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Relativistic many-body perturbation theory
applied to n = 2 triplet states of heliumlike ions
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Relativistic many-body perturbation theory calculations of the energies of the 2 Po, 2 P2, and
2 Sq states of heliumlike ions with nuclear charges Z in the range 10—36 are presented. These calcu-
lations include Coulomb correlation corrections through third order, correlation corrections of first
order in the Breit interaction and zeroth, first, and second order in the Coulomb interaction, together
with second-order Breit-Breit corrections and first-order corrections for retardation of the Breit in-
teraction. At Z = 10, the calculated energies of the 2 Po, 2 P2, and 2 Sz states di8'er by 2.9, 0.02,
and 0.3 cm, respectively, from benchmark calculations based on variational wave functions. For
higher Z, the difference between the present calculations and the benchmark calculations increases
smoothly. Radiative and mass-polarization corrections are added to the many-body calculations and
comparisons are made with measured 2 Po-2 Sq and 2 P2-2 Sq intervals.

PACS numbers: 31.10.+z, 12.15.Ji, 12.15.Mm, 31.15.+q

I. INTRODUCTION

Relativistic many-body perturbation theory (MBPT)
is particularly well suited for calculations of the prop-
erties of highly charged many-electron ions because of
the rapid convergence associated with the 1/Z expan-
sion [1]. The study of the spectra of these ions allows
QED tests to be extended from the weak fields in which
they are usually made to the intense electrostatic fields
of highly charged nuclei. However, the complexity of the
wave functions of many-electron atoms interferes with
the study of QED effects as long as wave-function un-
certainties are larger than or comparable to the QED
corrections.

The most accurately known many-electron wave func-
tions are those for helium-like ions. Precise variational
calculations have been done for S and P states of heli-
umlike ions with Z ( 10, and the dominant relativistic
corrections were determined two decades ago by Accad,
Pekeris, and Schiff [2]. More recently, multiconfigura-
tion Dirac-Fock (MCDF) calculations have been reported
by Hata and Grant [3] and by Indelicato and co-workers
[4]. The most accurate recent calculations are the uni-
fied calculations of Drake [5], which have an estimated
uncertainty of +1.2(Z/10)4 cm

In this paper, we apply relativistic MBPT to three
states 2 sPe, 2sP2 and 2sSi of heliumlike ions that are
given by single-configuration wave functions in the jj
couplingscheme. For twoofthesestates, 2 P~ and2 Sy,
we obtain energies that agree with [5] to well within the
above error estimate, while for the 2 sPe state we differ
from [5] by over two times that estimate.

For the three single-configuration states, we derive for-
mal solutions to the two-electron Schrodinger equation
based on the no pair Hamiltoruan of QE-D [6—9]. By iter-
ating these formal solutions, we obtain successive approx-
imations to wave functions and energies that are identical
to results of a many-body perturbation theory expansion,
with negative-energy states excluded from intermediate-
state summations.

The lowest approximation to the energy scales as Z~,
and each successive iteration scales as a corresponding
power of 1/Z, so that E("1 oc Zz ".For high Z, the iter-
ation sequence converges rapidly and is therefore suitable
for precise atomic structure calculations. In the present
work, we iterate the relativistic equations to third or-
der and add corrections of fourth and higher orders from
a nonrelativistic 1/Z expansion [10]. The differences
between the present calculations and those of [5] arise
primarily because relativistic corrections to the second-
order energy of order (Zn)4 as well as Breit-Breit cor-
rections, which also grow as (Zcs)4, were not included in

[5]
The present work represents an attempt to include all

corrections which could mask the leading QED correc-
tions for ions with Z ) 10. Of course, the separation
of QED corrections from atomic structure corrections is
artificial. In the present paper, we define the "atomic
structure" part of the calculation to be the part arising
from the no-pair Hamiltonian, including retardation cor-
rections to the Breit interaction only in lowest order, and
we define the "QED" part to be the remaining corrections
from quantum electrodynamics. The atomic structure
part of the calculation is done in the present paper. For
comparison with measured intervals, we include the QED
corrections determined in [5].

II. CALCULATION

The no-pair Hamiltonian is given in second-quantized
form as

where e,. is the ith energy eigenvalue of the single-particle
Dirac equation for an electron in the Coulomb field of the
nucleus, and where g;~ye and b,~I,e are two-particle matrix
elements of the Coulomb and Breit interactions, respec-

tively. The operators a; and a, are electron annihilation
and creation operators. Nuclear finite-size corrections
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are included by replacing the nuclear Coulomb field in
the single-particle Dirac equation by the field of a Fermi
charge distribution. The parameters of the Fermi distri-
bution are chosen to give the nuclear charge radii listed
in [11].

We describe each of our n = 2 states in lowest order as

e, = atat[0), (2)

where v refers to a 2si~z, 2pi~z, or 2psyz single-particle
state, and where a refers to a 1si~z state. The exact wave
function is taken to be 4' = 4'e + h4, where

) pj„,& aj lo)t t
~ 3(V a»)

The corresponding energy is E = Eisa + b,E, where
E~ l = s„+s, . Substituting into the Schrodinger equa-
tion, one obtains
(E' + sj —6'g —6'~ —AEg)pij~~

(3)

gijvs ) gijmnpnanva ~ ( )
m, n(ga, v)

where b,Eq is an eigenvalue of the energy matrix:

(&E)~s,.s = g~i.~ —gpss.

+ ). (g b'~ g-~j')-p'j- (5)
,i(ya, v)

The states tv and b in Eq. (5) are the same as the states
v and a, respectively, except for magnetic quantum num-
bers. By coupling the states v and a to states of total
angular momentum J, one can diagonalize the energy
matrix in Eq. (5). For each eigenvalue AEg, Eq.(4) can
be reduced to a set of coupled radial equations suitable
for iterative solution.

In the present calculation, the single-particle states
are formed using a finite basis set constructed from B
splines [12]. We iterate Eqs. (4)—(5) in powers of g,jA;r

to obtain wave-function corrections p,j„~ and p,j„and
energy corrections Evil, E~ l, and E~ l, where p;j„, =
p, „+p,„+ and AEz = E~ i+E& l+ . In the firs
four rows of Table I, we give the values of E~"l, n = 0 —3
obtained for the three triplet states of heliumlike neon,
Z = 10. In the row labled E+, we give an estimate(4)

of the Coulomb corrections of fourth and higher order,
determined by summing fourth and higher-order terms
in the nonrelativistic 1/Z expansion [10]. By using the
nonrelativistic values, we are assuming that relativistic
corrections to the fourth- and higher-order Coulomb en-
ergies are negligible for the states considered here. This
assumption has been verified for the leading relativistic
corrections to the fourth- and fifth-order energies, which
are proportional to nz and n /Z, respectively.

The first-order Breit correction Bi & is obtained by
evaluating the matrix element of the Breit interac-
tion term in the no-pair Hamiltonian using the coupled
lowest-order wave function. With the aid of pI „and
pI i, one obtains the higher-order corrections to the
wave function which are used to evaluate the correc-
tions B( ) and B( ) associated with one Breit interac-
tion and one or two Coulomb interactions, respectively.
These Breit corrections are listed in the sixth through

TABLE I. Contributions to the energies (a.u.) of the
2 Sy, 2 Pp, and 2 Pq states of heliumlike neon, Z = 10.

Term

E(p)
@(&)

@(&)

g(3)
&(4)

B(1)

gg( )

[B x B]~ ~

Mass pol.
/ED'
Sum

Drake'

2 Sg

-12.5208568
1.8833955

-0.0476275
-0.0004838
-0.0000368
-0.0000002
-0.0000104
0.0000022
0.0000002

-0.0000001
0.0000025
0.0005992

-10.6850161
-10.6850148

2 Pp

-12.5208597
2.2641034

-0.0736296
-0.0016472
-0.0001092
0.0049183

-0.0009956
0.0000389

-0.0000004
-0.0000048
-0.0001756
-0.0000509

-10.3284123
-10.3283993

2 P2

-12.5041630
2.2591589

-0.0731857
-0.0016593
-0.0001092
0.0002863

-0.0000663
0.0000030

-0.0000040
-0.0000001
-0.0001756
-0.0000290

-10.3199440
-10.3199439

'Reference [5].

eighth rows of Table I. The leading terms in the fourth-
and fifth-order Breit interaction have been examined and
found to be insignificant. The unretarded Breit interac-
tion is used for each of these terms.

In the ninth row of Table I, we give values of the
retardation corrections to the first-order Breit interac-
tion, b,B~i&. These retardation corrections grow as Z n .
Retardation corrections to the second- and higher-order
Breit interactions are neglected here. In the tenth row
we give the results of a second-order calculation with two
unretarded Breit interactions; this correction grows as
(Zn)4.

The eleventh and twelfth lines of Table I contain mass-
polarization and /ED corrections from [5]. The resulting
sum difFers slightly from the values given by Drake [5],
which are listed in the final row of the table. We have
attempted to control the numerical accuracy well enough
that all of the figures presented in Table I are significant.
The small differences in the final results reflect the dif-
ferences in the treatment of relativistic corrections to the
atomic structure.

III. RESULTS AND CONCLUSIONS

It is of interest to compare our results first with other
theoretical calculations and then with experiment. For
the case of argon (Z = 18) we find excellent agreement
between our value of the 2 sSi energy and that obtained
in an MBPT calculation by Lindroth and Salomonson
[13]. The agreement between our calculation and that of
Ref. [5] for the 2sPz —2sSi transition, shown in Table
II, is excellent; the difference remains less than 4cm
for the entire range Z = 10—36. On the other hand,
the difference for the 2 sPe —2 sSi transition, given in
Table III, increases from 3 to 500 cm i over the same
range. This difference can be explained as a —2.6(Z/10)4
cm i term arising from (Zn)4 corrections evaluated here
but not included by Drake. The estimate of the size of
this omitted term +1.2(Z/10)4 cm i given in Ref. [5]
is thus seen to be too small by a factor of 2.2. We note
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finally that our theory is consistent with the screened 1/Z
expansion calculations of Vainshtein and Safronova [14],
but the results of these authors are of lower precision.

We find serious discrepancies with the most recent
MCDF results of Indelicato [4]. The disagreements oc-
cur in several distinct parts of the calculation, which we
illustrate for the 2 Pz —2sSq transition at Z=26. When
we compare the sum of our Coulomb energies with the

TABLE II. Comparison of theory and experiment for the
2 P2—2 Sq transition in heliumlike ions: units cm

Nuclear
charge

10

12
13
14
15
16

17

18
20
22
26
28
36

Present
theory

80121.9

100252
111152
122743
135151
148496

162922

178576
214170
256683
368742
441907
900008

Experiment

80123.3(0.8)'
80121.1(1.9)8

100263(6)'
111157(6)'
122746(3)

135153(18)a

148494(4)"
148493(5)
162929(4)'
162923(6)
178591(31)'
214225(45)"
256746(46)'

368976(125)
441944(39)"
900009(240)

Drake Indelicato

80121.6 80110.2

100253
111152
122743
135152
148497

100236
111133
122723
135129
148472

162923 162896

178577
214172
256685
368745
441910
900012

178546
214136
256642
368692
441854
899983

'Reference [5].
Reference [4].

'N. J. Peacock, M.F. Stamp, and J.D. Silver, Phys. Scr. TS,
10 (1984).
H.G. Berry and J.E. Hardis, Phys. Rev. A 33, 2778 (1986).

'H.A. Klein, F. Moscatelli, E.G. Myers, E.H. Pinnington, and
J.D. Silver, J. Phys. B 18, 1483 (1985).
R. DeSerio, H.G. Berry, R.L. Brooks, H. Hardis, A.E. Liv-

ingston, and S. Hinterlong, Phys. Rev. A 24, 1872 (1981).
A. E. Livingston and S.J. Hinterlong, Nucl. Instrum. Meth-
ods Phys. Res. 202, 103 (1982).
"E.J. Galvez, Ph. D. thesis, University of Notre Dame, 1986,
and Ref. [16].
'A. S. Zacarias, Ph. D. thesis, University of Notre Dame, 1990,
and Ref. [16].
'H. F. Beyer, F. Folkmann, and K.H. Schartner, Z. Phys. D
1, 65 (1986).
"S.J. Hinterlong and A.E. Livingston, Phys. Rev. A 33, 4378
(1986).
'E.J. Galvez, A.E. Livingston, A.J. Mazure, H.G. Berry, L.
Engstrom, J.E. Hardis, L.P. Somerville, and D. Zei, Phys.
Rev. A 33, 3667 (1986).

J.P. Buchet, M.C. Buchet-Poulizac, A. Denis, J. Des-
esquelles, M. Druetta, J.P. Grandin, and X. Husson, Phys.
Rev. A 23, 3354 (1981).
"A.S. Zacarias, A.E. Livingston, Y.N. Lu, R.F. Ward, H.G.
Berry, and R.W. Dunford, Nucl. Instrum. Methods Phys.
Res. B 31, 41 (1988), and Ref. i.
S. Martin, A. Denis, M.C. Buchet-Poulizac, J. Buchet, and

J. Desesquellea, Phys. Rev. A 42, 6570 (1990).

Coulomb energies from Ref. [4] a discrepancy of —9 wave

numbers is found. Our magnetic energies disagree even
more strongly with those from Ref. [4), difFering by —57
wave numbers. While our mass polarization correction
agrees well with the specific mass shift in Ref. [4], there
are again significant discrepancies with the @ED values:
for the transition being considered here the difference
is 17 wave numbers. It should be possible to eliminate
the discrepancies in the structure part of the calculation
by including a sufficient number of configurations in the
MCDF approach: we note that Parpia and Grant [15]
have achieved excellent agreement between an MCDF
calculation and MBPT and the unified theory for ground-
state helium.

Turning to the comparison with experiment, we first
discuss the 2sPq —2sSq transition. While we have close
agreement with the results of Ref. [5] for this transition,
both theoretical results seem to be one or two experimen-
tal standard deviations below experiment. A possible ex-
planation for this trend may be the need for higher-order

/ED corrections, as will be discussed in the conclusion.
An extra negative /ED contribution to the 2sSq energy
entering at the level 0.1(Zo.)» is certainly not excluded

TABLE III. Comparison of theory and experiment for the
2 Po—2 Sy transition in heliumlike ions: units cm

Nuclear
charge

10

12
13
14
15
16

17
18
36

Present
theory

78263.3

95848
104778
113809
122955
132219

141616
151155
356823

Experiment

78265.0(1.2)'
78262.6(3.1)d

95851(8)'
104778(11)'
113815(4)

122941(30)a
132219(4)"
132198(10)K
141621(4)'
151204(9)'

357400(255)"

Drake' Indelicato

78265.9 78244.6

95853
104787
113820
122970
132238

95825
104755
113785
122932
132195

141640
151186
357330

141592
151130
356911

Reference [5].
Reference [4].

'N. J. Peacock, M.F. Stamp, and J.D. Silver, Phys. Scr. TS,
10 (1984).
~H.G. Berry and J.E. Hardis, Phys. Rev. A 33, 2778 (1986).
H.A. Klein, F. Moscatelli, E.G. Myers, E.H. Pinnington, and

J.D. Silver, J. Phys. B 18, 1483 (1985).
R. DeSerio, H.G. Berry, R.L. Brooks, H. Hardis, A.E. Liv-

ingston, and S. Hinterlong, Phys. Rev. A 24, 1872 (1981).
~A.E. Livingston and S.J. Hinterlong, Nucl. Instrum. Meth-
ods Phys. Res. 202, 103 (1982).
"E.J. Galvez, Ph.D. thesis, University of Notre Dame, 1986,
and Ref. [16].
'A. S. Zacarias, Ph.D. thesis, University of Notre Dame, 1990
and Ref. [16].
"H.F. Beyer, F. Folkmann, and K.H. Schartner, Z. Phys. D

1, 65 (1986).
"S. Martin, A. Denis, M.C. Buchet-Poulizac, J. Buchet, and
J. Desesqueiies, Phys. Rev. A 42, 6570 (1990).
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by the data.
The situation for the 23PO —2 Sy transition is com-

plicated by some inconsistency between different exper-
imental results above Z=17. For Z = 10 through 17
our theory is sometimes in agreement with experiment,
but sometimes somewhat below. We note the important
role of the recent accurate measurements at Z=16 and 17
[16] in confirming the relatively large (Zo.) corrections
included in our calculation. Note that if the 2 Si Lamb
shift has an uncalculated term that would explain the
trend of our 2 P2—2 Si results being below experiment,
the same effect would predict this transition to be some-
what low. It is obvious that more precision experiments
for higher values of Z would greatly help to clarify the
situation.

At the present level of experimental accuracy we can
claim that relativistic MBPT taken together with the
standard theory of helium /ED effects is quite success-
ful. In particular, we believe we have identified all MBPT
contributions through order (Zo.)4 How. ever, it is likely
that as the experimental accuracy improves, systematic
discrepancies with the theory presented here will emerge.
This is because the /ED contributions are not complete
at the (Zn) level. While we claim to have evaluated
all (Zn)4 corrections associated with atomic structure,
there is another source of such terms from @ED, bind-
ing corrections to the screening of the Lamb shift. These

arise from corrections of order Za. to the two-electron
part of the Lamb shift, which itself enters in order (Zo.)s
While binding corrections to the one-electron Lamb shift
are included to all orders by using the exact results of
Mohr [17], the analogous calculation has not been car-
ried out for the two-electron Lamb shift. Such correc-
tions can automatically be obtained, however, by evaluat-
ing the Feynman diagrams associated with them, vertex
correction and two-photon exchange graphs, using exact
relativistic propagators in a Coulomb field. When this
project is carried out the largest theory error should be
of order Zso;4, which would come from correlation cor-
rections to the Breit-Breit part of the calculation. While
considerable experimental effort will be required to reach
this level, our understanding of relativistic and @ED ef-
fects in intense Coulomb fields in the simplest many-
electron atom promises to be significantly advanced by
such work.
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