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Stability limits of spirals and traveling waves in nonequilibrium media
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We show that the Eckhaus instability for traveling waves is of convective nature and does not direct-
ly lead to absolute instability. As a consequence spiral waves remain stable in a larger range than ex-
pected previously, transition to defect-mediated turbulence can be delayed beyond the Benjamin-Feir
limit, and the occurrence of phase turbulence can be made plausible. We calculate the onset of abso-
lute instability using the complex Ginzburg-Landau equation and verify the results by simulations.

PACS number(s): 47.20.—k, 05.45.+b

W =Fexp[i(Q r —tot)] (2)

where F = I —
Q and ca =c+ (b —c)Q . They exist for

Q & 1. In order to test their stability one usually consid-
ers the complex growth rate X of the modulational modes.
Restricting oneselves to the most dangerous longitudinal
perturbations proportional to exp(+ ik r) with kllg one
easily finds

k(k) = —k —2iqbk —F
+ [(1+c )F —(bk —2iqk+cF ) ]'I . (3)

In the long-wavelength limit (k 0) one may expand (3)
leading to

with

X(k) =ivsk —Dtk +O(k ) (4)

vs =2(c —b)Q,

Dt =1+bc 2(1+c )Q /(I Q ) .
(5)

Traveling waves are long-wavelength stable for Dt~(Q)
& 0 which designates the Eckhaus stable range.

Stable defect solutions of Eq. (1), corresponding to sim-

Point defects in two-dimensionally extended pattern-
forming systems (or line defects in three dimensions) have
received considerable attention recently. The oscillatory
or excitable case is especially interesting. The defects are
then the well-known spiral waves in reaction diAusion sys-
tems, like, e.g. , the Belousov-Zhabotinski reaction [1], or
the dislocations in anisotropic systems supporting travel-
ing waves, like, e.g. , electrohydrodynamic convection un-
der appropriate conditions (for a review see, e.g. , [2]).
Recently it has also become clear that analogous defects
can be observed in the phase field of multimode lasers [3].

The simplest description of such systems is provided by
the complex Ginzburg-Landau equation (we will here
mostly consider two space dimensions)

tl & =[(I+ib)& +1 —(I+ic)~A~ ]A.

It exhibits traveling plane wave solutions

pie zeros in 3, are spiral waves. An isolated spiral wave
has the form

A =F(r)exp(i[ —tot —mp+tit(r)]) .

Here (r, p) are polar coordinates, m = ~ 1 is the topologi-
cal charge or circulation, F(r) and tlt(r) are functions
with the asymptotic behavior

F(0) =tlt(0) =0, lim F(r) =(1 —Q, ) 'I,
I-~ oo

where Q, =lim, tlt'(r) is the asymptotic wave number
which is a unique function of b and c [4] and co=c
+ (b —c)Q, is the frequency of rotation. Thus the spirals
provide a wave-number selection mechanism. They emit
asymptotically plane waves and a necessary condition for
its stability would seem D~~(Q, ) )0. In Fig. 1 the bound-
ary of this Eckhaus-stable range is shown in the b-c plane
[dash-dotted; the plot can be continued to negative c by
noting the symmetry (b,c) —(b,c)]. Also shown in

Fig. 1 is the Benjamin-Feir (BF) limit where the solution
with Q =0 becomes unstable —all other plane-wave solu-
tions being then unstable already [5].

The present picture for the generic long-time behavior
of su%ciently large systems starting from random initial
conditions and b, c of order one is roughly as follows: In
the BF unstable range one has "defect-mediated tur-
bulence, " i.e. , a disordered state [6] with random creation,
motion, and annihilation of defect pairs and a well-defined
average defect density [7]. For this state the dimension of
chaos is proportional to the size of the system [8]. In the
BF stable but Eckhaus unstable range one has consider-
able sensitivity on initial conditions and one may have
various defect densities up to a maximum with the defects
either disordered and sometimes rather motionless or or-
dered in a lattice [7,9]. Finally, in the Eckaus stable
range, the density of defects would usually vanish. How-
ever, with appropriate initial conditions defect lattices can
be formed [9]. Their minimal spacing appears to diverge
when b —c becomes too small.

Here we provide analytic and numerical evidence that
spirals, even if they are essentially isolated, remain stable
in the Eckhaus and, for appropriate parameters, even in
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the BF unstable range. This has a profound inAuence on
the turbulent regime and explains some of the observed
features. Some numerical evidence in this direction was
already found earlier [9]. In fact, since spirals emit trav-
eling waves with a nonzero group velocity vg =t)g, tp

2(b —c)Q, directed outward the Eckhaus criterion can
be taken only as a test for convective instability where a
localized initial perturbation Sp(x) of the asymptotic
plane wave, although amplified in time drifts away and
does not necessarily amplify at a fixed position. [10]. To
test for absolute instability one has to consider the time
evolution of the localized perturbation which is in the
linear range given by

FIG. 1. Stability limits for 2D and 1D spirals in the b-c
plane. Presented are B-F limit I+bc=0 (dotted line); long
wavelength Eckhaus limit (I +be) j(3+bc+2c ) =Q2 with

Q(b, c) corresponding to 2D spirals (dash-dotted line); absolute
instability limits according tp (8) for ID spirals (dashed line)
and 2D spirals (solid line SP). Circles (stable defects) and tri-
angles (defect turbulent states) give the results of the 2D nu-

merical simulations of Eq. (I). The solid curve SN gives the
limit up to which convectively unstable wave numbers exist. A
pseudospectral code was used with usually 256X 256 grid points,
time step of 0.05 and a system size of 100x100. %e used
periodic as well as nonperipdic (normal derivative of A equal tp
zero) boundary conditions.
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ishes and QAO the main contribution comes from the
linear term that then suppresses instability.

Using the general expression (3) we have the following
results in the b-c plane: On the BF unstable side traveling
waves with lgl sufficiently small are absolutely unstable
since vg is small. Sufficiently near to the BF line there ex-
ists a "stable" (actually convectively unstable) band of
wave numbers 0 & Q, ~

& Q & Q, 2 (we restrict ourselves to
Q) 0 since there is a symmetr Q= —Q). Q, ~ goes to
zero at the BF line as (1+bc) . Moving away from the
BF line (into the unstable regime) Q, ~ increases and Q, 2

decreases until they come together in a saddle node at a
value which we denote by Q«. In Fig. 2 the scenario is
demonstrated for four cuts in the b-c-Q space. The
saddle-node curve is also plotted in Fig. 1 (solid line SN).
Thus convectively unstable waves exist up to this curve.

The absolute stability limit for spirals is now obtained
as the intersection of the surfaces Q, (b,c) and Q, ~(b,c)
or Q, 2(b,c) (solid line SP in Fig. 1). Also included is the
corresponding curve for the one-dimensional (1D) analog
of spirals, i.e., the stationary 1D solutions of Eq. (1) in the
range 0 & x & ~ with 3 0 at x =0. These solutions are
analytically accessible [4,9]. We have tested these results
systematically by direct numerical simulations of lo
spirals in a large interval and were able to verify the sta-
bility limit. Some points were also checked for the 2D
case (see Fig. 1).

Clearly in a finite system the stability can be achieved
only if the reflection at the boundaries is not too strong, so
in principle one has to expect the system to lose stability
before the exact limit is reached. In the complex
Ginzberg-Landau (CGL) equation system the interaction
of the emitted waves with the boundaries leads to shocks,
that are also formed when waves of different spirals col-
lide. These shocks are very strong perturbations to the
plane-wave solutions but it turns out that they absorb the
incoming perturbations. Also, the convectively unstable

S(x,t) =J dk(2tr) 'Sp(k)exp[ikx+A, (k)t] (7)

where Sp(k ) is the Fourier transform of Sp(x). [It can be
shown strictly that the destabilization occurs at first for
purely longitudinal perturbations ((}Ilk).] The integral
can be deformed into the complex k plane. In the limit
t ~ the integral is dominated by the largest saddle
point of X(k) (steepest-descent method [11])and the test
for absolute instability is
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The long-wavelength expansion (4) indicates that at the
Eckhaus instability, where all becomes negative, the sys-
tem can remain stable in the above sense. When all van-

FIG. 2. Four cuts in the b e Qplane are shown. -T-he upper
bound Q, z for cpnvectively unstable solutions merges with the
lower bound Q~~ at Q„.Q„lies on the curve SN in Fig. I. Q, ~

goes to zero at the BF limit.
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state is very sensitive to noise, so noise-induced transitions
to turbulence should occur.

We note that for b & —1.2 the new stability limit is for
spirals more restrictive than the BF instability and less
restrictive otherwise. In the first region earlier simula-
tions [7] along the line c=2 (actually —2 was used, but
we make use of the symmetry) exhibited existence of a
disordered state until about b =0 when coming from the
BF unstable regime. This boundary is rather near to the
new stability curve so apparently the curve has some
significance as a limit of existence of defect-mediated tur-
bulence. Our stability boundary is also consistent with the
boundary for persistent turbulence determined numerical-
ly for b = —

1 by the criterion of the Lyapunov coefficient
dropping to zero in a discretized version of the CGL sys-
tem [12]. Of course the region b & —1.2 is especially in-
teresting. Results for numerical simulations of Eq. (I)
with small random initial conditions along the lines c =2
and b= —2 are shown in Fig. l. Initially always many
defects are formed. In the convectively unstable range
eventually one defect becomes dominant pushing away the
other ones which ultimately annihilate. However, with
periodic boundary conditions, for topological reasons
another defect with opposite circulation and without the
far field typical for spirals survives inside the shock re-
gime. In Fig. 3 an example of the final state is shown.
Note the shocks where the waves of spirals from neighbor-
ing periodicity regions collide. Such defect lattices exist
also in the Eckhaus stable regime and were observed be-
fore [9]. In fact defect lattices presumably exist also in
the (slightly) absolutely unstable range, however, with an
upper bound on their spacing. Actually there is some evi-
dence that also stationary, spatially nonperiodic arrange-
ments exist.

We expect the interaction of well-separated spirals to
be exponentially screened in the convectively unstable re-
gion, as was shown to be the case essentially in the
Eckhaus-stable regime [13,14]. The evidence comes from
the fact that localized static perturbations decay exponen-
tially towards the spiral core in both regimes. The decay
length 2tr/Im(k) is obtained from Eq. (3) with A, =O and
it coincides with the interaction length obtained before for
Q «] [13,14].

Clearly our results are relevant not only for spirals but
for any system where traveling waves are emitted from
some source. Recent numerical simulations with the COL
equation in one dimension show that actual phase tur-
bulence without phase slippage exists in a region between
the Benjamin-Feir limit (dotted line in Fig. 1) and rough-
ly our saddle node curve SN [15,16]. This indicates that
the existence of the convectively unstable wave-number
band can prevent the occurrence of phase slips. This

FIG. 3. Final state of a simulation with small random initial
conditions and periodic boundary conditions in the convectively
unstable range (b —2, c-0.6). ~2~2 is coded in the grey
scale, the lines designate ReA 0 and Imh 0.

seems quite plausible since large-amplitude depressions
correlate with large local wave numbers, which presum-
ably get s~ept away in the convectively unstable range.
Apparently such IIuctuations are then annihilated by col-
lisions with I]uctuations from neighboring regions. We
point out that in many cases Eq. (1) has a drift term in
the form s VA (this is typical when the background solu-
tions are traveling waves and the boundary conditions do
not allow to transform this term away). Then our results
are changed.

We have shown that the Eckhaus instability for travel-
ing waves is of convective nature. It may be worth men-
tioning that the instability is in some parameter range
around the BF limit of forward (supercritical) type and
one then has stable modulated solutions which appear to
persist also in the BF unstable range [17]. Thus one can
expect that the crossing of the stability curve may some-
times lead to such modulated solutions rather than to a
turbulent state.
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