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We describe a method for calculating rates for multiphoton detachment or ionization of a two-
electron system by a perturbative field. We have applied the method to H™, and we present estimates
of two- and three-photon detachment rates. In particular, we explore the 1S® and !D® Feshbach
resonances below the n = 2 and n = 3 excitation thresholds of H; these resonances lie in the

“excess-photon detachment”

PACS number(s): 32.80.Wr, 32.90.4+a

Accurate rates for multiphoton detachment of the neg-
ative hydrogen ion H~ by a weak (perturbative) field
have proved to be especially difficult to calculate. There
are only a few published results of calculations taking the
electron-electron interaction into full account (see, e.g.,
Refs. [1-5]), and there are significant discrepancies be-
tween these results (a comparison of different results is
given in Ref. [4]). In this paper we describe a method for
calculating rates for multiphoton detachment or ioniza-
tion of a two-electron system by a perturbative field, and
we present results of an application to H~. We give rates
for two- and three-photon detachment of H™ by a linearly
polarized field. In particular, we explore the region of the
18¢ and 1 D® Feshbach resonances below the first and sec-
ond excitation thresholds of hydrogen. These resonances
are reached by two photons and lie in the “excess-photon
detachment” region where one photon is already suffi-
cient to detach the electron [6,7]. In our calculations we
employ a two-electron basis composed of products of one-
electron complex radial Sturmian functions and spheri-
cal harmonics, and our results are, for most frequencies,
fairly well converged with respect to increasing basis size.

Let H, be the Hamiltonian of the atomic system, and
let V,e ™4+ V_e™t be the interaction of this system with
a monochromatic classical field of frequency w, within the
dipole approximation. If Ei(o) and |¥;) denote the unper-
turbed initial energy and state vector, the amplitude for
the system to absorb N photons and undergo a transition
to a state represented by |[¥7), with one electron in the
continuum, is, within lowest (i.e., Nth) -order perturba-
tion theory,

ALY = (@ v | FY), (1)

where the Nth-order harmonic components |F ](VN)) sat-
isfy the coupled (Dalgarno-Lewis) equations

(B® + Ntw — H)IFQ") = Vi FQY), N =1, (2)
F0) =1%s). ®)

For simplicity, we neglect spin-orbit coupling so that we
can factor the spin out of the problem. We denote the
electron that is ejected as 1, and the electron that re-
mains bound in the residual atomic system as 2. The
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regime, where one photon is already sufficient to detach the electron.

final channel f is specified by the parity, by the total
orbital angular momentum and magnetic quantum num-
bers L and M of the two-electron system, by the in-
dividual orbital angular momentum quantum numbers,
l; and lp, of electrons 1 and 2, and by the (positive)
energy £ with which electron 1 emerges. Denoting the
atomic number of the nucleus by Z, we subtract from
the atomic potential acting upon electron 1 the Coulomb
potential —(Z — 1)e?/r; due to the nucleus when it is
screened by electron 2; the remaining potential acting
upon electron 1 is W = e?(1/r;2 — 1/r1), and this is
“short” range. Speaking loosely, we refer to W as the
“final-state correlation” (FSC). If we were to neglect
FSC, the final state would be represented by the di-
rect product |y, .) ® |¢1,), appropriately symmetrized
and summed over individual magnetic quantum numbers,
where |9}, .) represents electron 1 moving with energy €
in the Coulomb potential —(Z — 1)e?/r; (note Z = 1
in the case of H™) and where |¢;,) represents electron 2
bound in the isolated residual system. Introducing the
resolvent GE(E) = (E + in — H,)™!, where 7 is positive
but infinitesimal, and defining E}O) = E§°)+N hw, the ex-
act final-state vector is given by the Lippmann-Schwinger
equation:

97) =P (1+ G (EOW) (4, @ léu)), (@)

where P is the symmetrization [7] operator. Substituting
the right-hand side of Eq. (4) into the right-hand side of
Eq. (1), noting that (G5 (E)W|t = WG (E) and that
Eq. (2) implies that GF (B, |FTY) = |FQ), we
obtain

A =B + ot (5a)
BN = V(9 | ® (¢, )Vl Fir ), (5b)
SN = Va((r; .| ® ($L)WIFS). (5¢)

(V)

The quantity By, is just the amplitude obtained when

FSC is omitted, and C'J(e?') is the correction accounting for
FSC. Writing H, = Hp + W, and noting that |y} ) ®
|¢1,) is an eigenvector of Hy with eigenvalue E)(co), we can
replace W by H, — E}O) +H(;r — Hy on the right-hand side
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of Eq. (5¢); using Eq. (2) we see that the part of C(Iiv)
involving H, — E © cancels with BYY i , and hence we can

express A( i ) in the alternative forms
A =2y, | ® (d1, ) (HE — Ho)lFG) (6)
=V2((¥1; .| ® (P, )(EY — H)IFS).  (7)

The last form, i.e., Eq. (7), is particularly suitable for
computation since Hy does not contain the electron-
electron interaction (and therefore matrix elements of
Hj can be calculated easily and rapidly, with minimum
roundoff error), but, of course, the harmonic compo-

nent I.F,(VN)) does contain the electron-electron interac-
tion. More importantly, each of the three different ex-
pressions given by Egs. (5)—(7) is exact and yet the final
state is represented by the (symmetrized) direct product
[1/)11’ ) ® |¢1,), which has a simple closed-form expres-
sion in position space; this is a substantial simplification,
for which we pay only a modest price, namely, rather

than calculate |Fp FN 1)) as required by expression (1)

for A( ), we must calculate |F, }vN)). We note also that
the form given by Eq. (6) holds for strong (nonperturba-
tive) fields, and a form similar to this has been used as a
starting point to calculate partial rates for ionization of
atomic hydrogen by strong fields [8].
We solved Eq. (2) for the harmonic components on
our two-electron basis; this basis consisted of terms
S5,(r1)S% (r2)YiEM (£1, £2), where Y, EM (£1,£2) couples
spherlcal harmonics and where Sf,(r) is a radial Stur-
mian function which is a Laguerre polynomial in sr of
degree n, = n—1—1 multiplied by (xr)"*1ei*". We chose
the “wave number” & to lie in the upper right quadrant of
the complex  plane so as to simulate both outgoing-wave
open channels and exponentially decaying closed chan-
nels [9]. (If N is less than the minimum number Npj,
of photons which the ion must absorb to release an elec-

tron, [F}(VN)) has only closed channels, but if N > Npjn,

then |.7~',(VN)) has both open and closed channels.) Our
basis consisted of terms up to, at most, [, I’ < 3 and
ny, n. < 20, and (depending on ) gave an electron
affinity of H~ between 0.0274 and 0.0276 a.u., compared
to the accurate (Pekeris) value 0.027751 a.u. The re-
sults presented below were obtained using Eq. (7), but,

as a check, we simultaneously calculated A(Ij) accord-
ing to Eq. (5) (and always obtained good agreement)

[10]. We note that any estimate of A(IZI) obtained by
expansion on a discrete basis formally diverges, in some
cases, as the number of radial basis functions increases,
since the final wave function of the ejected electron is a
standing wave, composed of both ingoing and outgoing
waves, while a discrete basis can only simulate ingoing-
or outgoing-wave boundary conditions (not both); this
matter is discussed in Ref. [9], and as in that work we
used Padé summation to analytically continue the diver-
gent series. The required basis size increases significantly
with an increase in the number of photons that are in-
cluded, but is moderately insensitive to whether the fre-
quency is below or above the threshold for excess-photon
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FIG. 1. Rate T, divided by the square of the intensity I,

for two-photon detachment of H™, with the H atom left in the
ground state. Broken line, results of Liu, Gao, and Starace
[4]; solid line, present results. Note I'/T 2 is independent of I.

detachment, since in applying Egs. (5)-(7) we must han-
dle harmonic components having both open and closed
channels even at frequencies below the excess-photon de-
tachment threshold.

In Figs. 1 and 2 we show the total rates (integrated
over angles) for two- and three-photon detachment of H~
over the range of frequencies below the threshold for ex-
cess photon detachment. We compare our results with
the semiempirical adiabatic hyperspherical results of Liu,
Gao, and Starace [4]; the relative difference is 10% or
less. As the photoelectron energy increases, the rate first
rises due to the increase in available phase space, but the
rate quickly reaches a maximum (long before the photo-
electron energy reaches the electron affinity) and starts
falling due to the difficulty the photoelectron has in ac-
quiring momentum. Our results are not completely reli-
able for photoelectron energies below, and in the vicinity
of, the maximum of the rate. As an independent check
on the accuracy of our results we calculated the induced
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FIG. 2. Same as Fig. 1, but for three-photon detachment,
with T divided by I3.
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FIG. 3. Two-photon detachment in the excess-p FIG. 5. 'D° resonance profile, below the 7 = 2 excitation

tachment region. The broken line shows results obtained
when final-state correlation (FSC) is omitted.

width of the ground-state level, which for frequencies
below the threshold for excess photon detachment can
be expressed as —2Im(.7-',(\,]\:_11) |V_|F I(VN) ) and should be
identical to the total rate (multiplied by %). In Tables
I and II we compare the induced width with the rate
calculated from Eq. (7).

In Fig. 3 we show the two-photon detachment rate
over a wide range of frequencies above the threshold for
excess-photon detachment. The rate falls rapidly as the
photoelectron energy increases, but rises sharply at the
18e and 1 D® Feshbach resonances below the n = 2 and
n = 3 excitation thresholds of H. These resonances are
in the final state, and are not reproduced when FSC is
neglected. At still higher photoelectron energies the ! P°
shape resonance above the n = 2 excitation threshold
is seen. This shape resonance occurs in an intermedi-
ate state, reached by absorption of the first photon; it
appears even when FSC is neglected (since correlation

is included in ]}'1(1))), although the line shape is incor-
rect when FSC is omitted. We did not locate the 1 P°
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FIG. 4. !S° resonance profile, below the n = 2 excitation

threshold of H.

threshold of H.

Feshbach resonances below the n = 2 threshold, but we
did reproduce these resonances in the one-photon detach-
ment rate, in good agreement with earlier results [11].

In Figs. 4-6 we show in more detail the three promi-
nent Feshbach resonances seen in Fig. 3. Since the 15¢
and 1D® resonances below the n = 2 threshold are ap-
proximately symmetric, we can graphically deduce the
widths of the profiles, and they are in good agreement
with earlier calculated values [6]. The 1D® resonance be-
low the n = 3 threshold is highly asymmetric; evidently
there is strong interference with the two-photon detach-
ment background.

Multiphoton detachment of H™ has been observed [12],
but not in the resonance region. (Moreover, rates were
not measured, and the experiment was performed at
pulse energies such that perturbation theory is probably
unreliable.) Taking an “average” value of 10012 a.u. for
the two-photon rate in the resonance region below the
n = 2 threshold, and noting that the one-photon rate
in the same frequency range (i.e., w & 5.4 €V) is about
2I a.u., we obtain one- and two-photon rates of about
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FIG. 6. !D°® resonance profile, below the n = 3 excitation
threshold of H.
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TABLE 1. T's and I'y are, respectively, the rates for
two-photon detachment calculated from Eq.(7) and from the
induced width of the ground-state level for various values of
the photoelectron energy € and a basis [,!’ < 2, n,,n.. < 20,
|k| = 0.7 and arg(k) = 70°. All quantities are in a.u.

£ I',/(1051%) I'y/(1051%)
0.001 3.558 4.340
0.005 4.087 4.066
0.010 3.324 3.317
0.015 2.609 2.588
0.020 1.951 1.944
0.025 1.432 1.431

10'2 and 109 sec™!, respectively, at an intensity I of 10
W /cm? [13]. Although the two-photon rate is several or-
ders of magnitude below the one-photon rate, the one-
and two-photon signals are well separated in energy (by
about 5 eV) so that the two-photon resonances should be
observable [14].
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TABLE II. Same as Table I, but for three-photon de-
tachment and a basis [,I’ < 3, nr,n. < 20, |«| = 0.5 and
arg(x) = 70°.

€ I./(10°1%) I's/(10*°13)
0.0015 3.764 4.908
0.0030 4.877 5.146
0.0050 3.741 3.988
0.0070 2.322 2.397
0.0085 1.516 1.574
0.0105 0.890 0.919
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