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Fractal aggregates and gels in shear flow
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We consider the steady-state rheology of aggregating colloidal suspensions, where cluster size is lim-
ited by the imposed shear. Brittle versus work-hardening behavior of the clusters is distinguished. For
brittle clusters at large shear rates we predict a scaling law for their size and corresponding viscosity

increment, Ap~y ~ @03

, where D is their fractal dimension. At low shear rates the system will gel

due to cluster interpenetration and we discuss a crossover from brittle to work-hardening behavior at
large length scales, and the corresponding yield stress. Above this yield stress we find a power-law

creep regime with viscosity n~o ~%/3

. The predictions are compared with experimental results.

PACS number(s): 82.70.Dd, 64.60.Ak, 05.40.+j, 47.25.Gk

Colloidal suspensions show a variety of nonlinear rheo-
logical properties, such as yield stress, shear thinning,
shear thickening, thixotropy, and rheopexy [1-3]. Parti-
cle interactions and hydrodynamic coupling together with
the Brownian motion and an imposed flow field lead to
spatial correlation between particles, which in turn deter-
mines the nonlinear rheological behavior of the suspen-
sion. While a repulsive interaction leads for sufficiently
high particle concentrations to an ordered liquidlike struc-
ture, an attractive interaction may lead to fractal clusters
and continuous networks [4-8]. The latter case will be
addressed in this paper.

Tenuous, fractal clusters are formed when initially
dispersed colloidal particles undergoing Brownian motion
undergo attractive interactions strong enough for bonding
to be thermally irreversible [9]. The imposition of shear
flow leads to two additional effects. First, as we show
below, the imposed flow may dominate over Brownian
motion in the rate of encounter (and hence aggregation)
between clusters. Second, the elastic clusters [10,11] are
deformed and may rupture under the shear stress, which
is distributed over the cluster sites in a multifractal
manner [12-14]. The continuous deformation of clusters
may lead to energy dissipation via pumping of solvent in-
side the cluster [15-17]. For larger stresses we distin-
guish two regimes: work hardening where clusters are de-
formed until branches touch each other, leading to loops
and more compact and rigid structures [11,18], or brittle
in which clusters break before branches touch each other,
leading to a maximum stable cluster size [19,20]. We will
show that for large enough clusters and/or low enough
stresses the work hardening regime is obtained, up to a
yield stress. However, the brittle regime at large stresses
also accounts for a wide range of parameters of practical
interest.

Concentration imposes a further limit on the size that
clusters can grow without interpenetration (and beyond
which we would not expect them to be fractal), and thus a
further distinction between regimes. For simplicity we
will focus on the combination where the transition from
brittle to work hardening falls in the interpenetrating re-
gime, so that isolated clusters are always brittle.

Some aspects of these regimes have been investigated in
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recent years. It has been shown via computer simulations
with zero shear [21,22] that diffusion-limited (dilute)
cluster aggregation with bond breaking (thus to some ex-
tent mimicking our brittle regime) still yields fractal ag-
gregates. However, in a simulation [23,24] with shear
flow (though without hydrodynamic interactions), in
which the clusters can deform, rupture, and aggregate,
compact clusters are found, which form loose networks as
the volume fraction increases, and the viscosity increment
depends on the shear rate in form of a power law, indepen-
dent of the volume fraction. A mean-field theory of ag-
gregation and rupture of clusters in shear flow has been
proposed [19], finding Newtonian behavior of the suspen-
sion above a yield stress with power-law dependence of the
yield stress on the volume fraction. Experimental results
show a decreasing of viscosity with increasing shear rate
in form of a power law [19,25], which we explain below
and a power-law dependence of the yield stress on the
volume fraction [19].

In our model of the dilute and brittle regime, particles
and clusters move in a fluid due to Brownian motion and
an imposed shear flow. Clusters stick together at first con-
tact, form fractal structures, and a distribution of cluster
sizes evolves [9]. These clusters are elastic [10,11] and
therefore are deformed in the applied shear stress, but
break before branches can touch. Thus the system evolves
towards a maximum stable cluster size, determined by the
applied shear rate and a breaking condition. In the large
shear rate regime only small clusters are stable. We ap-
proximate aggregation and fragmentation processes to be
instantaneous in the sense that averaged over a charac-
teristic time the clusters behave independently in the fluid.
In the spirit of the Kirkwood approximation [26] we take
the aggregates to behave hydrodynamically like compact
spheres, for which the radius scales like the radius of gyra-
tion, and for a small cluster volume fraction the viscosity
is determined by Einstein’s equation for a dilute suspen-
sion of spheres. In the second part of this paper we turn to
the low shear rate regime, in which big clusters are stable
and the cluster volume fraction is of order one. In this re-
gime cluster-cluster aggregates are not independent
anymore, but connected into larger entities.

First we shall estimate the range of material parameters
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for which the brittle regime can prevail for dilute clusters.
Dilute cluster-cluster aggregation leads to fairly loopless
clusters [27], thus we will assume that the aggregates
behave elastically like contorted rigid chains [11] for
which the displacement & under an applied force f costs
an elastic energy [10]

K o
o= 6, 1)
S AR?
where K is the force constant for a pair of particles, R the
distance between the points where the force is applied, and
A the average number of particles in the connecting path
between these points. A pair of forces f applied to the tips
of a cluster of linear size R yields a bending moment
K
r=fR=-——. )
S A R
Estimating the condition of branches to touch by /R=1,
we find that for I' < K/A4 branches do not touch. Taking
the condition for breaking to be I' > I'p, where I',, is deter-
mined by the binding energy between particles, the “break
before touch” regime prevails for

I'y <K/A. 3)

For particles with 1000 atoms K has been estimated [11]
to be K=1000 eV. Taking I'y=1 eV the break before
touch regime allows for clusters up to 4==1000, where 4
is the average number of particles in the connecting path
between tips of the cluster.

At nonzero concentration the clusters will only be frac-
tal out to a length scale £ and we will refer to units of this
size as blobs. On larger length scales the distribution of
blobs will be roughly space filling, but without elastic
bending their connectivity will still be treelike as before
and the elasticity and rupture conditions (1) and (2) still
apply. However, the condition for branches to touch be-
comes 8/£=1 and hence the limit of the brittle regime be-
comes

K¢
Iy < 1R 4)
We will return to the consequences of this condition
below.

For isolated clusters we have excluded the possibility of
loop formation. This is justified when cluster bonding is
fairly rigid and brittle, whereupon the probability for two
clusters to encounter a multiply bonding configuration is
very low. However, such configurations once found are
expected to be much more stable than singly bonded ones
and therefore we anticipate a slow build up in their num-
bers and a trend towards more compact aggregates at long
times. In this sense, the results of this paper might be in-
terpreted as applying to only an intermediate range of
time.

Now we will relate the cluster size to the shear rate in
the dilute cluster regime. An aggregate of size R in a sol-
vent with viscosity 7o, shear rate g, and shear stress
o==1)9¥ experiences on its surface a force F~ R?%c. This
force exerts a bending moment I'~RF on the internal
structure and for

I'>Ty~R3n0y (5)
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the cluster breaks. This breaking condition relates the
maximum stable cluster size R to the solvent viscosity and
shear rate

R~(noy) ™13, (6)

which is consistent with experimental data (Fig. 12 in
Ref. [20]) for the hydrodynamic radius measured with po-
lystyrene latexes for 7 in the range 800-1600 s ', Clus-
ters aggregate until they reach the size R and then break.
This leads to a cluster size distribution peaked around R
in the steady state. The characteristic size decreases with
increasing shear rate in form of a power law.

This result enables us to estimate the relative impor-
tance of diffusion and shear flow to the encounter of clus-
ters in the steady state [4]. The appropriate time scale for
diffusion tp is given that for a cluster of radius R to
diffuse a distance equal to its radius, tp ~noR 3/kT, to be
compared with the time scale ts of shear flow given by the
reciprocal of the shear rate. Their ratio is

LR L LA 2 ™

where Eq. (5) has been used on the right-hand side (rhs).
Therefore if the aggregates are to have any thermal stabil-
ity (Is/kT > 1), the contribution of shear flow to the en-
counter of clusters always dominates in the steady state,
independent of the shear rate.

Since the aggregates in the fluid act hydrodynamically
like compact spheres, screening the fluid in the interior
from the outside, the cluster-volume fraction ® relates
the cluster structure to the viscosity. Let n be the number
of primary particles per unit volume and a the radius of
these particles: Then the particle volume fraction is
w=n(4rn/3)a’ Let N be the number of clusters per unit
volume and let all clusters have reached the maximum
cluster size R, then the number of particles per cluster is
(n/N)~R?, where D is the fractal dimension of the clus-
ters. Finally the cluster-volume fraction is

4 R’
= T p3
O=NLRI=y |~ 8
3 'I/[ a )
and with Eq. (6)
a3 -G-D)/3
o=y "—°IT— ©)
b

In the large shear rate regime @ is small and we can use
Einstein’s result [28] for the viscositzl of a dilute suspen-
sion of hard spheres, n=no(1+ 3®)=no+An. The
viscosity increment then takes the form

. 3)—G-D)3

Noya

T, (10)

An=y

For fractal clusters we find shear thinning in a power-
law form, while for compact clusters the suspension is
Newtonian. This result is a direct consequence of the hy-
drodynamic screening of the interior of fractal clusters,
for which the volume fraction scales like R®> 2 and thus,
since n =const, is bigger for “few and big” clusters than
for “many and small” clusters, where the fragmentation
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in shear flow pushes towards the latter situation. Note
that except for compact clusters breaking up there would
be no change in the cluster volume fraction and so no
shear thinning. The fractal dimension of clusters in
sheared suspensions has been measured to be D=1.8 [20].
Thus in the range of validity of Einstein’s equation, i.e.,
An<Kngor K1, we expect a power-law exponent for the
viscosity increment An vs y of about —0.4. Finally it
should be noted that all of this calculation, based on the
assumption of isolated clusters, can only yield a modest
correction to the background Newtonian viscosity 7.

Now we turn to the low shear rate, or large cluster
volume fraction regime where the clusters have the struc-
ture of dilute aggregates only up to the blob size &.
Beyond this length scale we will assume that they are
space filling, but out to a length scale &ouep is still treelike
because of formation by sticking at one contact. We as-
sume that the brittle regime applies at least up to length
scale &.

For length scales &Eoyeh > r > £ we write the elastic com-
pliance of the gel as

ZS
i] C., (1)

C,(r)=

¢ ¢
where Cc~§z‘ is the compliance of a blob and we expect
Z.=3 and Z;=4. The criterion to form new bonds in the
gel is that the elastic displacement is of order &

E=f(r)Cy(r)=0r?(r/E)?sC. . (12)

Therefore at stress o we expect new bonds on scales larger
than &ouch=E(cC.E) ~1/@*Z)  On the other hand, the
breaking condition oéﬂmkzrb remains, giving &preak
~0 3. These two lengths match at

Gy~& =30+2,~Z)/(Z,~1) _ lIls(l+z,—zc)/(z,~|)(3—1)) ’

(13)

which may be interpreted as the yield stress, since for
o > o, bonds break and we enter a “creeping-gel” regime
(see below). If we assume that Z. =3, Z, =4 then Eq.
(13) simplifies to

2/(3—D) (14)

oy~y
which we note is different from the corresponding result
obtained by assuming simply that &;ouch =& leading to an
exponent of 3/(3—D).

What happens below the yield stress calculated above
depends on the past history of the sample, but is essential-
ly a work hardening behavior. Starting from a treelike
structure out to very large scales, applied stress leads to
new contacts and greater rigidity up to the yield point.
We hope to return to this regime in a later paper.

In the creeping-gel regime strain and stress build up lo-
cally, until rupture on some scale r followed by elastic
recovery leading to new contacts and repetition of the pro-
cess (see Fig. 1). At the moment of rupture the elastic
strain is y(r)=C(r)or?l/r and we estimate the strain
rate from the rate at which this elastic strain is spontane-
ously recovered after rupture. For a drag coefficient
a(r)~r* the relaxation time is given by t(r) =C(r)a(r)
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creeping gel

d~1

Oy o

FIG. 1. Schematic picture of shear rate y vs shear stress o.
The scaling of the yield stress o, with particle volume fraction is
described by Eq. (13). The creeping-gel regime is modeled by
Eq. (16) and between the two arrows where the suspension con-
tains fractal clusters but the volume fraction is small, we antici-
pate Eq. (10). Finally for larger shear rates the clusters break
up into monomers and the suspension behaves Newtonian-like.

leading to

Py . (15)

and with the breaking condition or3~T, we find
n ~ "Wy, (16)

where on the rhs the gel is compact for r > £ and we ex-
pect s =d =3 because flow inside a space-filling gel should
be screened. Shear thinning in a power-law form has been
measured for colloidal suspensions with attractive particle
interaction, yielding a power-law exponent for n vs 7 of
about —1/3 [19,25].

The one regime which we have not addressed is where
the work hardening to brittle transition occurs within the
regime of isolated fractal clusters. This is difficult be-
cause one needs to model clusters which are significantly
reinforced elastically by the presence of loops and which
are fractal rather than space filling as above. Some at-
tempts toward this have been described in Ref. [18].

In summary we propose a model of aggregation and
fragmentation for colloidal suspensions in shear flow. We
contemplate two regimes distinguished by the cluster-
volume fraction, which is determined by the shear rate. In
the large-shear-rate regime, i.e., small cluster-volume
fraction, clusters are deformed under shear and we esti-
mate the range of material parameters for which a cluster
breaks before its branches touch each other. Via a
cluster-breaking condition the cluster size is related to the
shear rate. The viscosity is related to the cluster size and
structure via the hydrodynamical screening of the interior
fluid of the cluster and the breaking condition, yielding
An~7—(3_ In the large-cluster-volume-fraction re-
gime, we have a crossover from work hardening to brittle
behavior at a yield stress o, ~ w2 ~2). Above this stress
the balance between rupture and local elastic recovery
leads to a shear thinning rheology with n~o¢~ %3 in
agreement with experiment. This creeping-gel regime ob-
tains until the cluster size falls below that for overlap and
the isolated cluster, high shear rate regime takes over.

—e =G
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