

x, = 1 = i) (8+aK, ) . (7)

2z/K, is then the magnitude of the most unstable wave-
length (in units of b) and )c, is the critical value of the
control parameter v at which a bifurcation is expected to
occur.

where t'=ct/L, L is the length of the Kerr medium, )r' is
the coupling parameter, and 0() =4mb /AL. The parame-
ter yR is of order unity and yl has been introduced to es-
tablish the connection with the model in [3].

By defining the rescaled time i = yRt' and the new pa-
rameters )r =ri)r'/yg and 8 = yi/yp, Eq. (3) becomes

A = —(1+i6)A + iaV ~A

+iq~(A+A*+A'+2IA I'+A IA I') . (4)

There is then a formal correspondence between Eqs. (2)
and (4) if we take S=q(8 —IE, I ) and )r=lE,

I
. We re-

quire that yR00a =1 in order to identify the scalings of
the diA'raction parameters in (2) and (3). By appropriate
choice of transverse scale, a can always be set to unity,
and we choose a =1 in the numerical simulation described
below.

V=t.V '+e V +e V +
K=K +5'PC +t.' K' +t.' K' + ' ' '

(8)

Solutions of the form V=vd(x, y) are sought where
0(x,y) is the hexagon mode having a transverse wave vec-
tor of magnitude K, . Substituting (8) and (9) into (4)
and separating the different orders in t. gives, at each or-
der e', a matrix equation of the form

—
1 6 —aV~

V (i) S (i)LV (i) (10)
2g —8+aV j~ —

1

where, in general, V ' and S ' are Fourier analyzed into
their separate spatial frequency components, Vir') and
Si(r'], so that each V(') is a sum of eigenfunctions of the
transverse Laplacian.

It is found that S(' 0 so that the matrix L must be
singular for K =K, . This means that for i &1 L is

singular for all resonant terms (those with K =K, ) and a
solvability condition (Fredholm's Alternative) must be
applied [9]. This states that for LVir'] Sir'f to have a
solution, Sir'l must be orthogonal to the kernel of the

operator adjoint to L. Imposing this condition allows the
determination of x ' ' . For hexagons K

' &0, a result of
the fact that 0 has a spectrum K =0, K„43K„2K,. The
bifurcation is therefore predicted to be transcritical [11].

Another approach [9] is to expand the field A over a
basis of Fourier modes @„,

A = g A„(z)@„, (11)
n 0

and keep only the first two modes. This is justified in that
not too far above threshold it is expected that higher har-
monics will have negligible amplitudes. Writing A0 and

A] as

Ap =ap(T ) +iap(r ),
A) =a, (r)+ia)(r)

(12)

(13)

gives a system of four coupled nonlinear ordinary
differential equations, whose fixed points represent sta-
tionary solutions of (4).

When rc& x, a continuous band of wave vectors be-
comes unstable. In the self-focusing case this phenome-
non can arise both when the steady-state curve of IE, I as
a function of I Ei I is single-valued and when it is S
shaped (bistability), whereas for g= —

1 the system can
be unstable to finite-wave-vector instabilities only in the
bistable regime. Since in the case g = —

1 the instability
region lies mostly within the unstable middle branch of
the bistable curve and partly in the stable lower branch,
the only expected effect of an inhomogeneous perturbation
in the unstable region is to switch the cavity field to the
stable upper branch [10]. Stationary transverse patterns
are therefore expected to be unobservable for defocusing
media.

Introducing V [R,I] where R and I are the real and
imaginary parts of A, respectively [9], the nature of any
bifurcation at the critical point can be determined by a
perturbation expansion of V and x in powers of a small
parameter e around the bifurcation point [11]:
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We have determined the amplitudes of the hexagonal
patterns predicted by both these methods and compared
them with the numerical investigations described below.

IV. NUMERICAL SIMULATION

Simulations have involved integration of both Eq. (1),
using a split-step method [12],and Eq. (2), using a finite-
difference hopscotch method [13] which involves splitting
a square grid into even and odd points and alternating ex-
plicit and implicit integration steps on each grid. The grid
used is typically 64x64 points for the split-step method
and 128 x 128 for the hopscotch, both with periodic
boundary conditions. Since the numerical techniques used
by the two codes are of completely different character,
each one acts as a good check for the other.

Above the linear threshold a pure "roll"—modulation
of the form cos(K,x)—as the initial condition leads to a
stationary roll pattern, but on adding a small amplitude
noise component the rolls become unstable and hexagons
form instead. Other initial conditions, such as small am-
plitude noise around the flat solution, generally lead only
to hexagonal patterns, as in Fig. 1.

For the case where 8=0 and rl =1, Fig. 2 compares the
hexagon amplitude as a function of the control parameter
tr predicted by each of the analytical techniques in Sec. III
with the results obtained by numerical integration of Eq.
(4). The results shown were obtained by starting the
simulation about 6% above the linear threshold and, after
the stationary hexagonal pattern had been reached, mov-
ing up (or down) the stable hexagon branch. In particular
it can be seen that the regime of coexistence of the stable
hexagon and Aat solutions, as given by the modal expan-
sion calculation, is narrower than depicted in [9], extend-
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FIG. 2. Comparison of the amplitude of the hexagon pattern,
as given by perturbation and modal expansion calculations and

by numerical integration, for the case 8 0.

ing no more than 3% below the linear threshold. The nu-
merical studies agree quite well with this small extent of
coexistence.

Starting the simulations further above the linear thresh-
old can produce defected patterns as in Fig. 3 (for the case
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FIG. i. Contour plot of a stationary hexagon pattern (real
part of the field A) in the transverse plane, obtained at 7% above
the linear instability threshold. Mean-field, @=1, b=0, a =1,
and plane-wave pumping.

0.5

1.5
rr. ;.~

0 I I I I I A' I ..Lx I I I I I I i i & r I i i i s I i i s & I i « i.i'',
0 0.5 2 2.5 3 3.5 4

X

FIG. 3. Penta-hepta defect in the pattern obtained at 27%
above threshold, with parameters the same as in Fig. 1. The two

spots just to the right of center have, respectively, five and seven

neighbors.
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of 27% above threshold). Once established, these defects
persist throughout the length of the simulation, typically
several thousand time steps, but decreasing the parameter
a. causes them to anneal to a hexagonal pattern.

key point about these results is that they are obtained in

the framework of a model which does not demand super-
computer resources on the one hand, and for which there
is considerable experience and expertise in experimental
realization, on the other.

V. CONCLUSIONS

The features revealed by the numerical simulations,
such as the existence and stability of hexagons below the
linear threshold, the instability of rolls, and the existence
of defects, are typical of hexagon-forming systems, and
some of them are well explained by the nonlinear analysis
of (4). Our treatment shows that theory can predict the
onset of hexagons also in unidirectional propagation. A
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