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Alternative approach to percolation in microemulsions
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An approach to study correlated percolation in lattice models of microemulsions is presented.
Mean-field-like equations for the percolation locus for each of the molecular species are obtained,
whose only input are the structure functions of the microemulsion model. Using a spin-1 Hamiltonian
considered by Gompper and Schick [Phys. Rev. B 41, 9148 (l990)] as a model for tnicroemulsions, we
find that the water-percolation threshold increases as the surfactant becomes more lipophilic. This is
in qualitative agreement with the behavior found in real microemulsions as salt is added to the system.

PACS number(s): 05.70.Fh, 64.60.Cn, 64.60.Ak

Ternary mixtures of oil, water, and amphiphile exhibit
interesting structural properties due to the amphiphile's
tendency of being localized at the water-oil internal inter-
faces. In particular, the underlying structure of the ther-
modynamically disordered phase is highly dependent on
the system's temperature and composition as well as on
the surfactant's ability to solubilize oil and water and its
hydrophilic-lipophilic (HL) balance (see, for instance,
Refs. [1,21). At small water-to-oil concentration ratios
the microemulsion's structure appears to consist of
surfactant-coated water droplets dispersed in a continuum
oil-rich phase. This is the so-called water-in-oil (W-0)
microemulsion. Such microemulsions have been exten-
sively reported in the literature to present sudden in-

creases of several orders of magnitude in their electrical
conductivity as well as sharp variations in their dielectric
behavior and viscosity when either the temperature or the
volume fraction of the dispersed phase reaches a certain
threshold value [3-7]. These phenomena have been asso-
ciated with a percolative transition of the (surfactant-
coated) water globules and have been investigated by
means of phenomenological theories, either analytically or
via computer simulations (see the review article by S.
Safran et al. in Ref. [8]). The microemulsion in these
studies is modeled by a one-component fluid of hard
spheres, representing the water globules, interacting with
one another via an additional attractive potential. Despite
the relative success of such phenomenological theories in

determining some static and dynamical percolation prop-
erties of W-0 microemulsions, an understanding of their
clustering properties in terms of a model for the molecular
interactions between the components of the mixture is still
lacking. Therefore, questions such as the eA'ects of the
molecular interactions (e.g. , the amphiphilic strength), sa-
linity, composition and structural changes, upon the
microemulsion's clustering properties remain to be ad-
dressed. A step toward a microscopic theory for percola-
tion phenomena in microemulsions has been recently pro-
posed by Blossey and Schick [9] who determine
correlated-site percolation threshold lines of a two-
component lattice model displaying a closed-loop phase
diagram. However, like phenomenological models their
two-component lattice model cannot address, for instance,
the eAects of the amphiphilic interactions on the percola-

tive properties of microemulsions.
We report here an approach to study percolation in mi-

croemulsion systems. Unlike phenomenological theories,
the present framework assumes no a priori structure for
the microemulsion, but rather assumes that the correla-
tions between particles and hence the thermodynamic and
structural properties of the mixture stem from the micro-
scopic interactions of a (lattice) Hamiltonian model for
microemulsions. References [10-13] are examples of
such models (see also [2]). The clustering or percolative
properties are obtained via an extension to multicom-
ponent mixtures of Kikuchi's original tagging trick to
study correlated percolation in the ordinary lattice gas
[14].

Consider the disordered phase of a three-component
microemulsion model, where the three species of particles
are mixed in a homogeneous, isotropic state. We are in-
terested in determining the critical locus of percolation for
each molecular species, where a cluster of species a (a
denotes water, oil, or surfactant) is defined in a geometri-
cal way. Two particles of the same species are connected
if they occupy nearest-neighbor sites on the lattice. Parti-
cles of diff'erent species do not belong to the same cluster,
so that we can investigate clustering of each species, one
at a time. In order to find the concentration threshold for
a given molecular species a we must also notice that the
particles are distributed over the lattice according to a
given Hamiltonian, from which the thermodynamics and
the correlations between particles are to be derived.
There will be many clusters of a given species a. To each
of these clusters we randomly associate a+ or a —tag. In
the present context these tags are mathematical devices
labeling each cluster; they do not aA'ect the energy of the
system and therefore have no influence upon its thermal
properties. From our definition of connectivity, it follows
that clusters with diff'erent tags are not in contact with
each other, otherwise both would be forming a single,
larger cluster, having a single tag. Kikuchi s tagging trick
is based on the following theorems, which are satisfied in

the model we consider here [14].
Uniqueness. In a homogeneous, isotropic mixture of

particles for which connectivity of a given molecular
species is defined, there cannot exist more than one infinite
cluster of that particular species.
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Tag symmetry. In the most probable distribution of
clusters of a given species

N„+ =N„, for n & ,
where N„is—the number of ~ clusters of size n (size of a
cluster is the number of connected particles in the clus-
ter).

In view of these two theorems it is clear how to define a
percolation order parameter. Let us divide the particles of
species a into three categories: those belonging to finite+
clusters, those belonging to finite —clusters, and those be-
longing to an infinite, + cluster, with fractions p/, pI,
and p+, respectively. The total number densities of
tagged (with + or -) a particles are

p pf +p~

p py

By the symmetry theorem pI+ pI, therefore,

(2)

is the concentration of particles a belonging to an
infinitely extending (isotropic) cluster. That is, ( is the
percolation order parameter for species a; it is nonzero
when the species a percolates and zero otherwise.

There are two distributions to be determined in this
problem. The distribution of the three species of (un-
tagged) particles, which is assumed to be known accord-

ing to the Hamiltonian of the mixture, and the distribu-
tion of tags over the particles of species a. The most prob-
able distribution of + and —tags among this species is
found by maximizing the entropy of the tagged system
since neighboring particles a are connected with probabil-
ity 1. Furthermore, configurations of nearest-neighbor
pairs a+-a are not allowed since all a's in a cluster have
the same tag. Percolation occurs when the concentrations
of a+ and a are not equal. The entropy of the system,
with the a species tagged, is approximated in our work
here in the pair approximation of Kikuchi's cluster varia-
tional method [15]. We have a ternary mixture of species
W, 0, and S (8'denotes water; 0, oil; S, surfactant). Let
us investigate clustering of the surfactant, so the S mole-
cules are tagged with either a + or a —tag. The concen-
trations are denoted by p, with p p++p, and are sub-
ject to the constraint p +po+ps=l. Let Y~J be the
fractions of nearest-neighbor pairs of particles i and jwith
multiplicity co;~ (e.g. , Yws+ is the fraction of nearest-
neighbor pairs of water and +-tagged surfactant particles,
while Y++ refers to pairs of nearest-neighbor surfactant
particles tagged with a+; these configurations have multi-
plicities 2 and 1, respectively). The pair configurations
are also subject to the constraint p;~ ro;J YJ 1. The en-
tropy per particle in the pair approximation is given by

(3)

where X(x)—=xlnx. We find

(2d —1)[pwlnp +polnp +p+ lnp +p Inp

—d[ Ywwln Yww+ Yooln Yoo+2Ywoln Ywo+2Yws+1"Yws++2Yos+ln Yos+

+2Yws-'nYws-+2Yos-'»os-+ Y++'»+++ Y»Y (4)

The fractions p and Y are geometrically related to each
other. The fractions of water and oil molecules are, re-
spectively, given by

all obtained from the ensemble distribution dictated by
the Hamiltonian model. The percolation order parameter
is obtained by subtracting equations (6)

p -Y~+ Y~o+ Yes++ Yws -
~

Po- Yoo+ Y~o+ Yos++ Yos-.

4~p+ —p -4w+Co+ Y++ —Y
(5)

where

Similarly, the total fraction of tagged surfactant mole-
cules are

Yws++ Yos++ Y++
(6)

=Yes-+ Yos-+ Y

Adding Eqs. (6) we obtain the total surfactant concentra-
tion

P Y~s+ Yos+ Y+++ Y

where

Yws +Y~s- ~

Yos =Yos++ Yos —.

The quantities Y~. Yoo Yss. Y~o. Yws and Yos are

4w= Yws' Yws — ~&= Yos' Yos- . (10)

The natural independent variables for the percolation
transition are g, gw, and go. Solving Eqs. (6)-(10) for
the tagged unknowns, we obtain

p- =(p'~4)/2,

Yws —= (Yws ~ 4w)/2,

Yos —= (Yos ~ 4o)/2,
Y++ = [(p —Yws —Yos)+ (4 —

4w —4o) ~/2,

= [(p —Yws —Yos) —
(& —

&w
—Co) ~/2.

These equations are substituted into (4) and the resulting
entropy is then maximized with respect to the variables g,
(w, and (o. The extremum condition on the entropy with
respect to g gives
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S+p y++
(2d —1) ln s

—d ln =0

Let use define an auxiliary variable t by

(i 2)

S~) (k) =(p'(k) p'( —k)), (23)

(BZ stands for Brillouin zone. ) Here S;J is the structure
function given by

g =pstanh(2dt) . (14)

s+pt—= ln (i 3)

such that t =0 at the percolation criticality (i.e., when

g =0). We have then
~wo+ ~ws = —~ww,

~wo+ ~os = —~oo,

~ws+ ~os = —~ss

(24)

and A, (k) =g;-icos(k;) with k; the ith Cartesian com-
ponent of the vector k. Using Eq. (22) and the relations

Similarly, the extrema with respect to gw and go give

gw = Yws tanh[(2d —1)t],

go =Y„tanh[(2d —i )tl .

(1s)

in Eqs. (18) and (19), we obtain the following equation
for the percolation density threshold of a given species a:

(p')' — p'+G..(T, [pl) =0, a=~, o,S,I

As criticality is approached (i.e., as t 0), we may ex-
pand both sides of this equation. The line of percolation
threshold for the surfactant species is then given by the
solution of

s 2d 1 (18)

Similarly, one obtains the threshold lines for water and oil

p =
2d

2(Ywo+Yws),
2d —

1

(19)

p 2d 2
(Ywo+ Yos) .o 2d —

1

It should be noticed that the same expressions for the
thresholds would have been obtained had we assigned tags
to all the three species (e.g. , species S tagged + or —,
species W tagged o or ~, species 0 tagged f or g), where,
according to our discussion above, one must avoid the pair
configurations W'-W, Ot-O~, and S+-S

In a lattice of coordination number z, V~ is given by

From Eqs. (11)-(13) we obtain

Y++ —1' =(ps —Yws Yos) tanh[2(2d —l)t]. (16)

Using Eqs. (14)-(16)we can rewrite Eq. (9) as

p tanh(2dt) = (Yws+ Yos) tanh[(2d —1)t]

+ (ps Yw's Yos) tanh[2(2d»t l .

(17)

where

G..(T, jp[) =—,~(k)S..(k) . (26)

1

P T- 2d —
1

(27)

At finite temperatures, Eq. (25) must be solved numeri-
cally. Furthermore, this equation yields meaningful ap-
proximated values for the thresholds for any temperature
as long as the system is in a disordered, isotropic thermo-
dynamic state.

In Fig. 1 we show the percolation threshold for water
clusters as function of the coupling C defined in the spin-1
model used by Gompper and Schick. The structure func-
tion Sww for this model is calculated in Ref. [16). The
system is in the disordered phase with parameters
K/J=0. S and L/J= —4.0 held at temperature T/J=5. 0.

0.15

0, 14

0.13

In the limit of high temperatures, where the particle
correlations are vanishingly small, we obtain a mean-field
random site percolation threshold

2

Y;, = lim gg(p'(r)pj(r+b)),N-~ zN
(20) 0.12

l ~ d"k
Y, =p,'p/+ ~(k)S,- —(S ).

d " az (2 )
(22)

~here the sum in 8' goes over all nearest neighbors of site r
and () means thermodynamic average. Fourier expanding
the local densities p/(r) around their respective equilibri-
um values in the disordered phase,

p'(r) =pic+ g p'(k)e'"', (2i)
i (~0)

and using the relation lim~ (1/N) gk =Jazd k/(2tr),
we obtain

0.] 1

0.10
-2.0 -1.0 2.01.00.0

C/Z
FIG. 1. Percolation threshold line for water particles as func-

tion of the coupling C in the disordered phase of the model pro-
posed by Schick and Shih [12]. The system is at T/J S.O with

iv =p /p =4.0 and coupling energies K/J O.S and I./J
= —40
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The concentration ratio w=p /p is fixed at w 4.0 and
the coordinate axis p measures the concentrations of water
plus surfactant (p=p +p ) at (percolation) criticality
for water clusters. The coupling C is a measure of the
difference between the interactions of the surfactant with
oil and water in the model. %hen C & 0 the amphiphile
dissolves better in water than in oil, while for C & 0 the re-
verse is true. Thus, by increasing the value of C one can
mimic the effect of adding salt to a system where the sur-
factant is ionic. Our results show that water clusters per-
colate at higher thresholds as the surfactant becomes
more lipophilic (hydrophobic). This is in qualitative
agreement with experimental results on water plus sodium
bis(1-ethylhexyl) sulfosuccinate (AOT) plus undecane,
where p was found to increase with salinity [6].

In conclusion, we have introduced an approach to study
site-correlated percolation phenomena in lattice models of
microemulsions, which is able to address questions related

to the effects of molecular interactions upon the clustering
properties of these systems. The formalism is quite gen-
eral in the sense that it is applicable to any ternary mix-
ture of particles, in particular to any three-state model for
microemulsions. (Binary mixtures of water and surfac-
tant can be readily treated also. ) Equation (25) requires
only the knowledge of the structure functions, which can
be easily calculated for a variety of microernulsion models
within a local-mean-field approximation. A generalized
theory to treat site-bond correlated percolation in micro-
scopic models of microemulsions [17] will be published
elsewhere [18].
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