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We perturb the one-dimensional nonlinear Schrodinger equation with a time-independent spatially

periodic potential with a period large compared to the spatial width of solitons present in the system.
A collective-coordinate approximation maps the system to a nonintegrable many-particle dynamics
with an effective Hamiltonian, which we derive under the assumption that we can neglect three-soliton

collisions as well as two-soliton collisions with vanishing relative velocity. We give an estimate for the

power radiated by a single soliton in the presence of the perturbation and show that radiative effects
can be neglected for perturbations with sufficiently small amplitude and large spatial period. We show

that the nonintegrability of this perturbed nonlinear Schrodinger equation manifests itself already in

the two-soliton sector. We use the effective many-particle Hamiltonian to investigate soliton depin-

ning. The effective Hamiltonian results are compared with numerical simulations of the full perturbed
equation.

PACS number(s): 05.45.+b, 61.70.Ga, 42.50.Rh

To understand the physical properties of nonlinear, spa-
tially inhomogeneous materials is of considerable practi-
cal importance [1-4]. Applications can be found in many
fields: nonlinear optics [51, long Josephson junctions [6],
charge-density waves [7], dislocations in crystalline ma-
terials [8], and so on. In the absence of spatial modula-
tions the dynamics of low-dimensional materials can often
be approximated by completely integrable nonlinear par-
tial differential equations such as the nonlinear Schro-
dinger (NLS) or the sine-Gordon equation.

These completely integrable dynamics take into account
the interaction of the nonlinear excitations (waves, soli-
tons, breathers) solely through phase and space shifts: All
scattering events leave the momenta of the excitations un-
changed. In real nonlinear materials the interactions wi11

certainly have an anharmonic component. This can give
rise to interconversion of excitations: solitons can emit ra-
diation, radiation can self-focus to coherent, localized ex-
citations, and solitons can scatter inelastically.

In this paper we examine the inelastic scattering of soli-

tons in the presence of a spatially periodic perturbation.
As the underlying unperturbed dynamics we choose the
nonlinear Schrodinger equation because of its direct phys-
ical relevance as well as it describing certain limiting cases
of other nonlinear dynamics. We restrict our study to the
case when the spatial width of solitons present in the sys-
tem is much smaller than the spatial period of the pertur-
bation (for other cases see [9]). In this limit the radiation
emitted by the solitons is negligible on the timescale that
the anharmonic interaction between the solitons manifests
itself.

The perturbed NLS equation we study is of the form:

i y, + y„„+2y[y~I'=eicos(kx).

For a single soliton moving in the presence of the pertur-
bation we make a collective variable ansatz [10-12]:

i']'2 —ie
y(x, t) =2rl

cosh[2rl(x —q)]
'
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Equation (1) possesses two integrals of motion, the norm
JV and the energy E. For the y(x, t) given in Eq. (2) they
have the following values:

I yl'dx =4rt,
f+ + OO

[Iy„l —
I pl +elittl cos(kx)]

(3)

16 2 + eke=tl q rt + .
( )

Cos(kq) . (4)

The conservation of the norm of y leads to @=const
+0(e ). The time dependence of the phase 4 decouples
from the time dependence of the soliton position q, which
is the relevant dynamical variable on which we will focus
below.

The conservation of the energy E leads to an equation
of motion for q which can be derived from the following
effective single-particle Hamiltonian (for a single soliton):

2

(s)

The amplitude of the potential is nontrivially rescaled.
Only in the limit k/rt 0 does one recover the prefactor
2ert which one would expect naively by expanding the per-
turbing potential locally up to linear order in position and
then solving the perturbed NLS exactly.

As the perturbed NLS equation (1) with cos(kx) re-
placed by ax+ b is still completely integrable [13] one ex-
pects radiation mainly to originate from the nonvanishing
curvature of the perturbing potential. The radiative
power emitted can be made arbitrarily small by reducing
the amplitude e of the potential as well as the ratio k/rt of
the width of the soliton and the period of the potential.
Numerical evidence shows that one can easily achieve the
situation with negligible radiation on the time scale of the

I

soliton motion, for example the period of oscillation
around a potential minimum.

In the next step we neglect the perturbation (e =0) and
focus on a t~o-soli ton collision. %hen two NLS solitons
collide their centers of inertia q;, as well as their phases
4;, suffer a shift. As the perturbed NLS equations (1) is
U(1) invariant we neglect the dynamics of the phases.
The shifts of the soliton positions q; ("space shifts")
amount to an attractive interaction between the solitons.
For example, the soliton that was the right one for
t —~ and the left one for t + ~ has the form

lim
l yl =sech[2tl(x —q) +'a] .

+' 00

For the other soliton the shift a should be replaced by —a.
The shift a is given by (see, for example, [14])

16(tlat+

rt, ) '+ (v i
—v2) '

a=2 ln
(V ~ V2)

where U ~ and v2 are the asymptotic velocities for the two
separated solitons and g~ and g2 their amplitude parame-
ters [Eq. (2)].

A simple calculation shows that the following two-
particle Hamiltonian gives rise to the same space shifts
Eq. (7):

2 2
P~ + P2

292 292

2rt~'g2(q~ q2)—8tl ~ rt2(rt ~+ rt2) sech . (8)
g)+ g2

Our third step is to combine the single-particle Hamil-
tonian 0 ~ with the attractive two-soliton interaction from
Eq. (8): This leads to the following effective N-particle
Hamiltonian:

p; ektt cos(kq; ) —8
2rt; 2 sinh(ktt/4rl; ) I ~i (j» JV

rt;rt, (rt;+ rtj)sech'
2rl;rt, (q; —

q, )

g;+ g)

This Hamiltonian describes the motion of N unharmoni-
cally coupled nonlinear pendula which is nonintegrable al-
ready for N =2. We stress that the nonintegrability of the
perturbed NLS equation (1) can already be seen in the
two-soliton sector before radiative effects become impor-
tant.

We illustrate our analytical results by numerical simu-
lations. We use the integrable discretization of the NLS
equation given by Ablowitz and Ladik [15] (see also [12])
near the continuum limit. We integrate the resulting
diA'erential-diff'erence equations with the help of a fifth-
and sixth-order Runge-Kutta-Verner method, monitoring
the accuracy of the numerica1 integration with the help of
the conserved quantities Ã and E [see Eqs. (3) and (4)].
For well-separated solitons their positions are tracked nu-

merically by a three-point fit around local maxima having
an amplitude exceeding a given minimum value.

Figure 1 shows an example for two solitons with g] &g2
interacting in a cosine potential. We see that the motion
of the soliton positions (solid lines) and the effective two-

I

particle dynamics (crosses) compare well over many col-
lisions.

In Fig. 2 we show a Poincare section for two eA'ec-

tive particles with rt~ =rt2 with fixed total energy (H, tt

=Eo) and q2=0. The chaotic region around the single-
soliton separatrix determined by the energy E~ =ektt/
2sinh(ktt/4rt&) is clearly visible.

A plausible explanation for the chaotic region is as fol-
lows. If the first soliton has an energy slightly below the
separatrix energy E] it will be trapped in a potential
minimum. Collision with the second soliton leads to a
space shift which can move the first soliton over a poten-
tial maximum. Whether this happens depends sensitively
on the initial conditions of both solitons, leading to a posi-
tive Lyapunov exponent.

The approximation of the fu11 NLS soliton dynamics by
the N-particle dynamics fails in certain special cases, in-

cluding the following.
(i) When the curvature of the perturbing potential ex-

cites additional modes which are not taken into account
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FIG. 2. Poincare section for the effective two-part&cle dynam-
P eters: V(x) icos(2'/256) with e —0.01 andics. arame ers:
d' b d conditions gt g2 005. Fixed to a gy.
0.0152152. Section at q2 0 for pi &0. Shown are e

phase space coor inacoordinates of the "slow" particle (q q~, p p~ .
Total integration time T 40000.
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time In a sufficiently dilute gas of solitons these are rare

N- articleExcluding these special cases, the effective N-partic e
dynamics can e useb d to analyze the behavior of the N-
soliton dynamics in the full perturbed NLS equation. s
an application we discuss the depinning of trapped solitons

by a beam of fast solitons.

FIG. l. Two interacting sol&tons on a cosin posine otential. Pa-

r12 0.055. Initial values: q~(0) —64, q2(0) 64, p~ 0 =0,
p2 0) —0.0088. (a) The full solution (multiplied by a factor
of 5) of the perturbed NLS equations (1). (b) Comparison be-
tween the soliton positions of the full solution (solid lines and
the effective two-particle dynamics (crosses).

b the effective particle dynamics. For sufficiently smally ee
1' parameter e, we found numerically a p-coup ing pa

(e ")with v&1.proximation storks for times T =Oils wi v

(ii) When two solitons collide with vanishing relative
ve oc&ty. isl . This happens only for a small fraction of initial

d' . Our approximation could be improved in iscon itions. ur
[16]of the un-case by using the exact two-soliton solution ~ o e

b d d ics (e=O) with appropriate time-depen-
dent parameters instead of the single-soliton ansatz
Notice that the conservation of the norm .V —JV'~

lows for a change of the soliton parameters g~ and g2
which determine the shape of the solitons. Numerical re-
sults show that g~ and q2 are indeed changing during a
collision with vanishing relative velocity.

(iii) When three (or more) solitons collide at the same
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FIG. 3. Depinning of a soliton initially at rest &n a potent&al

well by a "ast so i on."f "
1 t Parameters: V(x) =icos 2+x

s 2 0.05.with m=0.002 and periodic boundary conditions, g& g2
t = ~64. Initial values:The two minima of the potential are at q =

qi 0 —64, q2(0) =64, p~(0) =0, p2(0) —0.0115. Shown

f b tb effectiv particles (determined numeri-

cally). The straight dotted lines give the position of t e as
soliton, the irregu ar ines el 1 th position of the soliton undergoing
depinning.
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A constant flux of fast moving solitons entering a sys-
tem containing N solitons from one side leads to space
shifts of the solitons in the system periodically in time
directed opposite to the flux. For an appropriate choice of
the density of the solitons in the flux as well as their pa-
rameters g; and U;, this drag will be strong enough for the
solitons in the potential wells to overcome the potential
barrier. This depinning leads to a flux of solitons directed
oppositely to the incoming flux.

We calculate the depinning threshold in a simple case
when the solitons in the well and the flux solitons have
equal masses g but the flux solitons move much faster.
Then the collisions can be assumed to happen instantane-
ously and the solitons in the well will be shifted in space
by hq =a/ri [see Eq. (8)] with negligible change of veloci-
ty. This leads to a change in the energy of the well soli-
tons which is compensated by the beam solitons. A soliton
located in a well with energy E =Ht(q, p) will leave the
well after one collision if

The solitons in the well can lose as well as gain energy
during the collision depending on their position in the well
at the time of the collision. Under suitable conditions the
collisions with the beam solitons can lead to depinning
through a resonance. Figure 3 illustrated this process
with the help of the eN'ective two-particle approximation
through a period-two resonance.

In summary, we have shown how a nonintegrably per-
turbed NLS equation with soliton excitations can be
mapped, using a particle ansatz, to a many-particle Ham-
iltonian which takes into account the single-soliton poten-
tials and two-soliton interactions. The dynamics is nonin-
tegrable and shows chaos already for two solitons. Away
from the chaotic region it can be used for long-time pre-
dictions. A large number of interesting many-soliton
eFects can be investigated and understood with the help of
this effective many-particle dynamics. We have given sol-
iton depinning as an example.

t.kx
2 i h(1& /4 )
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