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Dispersive properties of electromagnetically induced transparency
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An atomic transition that has been made transparent by applying an additional electromagnetic field

exhibits a rapidly varying refractive index with zero group velocity dispersion at line center. A 10-
cm-long Pb vapor cell at an atom density of 7X 10's atoms/cm3 and probed on its 283-nm resonance
transition has a calculated optical delay of 83 ns [(c/Vo) 250].

PACS number(s): 42.50.Hz, 32.70.—n, 42.25.Bs, 42.65.An

It has recently been demonstrated that an optically
thick transition may be made nearly transparent to light
at its resonance frequency [1,2]. This is done by applying
an electromagnetic field (Fig. 1) which dresses the upper
state of the transition and thereby creates a quantum in-

terference at a probe wavelength. The applied elec-
tromagnetic field may be another laser or a microwave or
dc field. The transition may be broadened by autoioniza-
tion, radiative decay, and, in certain cases, by collision.

In this Rapid Communication we calculate the disper-
sive properties of such a media. The real and imaginary
parts of the susceptibility as functions of the probe fre-

quency are shown in Fig. 2. Because of the absorptive in-

terference and the symmetry of the dressed states, the

probe, when tuned to the position of bare state
~
3), experi-

ences a linear rapidly varying refractive index with very
slow group velocity and zero group-velocity dispersion.
This slow group velocity is the result of the slope and not
of the magnitude of the refractive index, which remains
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nearly unity.
Tewari and Agarwal [3] and Harris, Field, and Imamo-

glu [4] have noted that the dispersive properties of a mac-
roscopic medium may be modified by a strong (dressing)
electromagnetic field. In related work, Scully [5] has not-
ed the possibility of using coherence to allow an increased
refractive index. The basic phenomenon which creates
this transparency is termed as population trapping and
has been studied extensively [6-9].

We work with the probe envelope quantities E(t) and
P(t) with Fourier transforms E(to) and P(to). We take
the probe to have a center frequency mo, expand the sus-
ceptibility of the dressed atom to third order about this
value, and Fourier transform. With P(ru top):epg(tu
—top) E (ro —top)
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FIG. l. Energy-level diagram for the transparency process.
When a strong field of frequency m, is tuned to line center of the
[2) ~3) transition, where state ~2) is metastable, the medium

becomes transparent to a field of frequency co tuned to line

center of the ) I ) ~3) transition.

FIG. 2. (a) Imaginary and (b) real parts of the susceptibility
of a probe frequency co in the presence of a strong-coupling field
tv„. The dotted curve of (a) is the imaginary part of the suscep-
tibility in the absence of the coupling field. Normalization is to
the peak value of the imaginary part of the susceptibility.
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For this work we take coo equal to the frequency of the
bare (I) ~3) transition. The values of the real and

imaginary parts of the dressed susceptibility g and the
pertinent derivatives evaluated at this frequency are given
in Table I. The quantity ep is the permittivity of free
space. The quantity 0, is the Rabi frequency of the reso-
nantly driven (2) )3) transition; i.e., 0, pz3E, /h. The
formulas, as written here, are for a lifetime-broadened
system with decay rates of states ~2) and

~
3) of I 2 and I 3.

When pressure broadening is important then, to within
the accuracy of the impact approximation, I 2 and I 3 may
be replaced by I 2+2yt2 and I 3+2yt3, respectively; the
quantities 2ytz and 2yt3 are full width at half maximum
collisional Lorentzian widths. The formulas of Table I
and, therefore, the results of this paper, are dependent on
the assumption that the Rabi frequency of the probe is

small as compared to that of the coupling laser.
The equation for the slowly varying envelope E(z,t) is

then
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The quantities a and P are the per length E field loss and
phase shift at rpp, VG is the group velocity, and bz and b3
determine the pulse distortion and therefore the ability to
resolve the delayed pulse.

In the (hypothetical) ideal case where state ~2) is com-
pletely metastable (I z 0) and the probe is tuned to rpp,

there is complete interference and perfect transparency
for all nonzero 0,. Noting Fig. 2 and Table I, we see that

TD
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i.e., the maximum time delay for a pulse which propagates
one attenuation length is equal to the decay time of meta-
stable state ~2).

For an exponential pulse with a characteristic rise or
fall time r, we take r~;„as that time constant which pro-
duces a distortion of magnitude 1/a. Assuming either b2
or b3 dominates, then r;„is the larger of
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We define a parameter q as the ratio of the total delay
to r;„. This parameter is a measure of the resolvability
of the delayed pulse and for the limits of Eqs. (5a) and

I

both P and the group-velocity dispersion (the real part of
b2) are zero. For finite 12 the transparency results from
both the interference and the separation of the dressed
states. At small 0, the interference dominates and the
pulse distortion is the result of the nonzero loss (b2) of
off-line-center Fourier components. At sufficiently large
0„ the medium is transparent over the pulse bandwidth
and the distortion comes from the curvature of the real
part of the susceptibility b3.

For a medium of length L the time delay relative to a
pulse traveling at velocity c is L[(l/VG) —(1/c)). For a
sufficiently monochromatic pulse, we take the maximum
usable L as 1/2a. For 0,» I 2I 3 (Table I), the time delay
TD in one attenuation length (power) is

t

TABLE 1. Susceptibilities and derivatives. All quantities are to be multiplied by ~p~3~ /V/EOA. To include collision broadening, 1 2

and I 3 should be replaced by I 2+2y~2 and I 3+2y~3, respectively; 2y~2 and 2y~3 are full width at half maximum Lorentzian collisional
widths.
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One may compare the dispersive properties of the dressed
atom with the probe tuned to roo with those of the same
atom with 0, =0 and the probe tuned off of line center by
hco so as to equalize the attenuation at the same pressure
and cell length. This detuning is hro=[(I 3/41 2)'
Proceeding as above, the total time delay of the bare atom
in a single attenuation length is 1/I 3, z;„=(2/I 3Aro) '

q2=(hro/2I 3) '; and the ratio of the group velocities of
the bare to dressed atom is I 3/I 2. Because the group ve-

locity dispersion of the dressed atom is zero at zoo, it has a
much greater pulse resolvability than does a bare atom.
(Instead, one may assume a hypothetical bare atom with a
transition oscillator strength such that I 2 =I 3 and assume
that both the atom density and the detuning are increased
to make the loss length, the group velocity, and the pulse
resolvability q the same. One finds that to do so the ratio
of the atom densities of the bare-to-dressed atom must be

4q, which, for reasonable pulse resolution, is impracti-
cal.)

Though this Rapid Communication is concerned with

the linear response, we note that for I 2=0 and a=coo,
g

3 ( —co, ro, —ro, ro) =0, as do all similar terms of higher
order. Nonlinear susceptibilities such as g ( —ro, co„
—m„ro) are included within this formulation and, for
these same conditions, are also zero.

We observe that there is an unusual type of spatial
pulse compression inherent to these formulas. As a pulse
enters a medium with a very slow group velocity and (ap-
proximately) unity refractive constant, its peak electric
field and power density are unchanged and the pulse
compresses spatially by a factor of c/VG. The energy den-

sity is primarily determined by the slope rather than the
magnitude of the susceptibility [10]

(IV) = po(HI + ~o (~&) I& I
4 4 a~
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and the power density (roc/2)(E( equals the product of
the energy density and group velocity.

The previous formulas have ignored inhomogeneous
broadening. For the medium to be transparent we there-
fore require that the Rabi frequency of the (2) (3) tran-
sition be sufficiently large that the transmission hole width
[(r2/r3) ' ]0„ is large as compared to the two-photon
Doppler width of the (1) (2) transition. (In the usual
sense of Doppler-free, two-photon processes, this width

depends on the direction of propagation as well as the fre-
quencies of the two beams; for a system where state (2) is

above state (3) and the beams counterpropagate, it ap-
proaches zero as the frequencies approach each other. )

We proceed with an example: We assume a 10-cm-long
Pb vapor cell at an atom density of 7 x 10's atoms/cm .

The probe transition is 6s 6p Po 6s 6p7s P~ with a
wavelength of 283 nm and an oscillator strength [1 ll of
gf-0. 197. The coupling laser transition is 6s 6p23P2

6s 6p7s P~ with X 405.9 nm and gf 0.71. For an
atom density of 7 x 10' atoms/cm, the quantities
r,+2y, 3 and I 2+2pz which replace13 and I z in the for-
mulas are 4.46x10 sec ' and 1.20&10 sec ' [12,13],
respectively. It is implicitly assumed that the linewidth of
the coupling laser is narrow compared to this last value

[14]. We choose the Rabi frequency of the (2) 3) tran-
sition so that the power attenuation of the probe beam is

unity; i.e., 1/2a 10.0 cm. This Rabi frequency is
sufficiently large that the two-photon Doppler width
=-0.01 cm ' is unimportant. This requires an 0, of
about 0.7 cm ', which occurs at a coupling laser power
density of 283 kW/cm . For these conditions c/VG 250,
the total time delay is 83.3 ns, and the resolvability

q3 248. These quantities may be compared to those of
the transition without the coupling laser present. With
0, 0 and the probe laser detuned by pro 2.14 cm ' so
as to again obtain a 10.0-cm power absorption depth, we

find c/Vo 6.73, a total time delay of 2.24 ns, and a ratio
of total delay to minimum pulse length of q2 21.3.
(These single transition results are in the spirit of those
observed by Grischkowsky [15].)

From Eq. (5) we see that, for large Rabi frequency, the
minimum pulse length which one may use to observe these
slow group velocities is (I 2/0, ) ~ (2/I 2). For reasonable
coupling laser power the minimum pulse length in metal
vapors is a few tenths of a nanosecond. The slow group
velocities described here are also, in essence, a bandwidth
limitation on the use of electromagnetically induced
transparency to obtain large nonlinear coefficient length
products for nonlinear sum and difference frequency gen-
eration [3,4, 16]. For the output power of the generated
signal to grow as the cell length squared, the generated
pulse must be sufficiently long that it does not temporarily
slip from the driving pulse in the cell or opacity length.

A device of this type may someday provide what might
be termed as a group-velocity optic. For polarization in

the same plane, the group velocity depends on the relative
angle of the polarization of the coupling field and probe
lasers and therefore varies with probe propagation angle.
At the same time, the phase delay is invariant to propaga-
tion angle.
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