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Glass formation in a simple monatomic liquid with icosahedral inherent local order
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In this Rapid Communication simple monatomic liquid, possessing the distinctive icosahedral in-
herent local order, is reported. It has been generated by a special form of pair potential employed in a
molecular dynamics system of 16384 particles, and remained stable within a wide range of tempera-
tures explored. Pronounced stability of this model with respect to crystalline nucleation has been test-
ed in a very long run under supercooling which was found to enhance its icosahedral inherent struc-
ture. The inherent structure factor exhibits an anomalous long-wavelength maximum which is inter-
preted as being indicative of the tendency for icosahedral clustering.

PACS number(s): 61.20.Ja, 61.20.Ne, 64.70.Pf

Understanding the structural aspects of the glass for-
mation in simple systems remains a formidable problem
for the statistical theory of liquids. The mode-coupling
approach [1], which proved to be successful in interpret-
ing the basic dynamical phenomena in the supercooled
liquid domain, postulates the system to be in thermo-
dynamical equilibrium; so, the phenomenon of structural
stability of glass-forming liquids under supercooling is still
beyond the scope of the kinetic theory of liquid state, in its
present form. Thus, the molecular-dynamics (MD) simu-
lation remains a unique tool for investigating the underly-
ing mechanisms of that phenomenon, on the atomic level.

Configurational evolution of a condensed system of sim-
ple constitution may be conveniently discussed in the
terms of topography of the relevant area of its potential
energy hypersurface [2,3]. The latter can be probed by
the steepest descent minimization which maps its points
onto the nearest local energy minima representing stable
packing configurations [2,4]. These configurations statist-
ically determine the so-called inherent structure which
was found to be state independent, within a single liquid-
phase domain [2]. Structural relaxation in a supercooled
liquid, dominated by configuration-controlled activation
processes, may be decomposed in a set of transitions be-
tween the topologically connected energy minima. There-
fore, topology of inherent local order controls access to the
configurational space areas which correspond to crystal-
line nucleation.

In a simple liquid composed of identical particles, varia-
tion of the pair potential produce a discrete set of well-
defined prototypes of inherent local order [4-6]. Each of
those prototypes which have been found until now ap-
peared to be a distorted version of the crystallographic
pattern into which the corresponding liquid is known to
freeze. Consistent with this observation, those systems ex-
hibit pronounced structural instability, when supercooled.

Icosahedral arrangement of the first coordination shell
is the only conceivable noncrystallographic pattern of lo-
cal order in a stable packed configuration. Recent studies
revealed that this type of local order plays a crucial role in
the glass formation in the simple systems [7-10]. The in-
herent structure of metallic glass formers was, indeed,
found to be accounted for by the icosahedral polytope
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{3,3,5} [8-10]. However, those systems are multicom-
ponent, and formation of their structures involves the
chemical short-range ordering [7]. An issue of profound
interest is whether or not the structure in question might
be formed by a simple liquid composed of identical parti-
cles. The study reported in this paper demonstrates that a
stable liquid phase possessing distinctive icosahedral in-
herent local order can be generated by a pair potential uti-
lized in a one-component MD model. This pair potential
is introduced by the following form:

V=V,+V,,
V|=A(r"”—B)exp[ <1, r<a,
r—a
Vi=0, r=a, (1)
Vo=Bexp|—— |, r<b,
r—b
V,=0, r=5b.

The parameters listed in Table I have been chosen to
construct the potential shown in Fig. 1. At short dis-
tances, up to the main minimum, the potential approxi-
mates the Lennard-Jones one. The minimum is followed
by a maximum, which is located within the interval of dis-
tances bound by the first and the second shells of neigh-
bors in the icosahedral polytope [9,10]. At the same time,
the maximum covers a range of coordination distances
characteristic of crystallographic local order [4-6]. Thus,
the described potential is expected to encourage formation
of icosahedral local order by suppressing competing crys-
tallographic configurations.

This potential was tried in a standard constant-density
MD simulation. The latter was carried out in reduced
units: the units of length and energy follow from the

TABLE I. Parameters of the pair potential.

m A c a B d b
16 5.82 1.1 1.87 1.28 0.27 1.94
R2984 © 1992 The American Physical Society



0.5

FIG. 1. Solid line, pair potential given by Eq. (1). For com-
parison, the Lennard-Jones potential, added with a constant, is
shown by the dashed curve.

definition (1), and the unity particle mass was assumed.
In these units, the integration time step was 0.01. The
system was simulated at the constant density p* =0.88.
Two temperatures were investigated: 7* =1.6, where the
system is a normal liquid with high diffusion rate, and
T* =0.5, that corresponds to the supercooled liquid state
(Fig. 2). These runs will be referred to as A and B, re-
spectively. Simulation of a liquid in the supercooled state
poses problems related to the system size: (i) highly col-
lective relaxation processes, including those leading to the
creation of a critical crystalline nucleus, may interfere
with the boundary conditions imposed [11]; (ii) inade-
quate sampling of the relevant configurational space area
might result in poor statistical reliability and history
dependence. To avoid these problems, a system of 16 384
particles was employed here. Its size also enabled us to
explore structural correlations in the important long-
wavelength region.

The supercooled state, simulated in run B, was reached
by the stepwise equilibrium cooling. At every step, the
temperature was reduced by momenta scaling, which was
followed by an equilibration run. The latter continued un-
til stability of the thermodynamical parameters was
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FIG. 2. Temperature variation of the diffusion coefficient
during the cooling process.
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achieved. Under the cooling, the diffusion coefficient
dramatically decreased, and marked change in the charac-
ter of its temperature variation (Fig. 2) indicates onset of
the supercooled dynamics regime. After initial equilibra-
tion, the system B has been run for 3x10° time steps.
During that run, no systematic shift in the thermodynami-
cal parameters has been observed, which indicates that
the system remained stable with respect to crystalline nu-
cleation. Besides systems 4 and B described, a reference
model was simulated, in which the trial pair potential was
truncated at its minimum; to make it continuous at the
truncation point, a constant equal the minimum value was
subtracted. This case corresponds to the truncated
Lennard-Jones potential (TLJ) (Fig. 1). The TLJ system
was simulated close to its triple point, at 7* =0.7 and
p* =0.88. An interesting observation was that the poten-
tial truncation dramatically increased the diffusion rate in
the system: its value obtained for the TLJ liquid was, in
reduced units, D* =0.03, as compared with D* =0.0027
for the system simulated at the same temperature and
density using the full potential.

For each of the three liquid states simulated here, the
inherent structure was derived by the steepest descent
minimization [2]. In systems 4 and B, generated by the
trial potential, the inherent pair-correlation functions
(Fig. 3) are consistent with the distinctive pattern of dis-
tance distribution in the icosahedral polytope [10]. Ac-
cordingly, the two inherent structure factors (Fig. 4) ex-
hibit characteristic splitting in the second peak and a
small additional maximum following the third peak,
which unambiguously identify them with the interference
function obtained from the icosahedral polytope [10]; this
type of inherent structure was also found in metallic glass
formers [7]. These two inherent structure factors also
demonstrate a remarkable similarity to that calculated
within the framework of statistical mechanical theory of
icosahedral short-range order in a simple liquid [9]. A
particular results of that study was that if the positions of
the first three peaks of S(Q) denoted as @, @5, and Q53,
then Q,/Q1=1.71 and Q3/Q, =2.04. The liquid structure
simulated here seems to be in good agreement with this

FIG. 3. Inherent pair correlation functions for the three
configurations simulated (see in the text). Dashed line, system
A; solid line, system B; dashed-dotted line, TLJ system.
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FIG. 4. Inherent structure factors for the same systems as
presented in Fig. 3. Dashed line, system A; solid line, system B;
dashed-dotted line, TLJ system.

relationship. In the configuration 4 Q»/Q,=1.69 and
03/0,=2.01, while in the configuration B Q,/Q;=1.69
and Q3/Q1 =2.

A remarkable novel feature of the two inherent struc-
ture factors discussed above is an anomalous long-
wavelength prepeak, which may be interpreted as an indi-
cation that the icosahedral ordering has a tendency to ex-
tend beyond the first-neighbor shell. In this interpreta-
tion, the position of the maximum might be related to two
characteristic distances in the icosahedron, 1.620 and
1.90, o being the effective diameter of a particle [8]. The
fact that the prepeak survives high diffusion rate in system
A suggests that this ordering is of dynamical nature. The
prepeak has not been observed in the metallic glasses; in
those systems, however, such a fine detail of topological
order could be screened by the large-scale chemical
short-range order effects [7]. By contrast, the distinctive
features of icosahedral inherent local order displayed by
the systems A and B have not been found in the TLJ in-
herent structure, which is known to be related to the fcc
local order [5]. When supercooled, that system has,
indeed, demonstrated rapid fcc nucleation.

Comparison between structures 4 and B, presented in
Figs. 3 and 4, shows that the onset of the supercooled
dynamical regime had no effect on the inherent short-
range order. However, the supercooling markedly re-
duced the S(Q), in the long-wavelength domain. This im-
plies that the supercooling induces long-range ordering,
which results in formation of more stable and less
compressible icosahedral aggregations of particles. This
picture of long-range ordering is consistent with the con-
siderable enhancement of the anomalous prepeak of
S(Q), which is another perceptible structural effect of the
supercooling observed.

In order to analyze the patterns of local order in the
simulated configurations in the terms of statistical
geometry, their first coordination shells were decomposed
using the approach introduced by Honeycutt and Ander-
sen [12]. Two particles were considered to be neighbors if
the separating distance did not exceed the bond length;
here it was chosen to be 1.5. Thus defined neighbors are
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also neighbors in the sense of Voronoi tesselation. Each
pair of neighbors was classified according to the patterns
formed by their common neighbors. If the bonds connect-
ing these neighbors formed a closing ring, such a pair was
counted as the closed one. In the context of this study, the
main point of interest is a fivefold bipyramid formed by a
closed pair with five common neighbors. Statistics of
these elements represent an important measure of the
icosahedral local order [8]. A particle with the coordina-
tion number 12 was regarded as a center of a 13-atom
icosahedron, if it formed fivefold closed bonds with all its
neighbors.

The results presented in Table II give a significant in-
sight into the pattern of local order behind the distinctive
inherent structure generated in this study. In systems A4
and B, the local order is apparently dominated by the five-
fold bipyramids. At the same time, only a minority of the
constituent particles was found to have the regular
icosahedral environment. This result is consistent with
the models of icosahedral local order [10]. Presumably,
most of the fivefold bipyramids participate in the Friauf
polyhedra or Bernal polyhedra [7]. Accordingly, a mar-
ginal increase in the number of the fivefold bipyramids,
induced by the supercooling, doubles the number of the
icosahedra. The process of glass-forming icosahedral or-
dering can also be associated with the development of the
long-wavelength prepeak in the structure factor.

The above results are in a great contrast with those on
the TLJ system. While the latter has about the same
number of neighbors in the first coordination shell as
configurations 4 and B, those neighbors are arranged in a
fundamentally different way. The number of closed five-
fold bonds is much smaller, and icosahedra are practically
nonexistent. Another important distinction between the
two types of local order is that the TLJ system has a much
larger number of nonclosed bonds, which may be associat-
ed with a more shallow first minimum in its pair correla-
tion function. This indicates the presence of a large num-
ber of rather loose local configurations, and it is conceiv-
able that their transformation under supercooling is re-
sponsible for the fcc nucleation in that system. By con-
trast, in the system generated by the trial potential, the
supercooling apparently reduces the number of potentially
unstable local configurations by transforming the non-
closed bonds into the fivefold bipyramids.

TABLE II. Statistics of local order in the simulated
configurations.
Configuration A B TLJ
Number of
bonded pairs 104769 106088 102423
Number of
closed bonds 57580 62982 28436
Number of
fivefold 41912 51662 17552
bipyramids
Number of
icosahedra 707 1505 33
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The finding that a glass-forming liquid with icosahedral
inherent short-range order might be formed by a simple
one-component system, opens a new possibility for analyz-
ing the mechanisms of glass formation in the systems of
simple constitution. The model reported here may be re-
garded as a one-component reference system for the mul-
ticomponent metallic glass formers. In these systems, the
relaxation under supercooling involves both the topologi-
cal and the chemical ordering. The one-component model
reported here provides a unique opportunity for separating
the contributions of these processes in the glass formation.
In this respect, it is interesting to note that the potential
utilized in this simulation resembles those derived for
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Mg;Zn; glass [7]. This suggests that the structural stabil-
ity in that glass is mostly provided by the topological or-
dering induced by the pair potential. That metallic glass
is known to exhibit a tendency for transformation into the
Frank-Kasper phase. Whether or not such a tendency
could be observed in the system reported here is a question
of profound interest. However, the problem of global sta-
bility in the simulated supercooled system is a problem of
macroscopic time scale which is far beyond the reach of
the MD simulation technique, in its present state.
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