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Two- and three-photon detachment of H by a weak field
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We describe a method for calculating rates for multiphoton detachment or ionization of a two-
electron system by a perturbative field. We have applied the method to H, and we present estimates
of two- and three-photon detachment rates. In particular, we explore the S' and D' Feshbach
resonances below the n = 2 and n = 3 excitation thresholds of H; these resonances lie in the
"excess-photon detachment" regime, where one photon is already sufficient to detach the electron.

PACS number(s): 32.80.Wr, 32.90.+a

Accurate rates for multiphoton detachment of the neg-
ative hydrogen ion H by a weak (perturbative) field
have proved to be especially difficult to calculate. There
are only a few published results of calculations taking the
electron-electron interaction into full account (see, e.g. ,
Refs. [1—5]), and there are significant discrepancies be-
tween these results (a comparison of different results is
given in Ref. [4]). In this paper we describe a method for
calculating rates for multiphoton detachment or ioniza-
tion of a two-electron system by a perturbative field, and
we present results of an application to H . We give rates
for two- and three-photon detachment of H by a linearly
polarized field. In particular, we explore the region of the
iS' and i D' Feshbach resonances below the first and sec-
ond excitation thresholds of hydrogen. These resonances
are reached by two photons and lie in the "excess-photon
detachment" region where one photon is already suffi-

cient to detach the electron [6,7]. In our calculations we
employ a two-electron basis composed of products of one-
electron complex radial Sturmian functions and spheri-
cal harmonics, and our results are, for most frequencies,
fairly well converged with respect to increasing basis size.

Let H, be the Hamiltonian of the atomic system, and
let V~e ' '+V e'~' be the interaction of this system with
a monochromatic classical field of frequency io, within the
dipole approximation. If E( l and l4';) denote the unper-
turbed initial energy and state vector, the amplitude for
the system to absorb N photons and undergo a transition
to a state represented by l4'& ), with one electron in the
continuum, is, within lowest (i.e. , Nth) -order perturba-
tion theory,

A~, ——(4'~ [Vj lP~, ), (1)

where the Nth-order harmonic components le ) sat-(N)

isfy the coupled (Dalgarno-Lewis) equations

(E, +Nb(u —H, )p'~( ) =V+lPN i )) N & 1) (2)

(3)

For simplicity, we neglect spin-orbit coupling so that we
can factor the spin out of the problem. We denote the
electron that is ejected as 1, and the electron that re-
mains bound in the residual atomic system as 2. The

l+, ) = & (&+G. (Ej")~)(IV,„.) s lA. )), (4)

where P is the symmetrization [7] operator. Substituting
the right-hand side of Eq. (4) into the right-hand side of
Eq. (1), noting that [G~ (E)W]t = WGL+(E) and that

Eq. (2) implies that G+(E&( l)V+lE&~ i l) = lP&( l), we
obtain

A(N) B(N) + G(N)
fi fi fi

BP' = ~2((@&„.I (yi. I)V+ I&iv" i")
Gy", ' = ~2((~g-„.l (4i. l)WI~N"').

The quantity Bf", ' is just the amplitude obtained when

FSC is omitted, and Cf,. is the correction accounting for

FSC. Writing H, = Hp + W, and noting that l@&, ,) )3

[Pi, ) is an eigenvector of Hp with eigenvalue E&, we can(0)
""

replace W by H —Ef +Ho —Ho on the right-hand side

(5a)

(5b)

(5c)

final channel f is specified by the parity, by the total
orbital angular momentum and magnetic quantum num-
bers I and M of the two-electron system, by the in-

dividual orbital angular momentum quantum numbers,
li and lq, of electrons 1 and 2, and by the (positive)
energy s with which electron 1 emerges. Denoting the
atomic number of the nucleus by Z, we subtract from
the atomic potential acting upon electron 1 the Coulomb
potential —(Z —1)e~/ri due to the nucleus when it is
screened by electron 2; the remaining potential acting
upon electron 1 is W —= e (1/rig —1/ri), and this is
"short" range. Speaking loosely, we refer to W as the
"final-state correlation" (FSC). If we were to neglect
FSC, the final state would be represented by the di-
rect product l@&,) lt)t)i, ), appropriately symmetrized
and summed over individual magnetic quantum numbers,
where lg&, ) represents electron 1 moving with energy s
in the Coulomb potential —(Z —1)e /ri (note Z = 1

in the case of H ) and where [Pi, ) represents electron 2
bound in the isolated residual system. Introducing the
resolvent G~+(E) = (E kiri —H~), where )7 is positive

but infinitesimal, and defining E&
——E, +N~, the e. x-(p) (o)

act final-state vector is given by the Lippmann-Schwinger
equation:
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of Eq. (5c); using Eq. (2) we see that the part of |f,
involving H —Ef cancels with Bf, , and hence we can(o) (N)

express Af,. in the alternative forms(N) ~

Af,
' = v 2((@I„,I (A. I)(~o —&o) l&P') (6)

= ~2(WI„.I (A. l)(Ef ' —~o)l&~ ') (7)

The last form, i.e. , Eq. (7), is particularly suitable for
computation since Ho does not contain the electron-
electron interaction (and therefore matrix elements of
Ho can be calculated easily and rapidly, with minimum
roundoff error), but, of course, the harmonic compo-
nent IF& ) does contain the electron-electron interac-(N}

tion. More importantly, each of the three difFerent ex-
pressions given by Eqs. (5)—(7) is exact and yet the final
state is represented by the (symmetrized) direct product

I/I, ) C3 I/I, ), which has a simple closed-form expres-
sion in position space; this is a substantial simplification,
for which we pay only a modest price, namely, rather
than calculate IP& i ), as required by expression (1)
for A&, , we must calculate IP~ ). We note also that
the form given by Eq. (6) holds for strong (nonperturba-
tive) fields, and a form similar to this has been used as a
starting point to calculate partial rates for ionization of
atomic hydrogen by strong fields [8].

We solved Eq. (2) for the harmonic components on
our two-electron basis; this basis consisted of terms
S„"I(ri)S„",I, (rz)YII, (ri, r2), where Y&I, (ri, rz) couples
spherical harmonics and where S„"I(r) is a radial Stur-
mian function which is a Laguerre polynomial in Kr of
degree n„= n t —1 mul—tiplied by (ter)I+ie'"" We cho. se
the "wave number" r. to lie in the upper right quadrant of
the complex ~ plane so as to simulate both outgoing-wave
open channels and exponentially decaying closed chan-
nels [9]. (If N is less than the minimum number N;„
of photons which the ion must absorb to release an elec-

tron, IE& ) has only closed channels, but if N & N~;„,(N)

then IF& ) has both open and closed channels. ) Our(N)

basis consisted of terms up to, at most, t, t' & 3 and

n„, n„' & 20, and (depending on r) gave an electron
affinity of H between 0.0274 and 0.0276 a.u. , compared
to the accurate (Pekeris) value 0.027751 a.u. The re-

sults presented below were obtained using Eq. (7), but,

as a check, we simultaneously calculated Af, accord-(N)

ing to Eq. (5) (and always obtained good agreement)

[10]. We note that any estimate of A, obtained by
expansion on a discrete basis formally c(iverges, in some
cases, as the number of radial basis functions increases,
since the fina wave function of the ejected electron is a
standing wave, composed of both ingoing and outgoing
waves, while a discrete basis can only simulate ingoing-
or outgoing-wave boundary conditions (not both); this
matter is discussed in Ref. [9], and as in that work we

used Pade summation to analytically continue the diver-

gent series. The required basis size increases signi6cantly
with an increase in the number of photons that are in-

cluded, but is moderately insensitive to whether the fre-

quency is below or above the threshold for excess-photon
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FIG. 1. Rate I', divided by the square of the intensity I,
for two-photon detachment of H, with the H atom left in the
ground state. Broken line, results of Liu, Gao, and Starace
[4]; solid line, present results. Note I'/I is independent of I
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FIG. 2. Same as Fig. 1, but for three-photon detachment,

with I' divided by I .

detachment, since in applying Eqs. (5)—(7) we must han-
dle harmonic components having both open and closed
channels even at frequencies below the excess-photon de-
tachment threshold.

In Figs. 1 and 2 we show the total rates (integrated
over angles) for two- and three-photon detachment of H
over the range of frequencies below the threshold for ex-
cess photon detachment. We compare our results with
the semiempirical adiabatic hyperspherical results of Liu,
Gao, and Starace [4]; the relative difference is 10% or
less. As the photoelectron energy increases, the rate first
rises due to the increase in available phase space, but the
rate quickly reaches a maximum (long before the photo-
electron energy reaches the electron affinity) and starts
falling due to the difficulty the photoelectron has in ac-

quiring momentum. Our results are not completely reli-
able for photoelectron energies below, and in the vicinity
of, the maximum of the rate. As an independent check
on the accuracy of our results we calculated the induced



T%0- AND THREE-PHOTON DETACHMENT OF H BY A %'EAR FIELD

10

10

to'
O

ML tQ

gIII IIIII Illil I~~ I & [II Ill Ill IIII
H +2m

0'

I I I I I I I

I
I I I I I I I I

~ H(1s) +e
without fsc
with fsc

J I I

I
I I I I I I I

IPo
O

I I I I I I I I I
)

I I I I I I I I I

]
I I I I I I I I I

600—

400—

~ 1po
200—

n=2 n=3
n=2]
i( I*

Q.2 Q.4 Q.6 0.8
Photoelectron Energy (o u. )

&.0 0 I I I I I I I I I I I I I I I I I I I I I I I I I

0.3 7&5 0.37 t 9 0.3723
Photoelectron Energy (o.u. )

Q.3727

FIG. 3. Two-photon detachment in the excess-photon de-

tachment region. The broken line shows results obtained
when final-state correlation (FSC) is omitted.

FIG. 5. D' resonance profile, below the n, = 2 excitation
threshold of H.

width of the ground-state level, which for frequencies
below the threshold for excess photon detachment can

be expressed as —2Img'&~
~ lV PN ) and should be

identical to the total rate (multiplied by h). In Tables
I and II we compare the induced width with the rate
calculated from Eq. (7).

In Fig. 3 we show the two-photon detachment rate
over a wide range of frequencies above the threshold for
excess-photon detachment. The rate falls rapidly as the
photoelectron energy increases, but rises sharply at the
~S' and ~D' Feshbach resonances below the n = 2 and
n = 3 excitation thresholds of H. These resonances are
in the final state, and are not reproduced when FSC is
neglected. At still higher photoelectron energies the ~P'
shape resonance above the n = 2 excitation threshold
is seen. This shape resonance occurs in an intermedi-
ate state, reached by absorption of the first photon; it
appears even when FSC is neglected (since correlation

is included in le )), although the line shape is incor-
rect when FSC is omitted. We did not locate the ~P'

Feshbach resonances below the n = 2 threshold, but we
did reproduce these resonances in the one-photon detach-
ment rate, in good agreement with earlier results [11].

In Figs. 4—6 we show in more detail the three promi-
nent Feshbach resonances seen in Fig. 3. Since the ~S'
and ~D' resonances below the n = 2 threshold are ap-
proximately symmetric, we can graphically deduce the
widths of the profiles, and they are in good agreement
with earlier calculated values [6]. The D' resonance be-
low the n = 3 threshold is highly asymmetric; evidently
there is strong interference with the two-photon detach-
ment background.

Multiphoton detachment of H has been observed [12],
but not in the resonance region. (Moreover, rates were
not measured, and the experiment was performed at
pulse energies such that perturbation theory is probably
unreliable. ) Taking an "average" value of 100I2 a.u. for
the two-photon rate in the resonance region below the
n = 2 threshold, and noting that the one-photon rate
in the same frequency range (i.e., ~ = 5.4 eV) is about
2I a.u. , we obtain one- and two-photon rates of about
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FIG. 4. S' resonance profile, below the n = 2 excitation
threshold of H.

FIG. 6. D' resonance profile, below the n = 3 excitation
threshold of H.
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0.001
0.005
0.010
0.015
0.020
0.025

r./(lo'I')
3.558
4,087
3.324
2.609
1.951
1.432

r, /(1o'I')
4.340
4.066
3.317
2.588
1.944
1.431

TABLE I. I' and I'g are, respectively, the rates for
two-photon detachment calculated from Eq. (7) and from the
induced width of the ground-state level for various values of
the photoelectron energy e and a basis t, l' & 2, n, n'„& 20,
[K[ = 0.7 and arg(K) = 70'. All quantities are in a.u.

0.0015
0.0030
0.0050
0.0070
0.0085
0.0105

r./(lo" I')
3.764
4.877
3.741
2.322
1.516
0.890

I g/(10 I )
4.908
5.146
3.988
2.397
1.574
0.919

TABLE II. Same as Table I, but for three-photon de-

tachment and a basis I, I' & 3, n„n', & 20, ]~[ = 0.5 and

arg(~) = 70'.

10 a~d 10 gee, respectively, a,t a~ jntensity I pf 10~

W/cm2 [13]. Although the two-photon rate is several or-

ders of magnitude below the one-photon rate, the one-

and two-photon signals are well separated in energy (by
about 5 eV) so that the two-photon resonances should be
observable [14].
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