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Focal conic domains with positive Gaussian curvature and saddle-splay rigidity
of smectic L, phases
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%e report on the experimental observation of a different type of focal conic domain with positive
Gaussian curvature. A particular type of these domains is usually given the name "spherulites. " Their
appearance is due to a low (probably negative) value of the saddle-splay elastic constant. These
domains are observed in the lamellar L, phase with a low cosurfactant to surfactant (c/s) ratio. The
increase of this ratio results in usual focal domains with negative Gaussian curvature. It allows us to
conclude that the saddle-splay constant is governed by the e/s ratio, and changes sign from positive to
negative when c/s decreases.

PACS number(s): 61.30.Eb, 61.30.Jf

The smectic-A phase or its lyotropic analog, the I.,
phase, are phases of liquid layers, which can be con-
veniently represented by a set of equidistant surfaces. The
elastic energy density carried by the layers deformations is
associated with their mean curvature (a~+ o2) and
Gaussian curvature o ~ o 2 [1]:

f —,
' K(a ~+ op) +Ko ~ a2,

where o~ and o2 are the principal curvatures of the sur-
faces, and K and K are, respectively, the splay and
saddle-splay elastic constants. This expression of the
free-energy density does not include the interaction ener-

gy between layers, and assumes therefore that the layer
equidistance is conserved.

The second term of Eq. (1) is responsible for the
changes of layer topology. However, despite of the evi-
dent importance of the saddle-splay rigidity, up to now
there are no general methods for the determination of K,
except for a few cases of special instabilities [2]. As it was
shown recently [3], the corresponding information can be
extracted from the geometry of focal conic domains
(FCD), which are the most general type of topological de-
fects in smecticlike systems where the layer equidistance
is conserved [4]. It was found that K is positive. On the
other hand, in contrast with usual elastic constants like K,
there is no opposition in principle to a sign inversion of K.
This paper gives a theoretical analysis of the relation be-
tween the saddle-splay contribution to the free energy of
the layered system and the topology of the defects in these
media.

We also report on the observation of a different type of
focal conic domain with positive Gaussian curvature.
These findings show the existence of media with a nega-
tive saddle-splay rigidity K.

First of all, let us recall the basic features of the focal
conic domains (see also [3,5-8]). The layers within each
domain are folded around two conjugated focal lines, viz. ,
an ellipse and a hyperbola, in such a way that everywhere
they are perpendicular to the straight lines joining any
point of the ellipse to any point of the hyperbola. The
physical part of the normal is located either between these
two points or outside. It is easy to see that in the first case

o~a2 (0, while in the second case o~a2 & 0 (Fig. 1). Ac-
cording to the layer location and, consequently, to the sign
of the Gaussian curvature, one distinguishes FCD's of the
first species (cr1rr2 (0) and FCD's of the second species
(0 / cr2 & 0) [5], abbreviated as FCD-I and FCD-II. In
spite of the formal geometrical symmetry of these two
classes, up to now only FCD-I are experimentally known
starting with the Friedel and Grandgean work [6]. To cast
light on the problem in terms of K term, let us consider
the elastic energy of the FCD-II.

The curvature energy of the FCD-II for media with
nonzero K can be calculated using Kleman's analytical
description [7]. The geometry of each bilayer within the
domain is described by rectangular curvilinear coordi-
nates (u;s ) along the lines of curvature [7]:

o ~ „1/(aecosa —r„),o2„1/(,a coshu —r„),(2)

where n 1,2, . . . labels the bilayers; a and e are the major
axis semilength and the eccentricity of the ellipse, respec-
tively; r„a+d(n—

—,
' ) is measured along any normal to

the bilayers; and d is the interbilayer separation. For the
sake of accuracy, we introduce the d/2 term in the last ex-

(b)

al a2&0

FIG. 1. The focal conic domains with (a) negative and (b)
positive Gaussian curvature.
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pression of r„to provide for the natural separation d be-
tween the two parts of the first bilayer. However, this
correction is negligible when n is large. We will consider
here only the experimentally observed case of the rota-
tionally symmetrical domains, e 0. The integration of
(1) with distribution (2) and e 0 over the range
0~ z &2x, 1 &cosh~& r„/a (which corresponds to
o& „o2„&0) yields the elastic energy of the focal domain
constructed by N bilayers with positive Gaussian curva-
ture

N

WK, K + WK, K,n

& l/2
0 a a
R2

——arccos—

N In[2d(n —
2 )/r, ]

n r„(r„a)'t-
where R a+d(N —

2 ); r, is a core radius along the hy-

perbola (here degenerate to a straight line) which may be
taken of the order of d, and W, is a core energy. The
latter can be estimated of the order of Ksin2a3 per unit

length of core, ~here the angle co is measured between the
normal to the bilayer and the defect line, i.e., sinco=a/r„.
Thus after the integration over r~ ~ r„~R one obtains
the total core energy of the line:

4tr(2K+ K)R 1—

W, aKa (R —r~)/Rr~, (4)

WK K =2m a [K ln(2a/r, ) —2K —K] . (5)

To compare the elastic energies for both types of

where a is some numerical coefficient of the order of uni-

ty. We have deliberately chosen a positive core energy
(ignoring any contribution analogous to saddle splay in

the core), since we assume that the defects in question are
metastable. As it follows from Eqs. (3) and (4), the
smallest energy belongs to the spherical domains with

a 0 and WKK 4tr(2K+K)R; these domains contain
only a point singularity which adds neither a logarithmic
contribution to the elastic energy, nor any core contribu-
tion.

The establishment of Eq. (3) requires some comments
as regards the saddle-splay distribution. Observe that in

the a =0 limit the saddle-splay term tends to 4trKR, as ex-
pected for a sphere of radius R. However, one might
wonder whether the region outside the FCD-II does or
does not contribute to the saddle-splay term. It does not
because by construction the layers outside the defect are
homotopic to infinite cylinders (in the capillary tubes) or
planes (if the sample is prepared between two planar glass
plates); hence by Gauss-Bonnet theorem [8] their in-

tegrated Gaussian curvature vanishes. Note that the rota-
tional symmetry of the FCD-II defect is broken by the
outside layers (this is not so for a FCD-I toroidal defect,
which fits more nicely with the outside layers [3]).

The dependency W(K, K) on K is simple and clear: The
decrease of K favors the appearance of the FCD-II. This
behavior is just opposite to the situation with FCD-I,
where the elastic energy contains the saddle-splay term of
opposite sign in K and reads for the case e =0 as [3]

domains which occupy approximately the same volume, it
is convenient to put in the last expression (5) a =R and
take (3) and (4) with a =0. Since the logarithmic term
for the FCD-I is usually of the order of 10, one obtains
that FCD-I I becomes energetically preferable when
K & (2-3)K. This inequality can be only enhanced if one
takes into account the nonzero compressibility term Wz..
The FCD-II, in contrast with the toroidal FCD-I [3], al-

ways deforms the surrounding region and thus changes
the bilayer separation outside. Thus the FCD-II total en-

ergy Wz g+ W~ consists of the interior part, which is rep-
resented only by a pure curvature energy (the layers keep
equidistant) and of the exterior compressibility term. As
already emphasized, the Gaussian term does not contrib-
ute to the energy of the matrix [Fig. 1(b)]. Omitting the
details of the calculations which will be published else-
where, we have

We =8R, A, (R(/Rg+ Rg/Rt ), (6)

where X = (K/8) 't2, 8 is the layers compressibility
modulus, Rt =(R —a2) 't is the half length of the
domain along the symmetry axis, R& =R —a. Thus, as it
follows from Eqs. (3)-(6) with a =0 in Eqs. (3), (4), and

(6), and a =R and ln(2a/rc) =10 in Eq. (5), the
spherical-like FCD-II will be preferable to the FCD-I if K
is smaller than some critical value,

K ~ K(8tr —4tr —R X/) /(2 tr+tr) . (7)

The usual thermotropic materials studied up to now are
not obliged to follow condition (7). This can explain why
there are no reports on FCD-II in usual liquid crystals [9].
On the other hand, the best candidates for displaying
FCD-II seem to be the lyotropic systems in the vicinity of
the L,,-L~ phase transition. This transition shows up in

many lyotropic mixtures [10,11] and transforms the
lamellar phase L,, with parallel layers and cr~a2=0 to the
micellar phase L~, where a~cr2&0 due to the rounded
geometry of the elementary units (micellae).

We have studied the L, phase of the quasiternary sys-
tem cetylpyridinium chloride (abbreviated as CpC1)-
hexanol-brine (1% by weight of NaCl). The weight frac-
tion pb of brine was within the range 75%-90%. The right
choice of the cosurfactant (c, hexanol) to surfactant (s,
CpC1) ratio was the main point of importance of the ex-
perimental search and was based on the following ideas.

Previous investigations [10,11] have shown that the
phase states of the CpC1-hexanol-brine mixture are main-

ly determined by the c/s ratio. The system exhibits three
phases: (1) the L~ micellar phase with globular or rod-
shaped micelles and thus cr~a2 & 0 for low c/s ratios; (2)
the lamellar L, phase with Oat bilayers and alo2=0 for
intermediate c/s ratios; (3) the anomalous isotropic L3
phase with numerous passages and handles (o~o2 & 0) for
high c/s ratios. Since these states possess different layers
topologies, it is reasonable to expect that the essential con-
tribution to the phase transitions comes from the saddle-
splay modulus K variation, as first proposed by Porte et al.
[11],keeping in mind that K might well change sign from
positive to negative within the range L, phase when one
moves from the L3 to the I.] boundaries in the phase dia-
gram. Thus to find the region with a~cr2 & 0 and FCD-II
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FIG. 2. The texture of the elongated axisymmetrical focal
conic domains with positive Gaussian curvature (FCD-II).
[CpC1]:[hexanol]:[brine] = 13:7:80.The bar length is 50 pm.

we investigated the L, phase in the vicinity of the L, -L
~

transition with e/s = [hexanol]/[CpC1] =0.45-0.6 in
weight units (Fig. 3 in Ref. [10]).

The mixture was introduced by capillarity in glass tubes
with a rectangular (2 mm&&200 pm) or a circular (200
pm) cross section. It orients homeotropically (layers
parallel to the glass boundary). Observations were con-
ducted in the polarizing microscope at 25'C. Immediate-
ly after the sample preparation one observes textures
which differ drastically from typical textures ever report-
ed for the smecticlike phases. Their main feature is the
presence of birefringent elongated domains located at
different levels of the surrounding dispersion matrix which
is also birefringent (Fig. 2). The domains possess rota-
tional symmetry with longitudinal axis usually oriented
along the capillary axis, i.e., parallel to the layers. %ithin
the accuracy of the optical observations the meridian cut

of the domain boundary is an arc of circle with radius R
greater than the radius R, of the transversal cross-section
of the domain [Fig. 3(a)]. Investigations with quartz
wedge indicate that the optical axes and thus the normals
to the bilayers are distributed in a radial-like manner and
are perpendicular to the domain boundary; there is also a
sharp change in their orientation at the domain axis.

The above described peculiarities give evidence that the
observed domains are the FCD-II with structure shown in
Fig. 1(b). However, the elongated shape of these
domains, which is probably induced by the material fiows,
is not stable. As time elapses the elongated domains relax
into spherical ones, while keeping a constant value of the
transversal radius R, (Fig. 3). Eventually one has R =R, .
Analogous spherical domains were observed also by Go-
mati et al. [10] for the same phase region of the
[CpC1]:[hexanol]:[brine] mixture and are in fact the trivi-
al limit case of the FCD-II with the ellipse shrinked into a
point. There are also other observations of spherical
domains in lamellar systems, see, e.g., [12,13];however, in
most cases these so-called spherulites were observed to be
dispersed in the isotropic matrix rather than in the
birefringent one with the periodical lamella stacking, ex-
cept in Ref. [10], which provides probably the first clear
observation of spherulites in a lamellar phase.

The increase of c/s ratio leads to the disappearance of
the FCD-II with cr~tr2) 0 and to the appearance of usual
FCD-I with cr~cr2 (0, which were described in detail for
the investigated system in our previous paper [3].

As it is easy to see, the observations unambiguously
confirm the theoretical predictions: (a) FCD-II appear
instead of FCD-I in the vicinity of the L,-L~ transition
where K is expected to be small or negative [10]; (b) the
elongated domains tend to relax into spherical FCD-!I.
Moreover, since the size of FCD-II is known from the ex-
periment (typically R = 10 pm), the observations allow
us to estimate K/K using Eq. (7).

To find K/K, one should estimate A, =4K/B. Within
the scope of the Helfrich "steric interaction" model [14) B
scales with temperature T and interlamellae separation d

(a) (b)

FIG. 3. The shape transformation of (a) the elongated FCD-II to (b) the spherical one. Photo (b) was taken for the same part of
the sample 5 h later than photo (a). [CpCl]: [hexanol]:[brine] = 13:7:80. Bar length 50 pm.
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as

g =9tr (ktt T) /32kcd (8)

where k, =Kd is the lamellae curvature modulus. The
latter was measured as the function of the c/s ratio for the
[CTAB]:[hexanoll:[brine] system (where CTAB denotes
cetyltrimethylammonium bromide) similar to the one in-
vestigated here [15]. In the vicinity of the L, L3 p-hase
transition (relatively high hexanol content) k, was found
to increase within the range (5.5-7)kttT as the c/s ratio
decreases. Since the alcohol cosurfactant k, lowers, one
should expect k, —10kaT for low hexanol concentration,
in the vicinity of the L,-L~ phase transition. Taking this
order of k, and using Eq. (8), one obtains that A. -5d. As
far as the typical interlamellae separation d for 80-90%
dilution with brine is 10-30 nm [10], the order of X mag-
nitude is 10 nm [16]. Thus, the condition (7) with typi-
cal R =10 pm leads to the estimation K-(—2K), i.e., K
is negative.

In principle, the last rough estimation is close to a
lowest possible value of K within the range of the L, phase
[11]. With a smaller K the system of parallel I]at layers
can be unstable with respect to the spherical-like packing.
An numerical analysis of the FCD-II total energy
Wz g+ Wq as a function of the number N of bilayers with
K ( —2K and expected k/d=1-20, r, /d=0. 5-2 shows
that the lowest energies of the FCD-II are negative, i.e.,
smaller than the energy of the flat layer packing, which
can be taken as zero. So, one can expect that the FCD-II

may serve as the nucleus of a new phase during the transi-
tion from the L, state with zero Gaussian curvature to a
phase consisting of spheres with positive curvature. We
will discuss the relation between the FCD's and the phase
diagrams in detail in a forthcoming article.

Let us summarize our findings and conclude. First, we
have observed a special type of focal conic domain, FCD-
II, which possesses a positive Gaussian curvature of the
lamellae, while the usual FCD-I has a negative one. Be-
sides this, the FCD-I and FCD-II differ in the symmetry
of surrounding matrix. The theoretical analysis shows
that the stability of the FCD-II and FCD-I crucially de-
pends on the value and sign of the saddle-splay constant
K. Both experiment and theory reveal that the elongated
FCD-II are unstable and tend to transform into spherical
FCD-II. Second, the FCD-II were observed in that region
of the lamellar L, phase which is characterized by a low
cosurfactant-to-surfactant ratio. With higher content of
the cosurfactant one observes the usual FCD-I. This al-
lows us to conclude that K is really governed by the c/s
ratio, and decreases with the decrease of the cosurfactant
concentration, as it was predicted by Porte et al. [11].
Our estimations give a negative sign of K for the hexanol-
poor L, phase, K- —2K, while for the hexanol-rich re-
gion the previous data [3] give a positive sign, K- (6-10)K.
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